杭电微机原理AD转换DA转换实验实验报告
- 格式:docx
- 大小:127.61 KB
- 文档页数:9
d a a d转换器实验报告D/A转换器实验报告引言:数字与模拟信号之间的转换是现代电子领域中的重要问题。
D/A转换器(Digital-to-Analog Converter)是一种将数字信号转换为模拟信号的设备。
本实验旨在通过实际操作和观察,深入了解D/A转换器的原理和性能。
一、实验目的:1. 理解D/A转换器的工作原理;2. 掌握D/A转换器的实际应用;3. 分析D/A转换器的性能指标。
二、实验器材:1. D/A转换器芯片;2. 示波器;3. 电压源;4. 电阻、电容等辅助元器件。
三、实验步骤:1. 按照实验电路图连接实验器材;2. 设置示波器参数,观察输出波形;3. 调节输入信号,观察输出信号的变化;4. 记录实验数据。
四、实验结果与分析:在实验过程中,我们观察到D/A转换器的输出信号与输入信号之间存在着一定的差异。
这是由于D/A转换器的离散性和量化误差所导致的。
在理论上,D/A转换器应该能够完美地将数字信号转换为模拟信号,但在实际应用中,由于电路元器件的误差和噪声等因素的影响,输出信号会存在一定的偏差。
为了减小这种偏差,我们可以采取一些措施。
首先,选择高精度的D/A转换器芯片,以确保转换的准确性。
其次,合理设计电路,减小电路元器件的误差。
同时,通过滤波电路和抗干扰措施,降低噪声对输出信号的影响。
在实验中,我们还观察到了D/A转换器的线性度和动态性能。
线性度是指输出信号与输入信号之间的线性关系程度,动态性能是指D/A转换器在不同输入信号频率下的响应能力。
这两个指标对于D/A转换器的性能评估非常重要。
在实际应用中,我们需要根据具体的要求选择合适的D/A转换器,以满足信号转换的精度和速度要求。
五、实验总结:通过本次实验,我们深入了解了D/A转换器的原理和性能。
D/A转换器在现代电子领域中具有广泛的应用,例如音频信号处理、图像显示等。
在实际应用中,我们需要根据具体的需求选择合适的D/A转换器,并结合其他电路和控制方法,以实现信号的准确转换和处理。
实验七D/A与A/D转换专业:微电子学姓名:【实验目的】1.学习D/A转换的基本原理和D/A转换芯片DAC0832的性能及编程方法。
2.了解单片机系统中扩展D/A转换芯片的基本方法。
3.学习A/D芯片ADC0809的转换性能及编程方法。
4.了解A/D转换芯片与写单片机的接口方法。
5.通过实验掌握单片机进行数据采集的方法。
【实验原理】1.D/A 转换是把数字量转换成模拟量的变换,从D/A 输出的是模拟信号。
实验程序一是通过在D/A的输入端送入有一定规律的数字量,在输出端产生锯齿波、三角波、正弦波的波形,通过示波器观察来直观地了解D/A的转换功能。
产生锯齿波、三角波只需由A存放的数字量(送入D/A的输入寄存器)的增减来控制;要产生正弦波,较简单的方法是造一张正弦数字量的表,取值范围为一个周期,采样点愈多,精度愈高。
如果电压幅值为M,D/A 转换器的位数是N 位,那么其精度计算公式为:M/(2N-1)。
图6-1 D/A转换逻辑例如,D/A转换器的位数是8位,电压幅值为5V,则转换精度为,5/(28-1)= 0.0196(V)在EL-8051-III实验台上DAC0832与单片机的连接图6-1所示。
由图可以看出,输入寄存器占偶地址端口(A0=0),DAC 寄存器占较高的奇地址端口(A0=1)。
两个寄存器均对数据独立进行锁存。
要把一个数据通过0832输出,要经两次锁存。
典型的程序如下:MOV DPTR, #PORTMOV A , #DATAMOVX @DPTR,AINC DPTRMOVX @DPTR,A其中,第二次写入是一个虚拟写的过程,其目的是产生一个/WR信号,启动D/A。
2.A/D转换是把模拟量转变为数字量的变换。
A/D转换器大致有三类:一是双积分A/D转换器,优点是精度高,抗干扰性好,价格便宜,但速度慢;二是逐次逼近法A/D转换器,精度、速度、价格适中;三是并行A/D转换器,速度快,价格也昂贵。
本实验用的是ADC0809属逐次逼近法A/D转换器,是八位的A/D转换器。
ad da转换实验报告AD-DA转换实验报告摘要:本实验旨在通过AD-DA转换器,将模拟信号转换为数字信号,然后再转换回模拟信号,以验证转换器的性能和精度。
实验结果表明,转换器具有较高的精度和稳定性,能够准确地将模拟信号转换为数字信号,并且能够将数字信号准确地转换回模拟信号,为数字信号处理提供了可靠的基础。
引言:AD-DA转换器是现代电子设备中常用的一种电子元件,它能够将模拟信号转换为数字信号,然后再将数字信号转换回模拟信号。
这种转换器在数字信号处理、通信系统、音频设备等领域具有广泛的应用。
本实验旨在通过实际操作,验证AD-DA转换器的性能和精度,以便更好地了解其工作原理和特点。
实验步骤:首先,我们使用函数发生器产生一个模拟信号,并将其输入到AD-DA转换器中。
然后,转换器将模拟信号转换为数字信号,我们将数字信号输入到计算机中进行处理。
接着,我们将处理后的数字信号再次输入到AD-DA转换器中,转换器将数字信号转换回模拟信号,并将其输出到示波器上进行观测和分析。
实验结果:经过实验操作和数据分析,我们发现AD-DA转换器具有较高的精度和稳定性,能够准确地将模拟信号转换为数字信号,并且能够将数字信号准确地转换回模拟信号。
在不同频率和幅度的模拟信号输入下,转换器都能够保持良好的性能,没有出现明显的失真和误差。
这表明,AD-DA转换器在实际应用中具有较高的可靠性和稳定性,能够为数字信号处理提供可靠的基础。
结论:通过本次实验,我们验证了AD-DA转换器的性能和精度,得出了转换器具有较高的可靠性和稳定性的结论。
这为我们更好地理解和应用AD-DA转换器提供了重要的实验数据和经验,也为数字信号处理和通信系统的设计和应用提供了可靠的支持。
希望通过本次实验,能够更好地推动AD-DA转换器的研究和应用,为电子技术的发展做出更大的贡献。
XX学院实验报告实验名称姓名学号班级教师日期一、实验内容与要求1.1 实验内容本次实验包括A/D转换实验与D/A转换实验。
(1)A/D转换实验:编写实验程序,将ADC单元中提供的0V~5V信号源作为ADC0809的模拟输入量,进行A/D转换,转换结果通过变量进行显示;(2)D/A转换实验:设计实验电路图实验线路并编写程序,实现 D/A 转换,要求产生锯齿波、脉冲波,自行设计波形,并用示波器观察电压波形。
1.2 实验要求(1)A/D转换实验:将ADC单元中提供的0V~5V信号源作为ADC0809的模拟输入量,进行A/D转换,转换结果通过变量进行显示。
同时可以使用万用表对比判断结果是否正确;(2)D/A转换实验:实现 D/A 转换,通过编程,自行设计一个波形,在示波器上显示并观察波形。
二、实验原理与硬件连线2.1 实验原理ADC0809 包括一个 8 位的逐次逼近型的 ADC 部分,并提供一个 8 通道的模拟多路开关和联合寻址逻辑。
用它可直接输入8个单端的模拟信号,分时进行A/D转换,在多点巡回检测、过程控制等应用领域中使用非常广泛。
ADC0809 的主要技术指标为:分辨率:8 位单电源:+5V总的不可调误差:±1LSB转换时间:取决于时钟频率模拟输入范围:单极性 0~5V时钟频率范围:10KHz~1280KHzADC0809的外部管脚如图4-1所示,地址信号与选中通道的关系如表4-1 所示。
图4-1 ADC0809外部引脚图表4-1 地址信号与选中通道的关系模/数转换单元电路图如图4-2所示:AD +5VADJ +5V图4-2 模/数转换单元电路图D/A 转换器是一种将数字量转换成模拟量的器件,其特点是:接收、保持和转换的数字信息,不存在随温度、时间漂移的问题,其电路抗干扰性较好。
大多数的D/A 转换器接口设计主要围绕 D/A 集成芯片的使用及配置响应的外围电路。
DAC0832是8位芯片,采用CMOS 工艺和R-2RT 形电阻解码网络,转换结果为一对差动电流Iout1和Iout2输出,其主要性能参数如表4-2示,引脚如图4-3所示。
试验六AD转换实验和DA转换实验嘿,伙计们!今天我们要聊聊一个非常有趣的话题——AD转换实验和DA转换实验。
你们知道这两个实验是干什么的吗?别着急,我会一一给大家解释的。
我们来说说AD转换实验。
AD转换实验,顾名思义,就是把模拟信号(Analog Signal)转换成数字信号(Digital Signal)。
在我们的日常生活中,有很多东西都是模拟信号,比如收音机、电视机、电话等等。
而数字信号呢,就是我们现在用的手机、电脑等电子设备上的信号。
那么,为什么要把模拟信号转换成数字信号呢?原因很简单,因为数字信号可以更方便地存储、传输和处理。
而且,数字信号还可以进行各种复杂的计算和分析,这对于科学家和工程师来说是非常有用的。
现在,我们来举个例子说明一下AD转换实验的过程。
假设我们有一个模拟信号,它的频率是50Hz,振幅是100V,采样频率是1000Hz。
我们要把这个模拟信号转换成数字信号,首先需要确定一个分辨率,也就是每个采样点代表的电压值。
比如我们可以选择2V作为每个采样点的电压值。
然后,我们需要对模拟信号进行采样,也就是在每个时间点上测量一下电压值。
这样,我们就得到了一个数字信号。
接下来,我们还需要对这个数字信号进行量化,也就是把连续的电压值离散成一系列的数字。
我们还需要对这个数字信号进行编码,以便于存储和传输。
好了,现在我们来说说DA转换实验。
DA转换实验,顾名思义,就是把数字信号(Digital Signal)转换成模拟信号(Analog Signal)。
这个过程其实和AD转换实验相反。
我们需要先确定一个分辨率,然后对数字信号进行采样,接着对采样得到的数据进行量化和编码,最后再把这些数据还原成模拟信号。
DA转换实验在很多领域都有广泛的应用,比如音频处理、图像处理、通信系统等等。
特别是在音频处理方面,DA转换实验可以帮助我们把数字音频文件转换成模拟音频设备可以播放的格式。
这样一来,我们就可以用手机或者电脑播放高保真的音乐了!AD转换实验和DA转换实验是非常重要的概念。
微型计算机原理与接口技术实验报告班级:学号:姓名:指导老师:朱亚萍实验名称: A/D转换实验D/A转换实验(一)D/A转换实验(二)实验一A/D转换实验一、实验目的了解模/数转换基本原理,掌握ADC0809的使用方法。
二、实验内容利用实验系统上电位器提供的可调电压作为0809模拟信号的输入,编制程序,将模拟量转换为数字量,通过数码管显示出来。
三、实验接线图图 1-1四、编程指南1. ADC0809的START端为A/D转换启动信号,ALE端为通道选择地址的锁存信号,实验电路中将其相连,以便同时锁存通道地址并开始A/D采样转换,其输入控制信号为CS和WR,故启动A/D转换只须如下两条指令:MOV DX, ADPORT OUT DX, AL ;ADC0809端口地址;发CS和WR信号并送通道地址2.用延时方式等待A/D转换结果,使用下述指令读取A/D转换结果:MOV DX, ADPORTIN AL, DX;ADC0809端口地址五、实验程序框图图 1-2六、实验步骤1.断电连接导线, 将0809 CS4插孔连到译码输出FF80H插孔,将通道0模拟量输入端IN0连电位器W1的中心插头AOUT1(0-5V)插孔,8MHZ→T;2. 在PC机和实验系统联机状态下,新建实验程序,编辑完成后进行保存(保存后缀为.asm文件);3. 编译下载;4. 全速运行,运行程序;5. 按RST键退出。
七、实验程序DATA SEGMENTBUF DB 6 DUP(0)DATA1: DB0c0h,0f9h,0a4h,0b0h,99h,DB 92h,82h,0f8h,80h,90h,DB88h,83h,0c6h,0a1h,86h,DB8eh,0ffh,0ch,89h,0deh,DB0c7h,8ch,0f3h,0bfh,8fhDATA ENDSCODE SEGMENTASSUME CS: CODE,DS: DATAADC EQU 0FF80H; ADC0809端口地址PA EQU 0FF20HPB EQU 0FF21HPC EQU 0FF22H MAIN PROC FAR START: MOV AX, DATA MOV DS, AXMOV ES, AX ADC_S:MOV AX, 00HMOV DX, ADCOUT DX, ALMOV CX, 0500H DELAY:LOOP DELAYMOV DX, ADPORT IN AL, DXCALL CONVERS CALL DISPJMP ADC_S MAIN ENDPCONVERS PROC NEARMOV AH, AL3.循环不断采样A/D转换的结果,边采样边显示A/D转换后的数字量。
试验六AD转换实验和DA转换实验试验六:AD 转换实验和 DA 转换实验在电子技术的世界里,AD 转换和 DA 转换是两个非常重要的概念和实验。
它们就像是电子信号世界的“翻译官”,将模拟信号和数字信号相互转换,为各种电子设备的正常运行和数据处理提供了关键的支持。
AD 转换,也就是模拟数字转换(AnalogtoDigital Conversion),其作用是把连续变化的模拟信号转换为离散的数字信号。
想象一下,我们生活中的声音、光线、温度等各种物理量都是模拟信号,它们的变化是连续且平滑的。
但计算机和数字系统只能处理数字信号,所以就需要 AD 转换器来把这些模拟量转换成计算机能够理解和处理的数字形式。
AD 转换的过程通常包括采样、量化和编码三个步骤。
采样就像是在连续的信号流中按一定的时间间隔“抓取”瞬间的值;量化则是把采样得到的值划分到有限的离散级别中;最后编码就是把量化后的级别用数字代码表示出来。
在进行 AD 转换实验时,我们会用到专门的 AD 转换芯片,比如常见的 ADC0809 。
以 ADC0809 为例,它是 8 位逐次逼近型的 AD 转换器。
在实验中,我们需要给它提供合适的输入模拟信号,设置好时钟频率、参考电压等参数,然后通过读取转换后的数字输出,来验证转换的准确性和精度。
比如说,我们要测量一个 0 5V 的模拟电压信号,将其输入到ADC0809 中。
通过设置合适的时钟和参考电压,当模拟电压为 25V 时,理想情况下转换后的数字输出应该接近 128(因为 25V 是 5V 的一半,8 位数字量的中间值就是 128)。
但实际中可能会存在一定的误差,这就需要我们分析误差的来源,是由于芯片的精度限制,还是输入信号的噪声干扰,或者是电路设计的不合理。
DA 转换,即数字模拟转换(DigitaltoAnalog Conversion),则是与AD 转换相反的过程,它把数字信号转换回模拟信号。
DA 转换在很多领域都有重要应用,比如音频播放、自动控制、通信系统等。
试验五. A/D、D/A转换实验一、实验目的1. 学习理解模/数信号转换和数/模转换的基本原理。
2. 掌握模/数转换芯片ADC0804和数/模转换芯片DAC0832的使用方法。
二、实验设备TD-PITE实验装置(带面包板)一套,实验用转换芯片两片,±12V稳压电源一台、运放两片、温度传感器、电位器(5.1KΩ)一个、电阻若干,面包板用导线若干,排线若干,万用表一个。
三、实验内容(1)设计A/D转换电路,采集可调电阻的输出电压。
连+5V电源,调节后的输出电压作为ADC0804的模拟输入量,然后进行A/D转换,转换结果由发光二极管上显示。
请填写实验数据表格:(2)将LM35 精密摄氏度温度传感器连+5V电源,输出电压直接作为ADC0804 的模拟输入量,然后进行A/D转换,转换结果经过计算得到摄氏度值放在内存变量上。
(多数温度传感器是针对绝对温度的,且线形较差。
LM35的输出电压与摄氏温度值成正比例关系,每10 mV 为 1 摄氏度。
)(3)设计D/A 转换,要求产生锯齿波、三角波、脉冲波,并用示波器观察电压波形。
四、实验原理1. 模数转换器ADC0804 简介ADC0804是用CMOS集成工艺制成的逐次比较型模数转换芯片。
分辨率为8位,转换时间为100μs,输入参考电压范围为0~5V。
芯片内有输出数据锁存器,与计算机连接时,转换电路的输出可以直接连接在CPU数据总线上。
图5.1 ADC0804引脚图启动信号:当CS#有效时,WR#可作为A/D转换的启动信号。
WR#高电平变为低电平时,转换器被清除;当WR#回到高时,转换正式启动。
转换结束:INTR#跳转为低电平表示本次转换已经完成,可作为微处理器的中断或查询信号。
RD#用来读A/D转换的结果。
有效时输出数据锁存器三态门DB0~DB7各端上出现8位并行二进制数码。
转换时钟:见下图,震荡频率为f CLK ≈ 1 / 1.1RC。
其典型应用参数为:R = 10KΩ,C = 150pF,f CLK≈ 640KHz,8位逐次比较需8×8 = 64个时钟周期,转换速度为100μs。
实验六、A/D 转换和D/A 转换实验一、实验目的1、熟悉A/D 转换与D/A 转换的基本原理2、掌握ADUC812的技术指标和常用的方法3、熟悉DSP 对ADUC812的操作二、实验设备计算机、ZYE1801C 实验箱,连接线若干。
三、实验原理1、ADUC812的主要性能特点ADUC812是全集成的12位数据采集系统,它在单个芯片内包含了高性能的自校准多通道ADC (8路)、2个12位的DAC 以及可编程的8位MCU (与8051兼容)。
片内有8K 的闪速/电擦除程序存储器、640B 的闪速/电擦除数据存储器、256B 数据SRAM (支持可编程)以及与8051兼容的内核。
另外MCU 支持的功能包括看门狗定时器、电源监视器以及ADC DMA 功能。
为多处理器接口和I/O 扩展提供了32条可编程的I/O 线、与I 2C 兼容的串行接口、SPI 串行接口和标准的UART 串行接口。
MCU 内核和模拟转换器二者均有正常、空闲以及掉电工作模式,它提供了适合于低功率应用的、灵活的电源管理方案。
器件包括在工业温度范围内用3V 和5V 电压工作的两种规格,有52脚、塑料四方扁平封装形式(PQTP )可供使用。
2、A/D 转换实验原理对ADUC812的第8路模拟输入通道提供不同的模拟电压值n ,由ADUC812进行A/D 转换后,把数字值通过12位的数据线发送个DSP ,DSP 把接收到的数字值通过串行口发送到PC 机, DSP 教学实验系统软件把收到的数字值转换为电压值在软件上进行显示。
其中传递的数字值为:4095()2.5()n v m v ⨯= 比较实际输入的电压值n 与显示电压值,计算A/D 转换误差。
3、D/A 转换实验原理在DSP 教学实验系统软件上输入0-4095数字值m ,通过串行口发送给DSP ,DSP 把接收到的数字值通过12位数据线发送到ADUC812,由ADUC812进行D/A 转换后,通过模拟输出通道0输出。
微机原理及接口技术之AD及DA实验一.实验目的:1.了解A/D芯片ADC0809和D/A芯片DAC0832的电气性能;外围电路的应用性搭建及有关要点和注意事项;与CPU的接口和控制方式;相关接口参数的确定等;2.了解数据采集系统中采样保持器的作用和采样频率对拾取信号失真度的影响,了解香农定理;3.了解定时计数器Intel 8253和中断控制器Intel 8259的原理、工作模式以及控制方式,训练控制定时器和中断控制器的方法,并学习如何编写中断程序。
4.熟悉X86汇编语言的程序结构和编程方法,训练深入芯片编写控制程序的编程能力。
二.实验内容:1.完成0~5v的单极性输入信号的A/D转换,并与实际值(数字电压表的测量值)比较,确定误差水平。
要求全程至少10个点。
2.完成-5v~+5v的双极性输入信号的A/D转换,并与实际值(数字电压表的测量值)比较,确定误差水平。
要求全程至少20个点。
3.把0~FF的数据送入DAC0832并完成D/A转换,然后用数字电压表测量两个模拟量输出口(OUT1为单极性,OUT2双极性)的输出值,并与计算值比较,确定误差水平。
要求全程至少16个点。
三.实验仪器:Aedk-ACT实验箱1套(附电源线1根、通信线1根、实验插接线若干、跳线子若干);台式多功能数字表1台(附电源线1根、表笔线1付(2根)、);PC机1台;实验用软件:Windows98+LcaACT(IDE)。
四.实验接线和实验原理本实验由实验箱提供现成的电路模块,需手工连接的线路如下:模拟输入部分有8路多路开关,可由3位地址输入A0、A1、A2的不同组合来选择(这三条地址信号可所存)。
主体部分是采用逐次逼近式的A/D转换电路,由CLK信号控制内部电路的工作,由START信号控制转换开始。
转换后的数字在内部锁存,然后输出。
其中START为启动命令,高电平有效。
由它启动以上芯片的A/D转换过程。
当转换完成,输出信号EOC低电平有效。
ad与da实验报告AD与DA实验报告一、引言AD(模拟-数字)和DA(数字-模拟)转换技术在现代电子领域中起着重要的作用。
AD转换将连续的模拟信号转换为数字信号,而DA转换则将数字信号转换为模拟信号。
本实验旨在通过AD与DA转换器的实际应用,深入了解其原理和性能。
二、实验目的1. 理解AD转换原理和工作方式;2. 理解DA转换原理和工作方式;3. 学习使用AD和DA转换器进行模拟信号和数字信号的转换;4. 掌握AD转换器和DA转换器的性能评估方法。
三、实验装置1. AD转换器:采用XX型号的AD转换器;2. DA转换器:采用XX型号的DA转换器;3. 信号发生器:用于产生模拟信号;4. 示波器:用于观察和分析信号波形。
四、实验步骤1. 连接实验装置:将信号发生器输出端连接至AD转换器的输入端,将DA转换器的输出端连接至示波器,确保连接正确无误;2. 设置信号发生器:根据实验要求,设置信号发生器的频率、幅度和波形等参数;3. 进行AD转换实验:将信号发生器输出的模拟信号输入AD转换器,观察并记录数字信号的输出结果;4. 进行DA转换实验:将数字信号输入DA转换器,观察并记录模拟信号的输出结果;5. 分析结果:根据实验数据,分析AD和DA转换器的性能,如分辨率、信噪比等。
五、实验结果与分析通过实验,我们观察到AD转换器将连续的模拟信号转换为离散的数字信号。
数字信号的输出结果与信号发生器输入的模拟信号存在一定的误差,这是由于AD转换器的分辨率和量化误差所导致的。
分辨率越高,AD转换器对模拟信号的采样精度越高,输出的数字信号越接近原始模拟信号。
而DA转换器则将数字信号转换为模拟信号。
我们观察到,数字信号经过DA 转换后,输出的模拟信号与原始模拟信号基本一致。
这是因为DA转换器能够根据数字信号的数值精确地还原出模拟信号的波形。
然而,在实际应用中,DA 转换器也存在一定的失真,如量化误差和抖动等。
根据实验数据,我们可以计算AD和DA转换器的性能参数。
实验十DA、AD转换实验报告(一)引言概述:实验十DA、AD转换实验报告(一)本实验报告旨在介绍实验十DA、AD转换的相关内容。
在本次实验中,我们将会学习数字模拟转换和模拟数字转换的原理与方法,并通过实际操作进行验证。
本报告将按照以下五个主要部分进行阐述:(1)实验准备,(2)DA转换原理与方法,(3)AD转换原理与方法,(4)实验步骤与结果,(5)实验总结。
正文内容:1. 实验准备1.1 硬件准备- 数字模拟转换器(DAC)模块- 模拟数字转换器(ADC)模块- 连接电缆1.2 软件准备- 实验十DA、AD转换实验软件2. DA转换原理与方法2.1 DA转换原理- 数字模拟转换器将数字信号转换为模拟电压或电流输出的过程- 通过将数字数据转换为电路中的模拟信号,实现了数字信号到模拟信号的转换2.2 DA转换方法- 标准电压法- 标准电流法- R-2R网络法3. AD转换原理与方法3.1 AD转换原理- 模拟数字转换器将模拟量转换为数字量的过程- 通过将连续的模拟信号转换为离散的数字信号,实现了模拟信号到数字信号的转换3.2 AD转换方法- 逐次逼近法- 并行比较法- 闪存式转换法4. 实验步骤与结果4.1 实验设置- 连接DAC和ADC模块到电路中- 连接电缆,确保连接正确4.2 实验步骤- 设置DAC模块的输出值- 进行DA转换并记录输出结果- 将模拟信号输入到ADC模块中- 进行AD转换并记录输出结果4.3 实验结果- 实验运行过程中的数据记录与图表展示5. 实验总结5.1 实验心得体会- 通过本次实验,我更深入地了解了DA、AD转换的原理与方法- 实际操作过程中加深了对数字模拟转换和模拟数字转换的理解5.2 实验结果分析- 分析实验得到的数据与图表,验证转换原理与方法的准确性5.3 实验改进与展望- 在后续的实验中,可以进一步探索其他类型的DA、AD 转换器- 可以对实验步骤进行改进,提高实验效果和精确度总结:本实验报告阐述了实验十DA、AD转换的相关内容。
试验六AD转换实验和DA转换实验实验目的:本实验旨在通过AD转换实验和DA转换实验,掌握模拟信号和数字信号之间的相互转换原理和步骤,进一步了解AD转换器和DA转换器的工作原理、应用场景以及实验方法。
实验器材:1. 信号发生器:用于产生待转换的模拟信号。
2. 数字存储示波器:用于观测和分析信号的变化情况。
3. AD转换器:用于将模拟信号转换为数字信号。
4. DA转换器:用于将数字信号转换为模拟信号。
实验步骤:AD转换实验:1. 将信号发生器输出的正弦波连接到AD转换器的输入端,调节信号发生器输出的频率和幅度,确保输入信号的稳定性和合适的幅度。
2. 连接数字存储示波器到AD转换器的输出端,观测和记录数字信号的波形。
3. 使用示波器的触发功能,调整触发电平和触发方式,确保观测到的波形满足要求。
4. 改变信号发生器输出的频率和幅度,重复步骤2和3,记录不同条件下的数字信号波形。
DA转换实验:1. 将数字存储示波器输出的数字信号连接到DA转换器的输入端,设置数字信号的幅值和频率。
2. 连接DA转换器的输出端到示波器的输入端,观测和记录模拟信号的波形。
3. 改变数字信号的幅值和频率,重复步骤2,记录不同条件下的模拟信号波形。
实验结果:根据实验步骤进行AD转换实验和DA转换实验后,记录所得的数字信号和模拟信号波形如下:(插入实验得到的数字信号和模拟信号波形图片)实验分析:通过实验结果可以观察到AD转换实验和DA转换实验的转换效果和特点。
在AD转换实验中,输入信号经过AD转换器转换为数字信号后,波形变得离散化,失去了模拟信号的连续性。
而在DA转换实验中,数字信号经过DA转换器转换为模拟信号后,波形逐渐恢复了连续性,与输入信号更加接近。
实验总结:通过本次AD转换实验和DA转换实验,我们深入了解了模拟信号和数字信号之间的相互转换原理和步骤,掌握了AD转换器和DA转换器的工作原理和应用场景。
同时,我们通过实验观察到了数字信号和模拟信号在转换过程中的特点和变化,对信号的采样和恢复有了更深入的认识。
d a转换实验报告D A转换实验报告引言:数字与模拟信号的转换是现代通信和电子技术中的一个重要环节。
D A转换器(Digital-to-Analog Converter)是一种将数字信号转换为模拟信号的关键设备。
本实验旨在通过实际操作,了解D A转换器的工作原理、性能特点以及应用。
一、实验目的通过实验,掌握D A转换器的基本原理和工作方式,熟悉D A转换器的性能参数测量方法,以及了解D A转换器在实际应用中的一些特点。
二、实验器材1. D A转换器芯片2. 示波器3. 信号发生器4. 电阻、电容等元器件三、实验原理D A转换器是将数字信号转换为模拟信号的设备,其工作原理是通过一系列的数字信号处理,将离散的数字信号转换为连续的模拟信号。
常见的D A转换器有串行式D A转换器和并行式D A转换器。
四、实验步骤1. 搭建实验电路:按照实验要求,连接D A转换器芯片、示波器和信号发生器等设备。
2. 设置信号发生器:根据实验要求,设置信号发生器的输出频率、幅度等参数。
3. 测量输出信号:通过示波器,观察和记录D A转换器输出的模拟信号波形。
4. 测量性能参数:根据实验要求,测量D A转换器的分辨率、线性度、失真度等性能参数。
5. 分析实验结果:根据实验数据,对D A转换器的性能进行分析和评估。
五、实验结果与分析通过实验测量和分析,可以得到D A转换器的性能参数。
例如,分辨率是指DA转换器能够输出的模拟信号中最小变化量的大小,分辨率越高,转换精度越高。
线性度是指D A转换器输出信号与输入信号之间的线性关系,线性度越好,输出信号越准确。
失真度是指D A转换器输出信号与输入信号之间的差异程度,失真度越低,输出信号越接近输入信号。
六、应用与展望D A转换器在现代通信和电子技术中有着广泛的应用。
例如,在音频设备中,D A转换器用于将数字音频信号转换为模拟音频信号,实现声音的播放。
在图像处理领域,D A转换器用于将数字图像信号转换为模拟图像信号,实现图像的显示。
实验五A/D、D/A转换实验
一、实验目的及要求
1、了解A/D转换的基本原理,掌握A/D转换的连接方法;
2、熟悉一种ADC芯片ADC0809,掌握A/D转换芯片0809的编程方法;
3、了解D/A转换的基本原理,掌握D/A转换的连接方法;
4、熟悉一种DAC芯片ADC0832,掌握D/A转换芯片0832的编程方法。
二、实验重点与难点
重点:A/D、D/A转换的基本原理及编程应用。
难点:A/D、D/A转换的编程应用。
三、实验环境
硬件:单片机开发板,计算机一台;
软件:Keil uVsion4。
四、实验内容
1、ADC0809模数转换与显示
使用ADC0809采样通道3输入的模拟量(也可自行选择采用通道,设计相应电路图),通过T0定时器中断给ADC0809提供时钟信号,转换后的结果显示在数码管上。
2、DAC0832波形发生器
软件控制DAC输出波形,通过不同按键产生锯齿波、三角波和方波,按键的检测采用中断工作方式。
五、实验步骤及要求
1.描述出程序运行后的结果;
2.画出算法流程图;
3.加程序注释。
4.学生按实验内容和实验报告编写格式中的规范,认真做好实验记录以便编写实验报告。
试验六AD转换实验和DA转换实验嘿,伙计们!今天我们来聊聊一个非常有趣的话题——AD转换实验和DA转换实验。
你们知道这两个实验是干什么的吗?别急,我慢慢给你们讲。
让我们来了解一下AD转换实验。
这个实验的名字有点高大上,其实它就是把一个数字信号从模拟信号变成数字信号,或者从数字信号变成模拟信号的过程。
听起来好像很高深的样子,其实咱们日常生活中就经常用到这个实验。
比如说,你用手机打电话的时候,电话里的声音就是通过AD转换实验从电信号变成了声音信号,让你能听到对方说话的声音。
还有,你在电视上看到的图像也是通过AD转换实验从电信号变成了图像信号,让你能看到五彩斑斓的画面。
接下来,我们再来聊聊DA转换实验。
这个实验的名字也有点复杂,但是它的功能和AD转换实验差不多,就是把一个数字信号从数字信号变成模拟信号,或者从模拟信号变成数字信号的过程。
这个实验在我们的日常生活中也有很多应用。
比如说,你在电脑上玩游戏的时候,游戏的画面就是通过DA转换实验从数字信号变成了图像信号,让你能看到各种各样的画面。
还有,你在汽车导航上看到的地图也是通过DA转换实验从数字信号变成了图像信号,让你能清楚地看到路线和目的地。
那么,为什么我们需要进行AD转换实验和DA转换实验呢?这是因为在现代社会中,电子设备越来越普及,人们需要处理越来越多的数字信号。
而AD转换实验和DA 转换实验可以帮助我们更方便地处理这些数字信号,让它们能够更好地服务于我们的生活。
AD转换实验和DA转换实验是我们日常生活中非常重要的两个实验。
它们可以帮助我们把数字信号从一种形式转换成另一种形式,让我们能够更好地利用这些信号。
所以,下次当你看到这两个实验的名字时,不要觉得它们很高大上,而是要想想它们给我们的生活带来了哪些便利。
好了,今天的分享就到这里啦,希望大家喜欢!下期再见!。
试验六AD转换实验和DA转换实验在电子技术的领域中,AD 转换实验和 DA 转换实验是非常重要的基础性实验。
它们在信号处理、自动控制、通信等众多领域都有着广泛的应用。
接下来,让我们一起深入了解这两个有趣且实用的实验。
AD 转换,全称为模拟数字转换(AnalogtoDigital Conversion),其作用是将连续变化的模拟信号转换为离散的数字信号。
想象一下,我们生活中的声音、光线、温度等各种物理量都是模拟信号,它们的数值是连续变化的。
但计算机和数字电路只能处理数字信号,所以就需要 AD 转换器来完成这个转换过程。
在进行 AD 转换实验时,我们通常会使用专门的 AD 转换芯片。
比如说常见的 ADC0809 芯片,它具有 8 个模拟输入通道,可以将 0 5V 的模拟电压转换为 8 位的数字量。
实验开始前,我们要先搭建好电路。
将 ADC0809 芯片与单片机或者其他控制器连接起来,同时连接好模拟信号源,比如电位器,用来产生变化的模拟电压。
然后,通过编写控制程序,向 ADC0809 发送启动转换的信号。
转换完成后,读取转换得到的数字量。
这时候,我们就可以通过观察数字量的变化,来了解模拟信号的特性。
在实验中,我们还需要关注一些重要的参数,比如转换精度和转换速度。
转换精度决定了数字量与模拟量之间的逼近程度,精度越高,数字量就越能准确地反映模拟量的真实值。
而转换速度则影响着系统对快速变化的模拟信号的处理能力。
DA 转换,全称为数字模拟转换(DigitaltoAnalog Conversion),与AD 转换相反,它是将数字信号转换为模拟信号。
DA 转换在很多场景中都发挥着重要作用,比如音频播放、电机控制等。
以常见的 DAC0832 芯片为例,它可以将 8 位的数字量转换为模拟电压输出。
在实验中,同样要先搭建好电路,将 DAC0832 与控制器连接,并接上适当的负载,比如电阻和电容,以形成平滑的模拟输出。
编写控制程序,向 DAC0832 发送数字量,然后观察输出的模拟电压的变化。
试验六AD转换实验和DA转换实验大家好,今天我要给大家分享一下关于AD转换实验和DA转换实验的一些趣事。
我们来说说AD转换实验吧。
AD转换实验,其实就是把一个数字信号从模拟信号转换成数字信号,或者从数字
信号转换回模拟信号的过程。
这个过程听起来好像很高级的样子,其实呢,它就像是我们平时用的手机摄像头拍照一样。
你拿起手机对着一张照片拍一下,然后再把照片传到电脑上,这样一来,这张照片就从模拟信号变成了数字信号,然后再从数字信号变回到模拟信号,就是我们平时看到的图片了。
那么,DA转换实验又是什么呢?其实就是把一个数字信号从数字信号转换成模拟
信号,或者从模拟信号转换回数字信号的过程。
这个过程听起来好像有点难懂的样子,其实呢,它就像是我们平时用的录音机录歌一样。
你拿着麦克风对着自己唱歌,然后再把录音传到电脑上,这样一来,你的声音就从数字信号变成了模拟信号,然后再从模拟信号变回到数字信号,就是我们平时听到的歌曲了。
说到这儿,大家可能会觉得这两个实验好像都差不多嘛。
其实呢,它们还是有一些区别的。
比如说,在AD转换实验中,我们需要用到一些特殊的电路元件来实现信号的转换;而在DA转换实验中,我们需要用到一些特殊的软件来实现信号的转换。
不过呢,无论是AD转换实验还是DA转换实验,它们都是非常重要的基础实验,因为它们可以帮助我们更好地理解数字信号和模拟信号之间的转换关系。
好了,今天的分享就到这里啦!希望大家能够通过这些趣事更好地理解AD转换实验和DA转换实验的概念。
如果大家还有什么问题或者想法的话,欢迎在评论区里跟我留言哦!下期再见啦!。
引言概述:一、DA转换原理和应用1.DA转换的定义和基本原理a.数字信号和模拟信号之间的转换原理b.不同类型的DA转换器(例如R2R网络)2.DA转换的应用领域a.音频信号处理中的DA转换b.视频信号处理中的DA转换二、AD转换原理和应用1.AD转换的定义和基本原理a.模拟信号和数字信号之间的转换原理b.不同类型的AD转换器(例如SAR、deltasigma)2.AD转换的应用领域a.传感器信号处理中的AD转换b.信号采集与处理中的AD转换三、DA和AD转换的性能参数和评估1.DA转换器的性能参数a.分辨率和精确度b.失真和噪声2.AD转换器的性能参数a.采样率和位深b.信噪比和动态范围3.性能参数的评估方法a.理论计算和模拟仿真b.实验测试和数据分析四、DA和AD转换算法及其优化1.DA转换算法a.插值算法b.量化算法2.AD转换算法a.采样算法b.量化算法3.转换算法的优化方法a.比特数调整和噪声滤波b.时钟同步和非线性校准五、实验结果和分析——基于具体实验数据的数据解读与讨论1.DA转换实验结果和数据分析a.实验过程和数据采集b.数据处理和效果评估2.AD转换实验结果和数据分析a.实验过程和数据采集b.数据处理和效果评估总结:通过对DA和AD转换的原理、应用、性能参数评估以及相关算法和优化的探讨,我们了解了这两种重要的信号转换技术在电子工程中的重要性和实际应用。
同时,通过实验数据的分析和结果的讨论,我们也对其性能和优化方法有了更深入的了解。
DA和AD转换在音频和视频信号处理、传感器信号处理以及信号采集与处理等领域都有着广泛的应用,因此对其进行深入研究和优化,在提高信号处理质量和准确性方面具有重要意义。
希望本实验报告能为读者进一步了解并应用DA和AD转换技术提供有益的参考和指导。
实验7AD、DA转换实验实验7 A/D、D/A转换实验A/D转换实验1、实验目的(1)掌握0809A/D转换芯片的硬件电路和软件编程。
2、实验设备QTH-2008PC实验设备一套。
3、实验内容本实验利用实验板上的ADC0809做A/D转换实验,将模拟信号转换成数字信号并在屏幕上显示,调节电位器观察屏幕上数据的变化。
4、实验说明ADC0809是CMOS的8位模/数转换器,采用逐次逼近原理进行A/D转换,芯片内有模拟多路转换开关和A/D转换两大部分,可对8路0~5V的输入模拟电压信号分时进行转换。
模拟多路开关由8路模拟开关和3位地址锁存译码器组成,可选通8路模拟输入中的任何一路,地址锁存信号ALE将3位地址信号ADDA、ADDB、ADDC进行锁存,然后由译码电路选通其中的一路,被选中的通道进行A/D转换。
A/D转换部分包括比较器、逐次逼近寄存器(SAR)、256R电阻网络、树状电子开关、控制与时序电路等。
另外ADC0809输出具有TTL三态锁存缓冲器,可直接连到CPU数据总线上。
在实时控制与实时检测系统中,被控制与被测量的电路往往是几路或几十路,对这些电路的参数进行模/数、数/模转换时,常采用公共的模数、数模转换电路。
因此,对各路进行转换是分时进行的。
此时,必须轮流切换各被测电路与模数、数模转换电路之间的通道,以达到分时切换的功能。
ADC0809性能如下:8位逐次逼近型A/D转换器,所有引脚的逻辑电平与TTL电平兼容。
带有锁存功能的8路模拟量转换开关,可对8路0~5V模拟量进行分时切换。
输出具有三态锁存功能。
分辨率:8位,转换时间:100μs。
不可调误差:±1LBS,功耗:15mW。
工作电压:+5V,参考电压标准值+5V。
片内无时钟,一般需外加640KHz以下且不低于100KHz的时钟信号。
ADC0809转换需要遵循一定的时序,首先输入地址选择信号,在ALE信号作用下,地址信号被锁存,产生译码信号,选中一路模拟量输入。
微型计算机原理与接口技术实验报告班级:_____________________________实验一A/D转换实验一、实验目的了解模/数转换基本原理,掌握ADC0809勺使用方法。
二、实验内容利用实验系统上电位器提供的可调电压作为0809模拟信号的输入,编制程序,将模拟量转换为数字量,通过数码管显示出来。
三、实验接线图图1-1四、编程指南1. ADC0809的START端为A/D转换启动信号,ALE端为通道选择地址的锁存信号,实验电路中将其相连,以便同时锁存通道地址并开始A/D采样转换,其输入控制信号为CS和WR故启动A/D转换只须如下两条指令:;ADC0809端口地址 ;发CS 和WR 言号并送通道地址2. 用延时方式等待 A/D 转换结果,使用下述指令读取 A/D 转换结果: MOV DX, ADPORT ;ADC0809端口地址IN AL, DX3. 循环不断采样 A/D 转换的结果,边采样边显示 A/D 转换后的数字量五、 实验程序框图图 1-2六、 实验步骤1. 断电连接导线,将0809 CS4插孔连到译码输出FF80H 插孔,将通道0模 拟量输入端IN0连电位器 W1的中心插头AOUT1(0- 5V)插孔, 8MHZ> T ; 2. 在PC 机和实验系统联机状态下,新建实验程序,编辑完成后进行保存 (保存后缀为 .asm 文件); 3. 编译下载;4. 全速运行,运行程序;5. 按RST 键退出。
七、 实验程序DATA SEGMENT BUF DB 6 DUP(0) DATA1: DB0c0h,0f9h,0a4h,0b0h,99h,DB 92h,82h,0f8h,80h,90h, DB88h,83h,0c6h,0a1h,86h,DB8eh,0ffh,0ch,89h,0deh,DB0c7h,8ch,0f3h,0bfh,8fh DATA ENDSCODE SEGMENTASSUME CS: CODE,DS: DATA ADC EQU 0FF80H ;ADC0809端口地址 PA EQU 0FF20HMOV DX, ADPORT OUT DX, ALPB EQU 0FF21HPC EQU 0FF22H MAIN PROC FAR START: MOV AX, DATAMOV DS, AX MOV ES, AX ADC_S:MOV AX, 00HMOV DX, ADC OUT DX, AL MOV CX, 0500H DELAY:LOOP DELAYMOV DX, ADPORT IN AL, DX CALL CONVERS CALL DISP JMP ADC_S MAIN ENDPCONVERS PROC NEARMOV AH, AL AND AL, 0FHMOV BX, OFFSET BUF MOV [BX+5], AL MOV AL, AH AND AL, 0F0H MOV CL, 04H SHR AL, CL MOV [BX+4], ALRET CONVERS ENDP DISP PROC NEARMOV AL, 0FFH MOV DX, PA OUT DX, AL MOV CL, 0DFHMOV BX, OFFSET BUF DIS1: MOV AL, [BX]MOV AH, 00H PUSH BXMOV BX, OFFSET DATA1 ADD BX, AX MOV AL, [BX] ; 字位口 ; 字形口 ; 键入口 ; 启动转换 ; 延时等待转换完成 ; 读取转换结果 ; 调用数据处理子函数八、 实验结果调节电位器,ADC0809^够实时测量电位器电压并在数码管上显示九、 实验中遇到的问题及解决方式问题: 编程完成后,数码管显示乱码。
解决: 暂未解决,但是更换实验平台后,重新用另一台电脑编译下载能够 成功显示。
; 调用显示子函数; 循环 ; 截取低四位 ; 放入 BUF 截取高四位 ; 将高四位值右移至低四位 ; 放入 BUF ; 显示子程序POP BX MOV DX,PB OUT DX, AL MOV AL, CL MOV DX, PA OUT DX, AL PUSH CX DIS2: MOV CX, 00A0H LOOP $ POP CX CMP CL, 0FEH JZ LX1 INC BX ROR CL, 1 JMP DIS1 LX1: MOV AL, 0FFH MOV DX, PB OUT DX, AL RET DISP ENDP CODE ENDS END MAIN实验二 D/A 转换实验(一)、实验目的了解数/模转换的基本原理,掌握 DAC0832芯片的使用方法。
、实验内容利用0832通过D/A 转换交替产生方波和锯齿波。
三、实验接线图OUT DX,AL2. 产生波形信号的周期由延时常数确定。
五、实验程序框图图2-2六、实验步骤1. 断电连接导线,0832片选信号CS5插孔和译码输出FF80H 插孔相连'2. 在PC 机和实验系统联机状态下,新建实验程序,编辑完成后进行保存 (保存后缀为.asm 文件); 3. 编译下载;4. 全速运行,运行程序。
图2-1DA0832四、编程1.首先 信号确定量 的端口地址, 个数CIQ DU DI2 PI3 EI4 EI5 DI6 DI7I0UT1IOUT2JXZ JXO;------------- m指南15I* U* D711741据通典型程序如MOV-680DXQAPORTMOVAL,DATA据到0832须由CS 片选 DAC 寄存器然后锁存一过0832输出, 下:;0832 口地址;输出数FF80ILE VCC十=11V七、实验程序CODE SEGMENT ASSUMECS:CODEMAIN PROC FARSTART: MOV CX, 4FANG: PUSH CXMOV DX, 0FF80HMOV AL, 00HOUT DX, ALCALL DELAYMOV DX, 0FF80HNOT ALOUT DX, AL CALLDELAYPOP CX循环显示4次方波压入堆栈,保护循环次数0832 口地址首先输出方波低电平部分延时取反输出方波高电平部分延时弹出方波次数LOOP FANGMOV CX, 03FCHMOV DX, 0FF80HMOV AL, 00HJUCHI: OUT DX, ALINC ALLOOP JUCHIJMP STARTMAIN ENDPDELAY PROC NEARMOV CX, 0100HDELAY1:LOOP DELAY1RETDELAY ENDPCODE ENDSEND MAIN;循环;锯齿波循环显示4次;0832 口地址;锯齿波初值;加1;循环;显示完成,重新开始;延时函数八、实验结果图2-3九、实验中遇到的问题及解决方式问题:程序运行时,发现显示四个方波但是只显示 3 个锯齿波。
解决:忘记了在结束方波输出循环后将AX=OOH导致少输出一个锯齿波。
实验三 D/A 转换实验(二)、实验目的进一步掌握数/模转换的基本原理、实验内容通过0832D/A 转换输出一个从0V 开始逐渐升至5V,再从5V 降至0V 的 可变电压输出三、实验接线图OUT DX,AL2.产生波形信号的周期由延时常数确定五、实验程序框图图2-2六、实验步骤1. 断电连接导线,0832片选信号CS5插孔和译码输出FF80H 插孔相连'2. 在PC 机和实验系统联机状态下,新建实验程序,编辑完成后进行保存(保存后缀为.asm 文件); 3. 编译下载;4. 全速运行,运行程序。
图3-1四、编程1.首先 信号确定量 的端口地址, 个数据通典型程序如MOVDXQAPORT MOV+L?V]9DA0832cs XFER ILE VCCCIO DU DI2 CI 3 EI4 DI 5 DI& DI 7 RFBJX2指南须由CS 片选 DAC 寄存器 然后锁存一过0832输出,下:;0832 口地址;输出ALQATA imi M27741I OUT! IOUT2-11VAl据到0832七、 实验程序CODE SEGMENT ASSUMECS:CODE MAIN PROC FARSTART: MOV DX, 0FF80H MOVAL, 00HUP: OUT DX, ALINC ALCMP AL, 0FFH JNZ UPDOWN: OUT DX, ALDEC AL CMP AL, 00H JNZ DOWN; 0832 口地址八、 实验结果图 2-3; 三角波初值 ; 输出到 0832 ; 数据加 1 ; 是否到上限 ; 判断; 输出到 0832 ; 数据减 1 ; 是否到下限 ; 判断JMP UPCODE ENDS END MAIN ; 开始执行下一周期。