金属间化合物的晶体结构
- 格式:pptx
- 大小:177.47 KB
- 文档页数:15
l12相高温
标题:L12相的高温特性与应用
L12相,又称面心立方(FCC)结构,是一种重要的金属间化合物相结构,常见于高温合金中。
由于其独特的晶体结构和优异的高温性能,L12相在高温环境下具有广泛的应用前景。
在高温条件下,L12相表现出极高的热稳定性和抗氧化性。
这主要得益于其紧密的原子排列和强大的原子间结合力。
在高温下,L12相能够保持较高的硬度和强度,同时具有较好的抗蠕变性能,这使得它在高温环境中具有出色的承载能力。
此外,L12相还具有良好的热导率和电导率。
这使得在高温下,它能够有效地传递热量和电流,从而确保设备的稳定运行。
同时,L12相还具有较低的热膨胀系数,这意味着在高温下,它的尺寸变化较小,有利于保持设备的精度和稳定性。
在实际应用中,L12相常用于制造高温合金,如航空发动机的涡轮叶片和燃烧室等部件。
这些部件需要在极高的温度下长时间运行,而L12相的高温稳定性和抗氧化性使其成为理想的材料选择。
此外,L12相还用于制造高温电阻材料、热电偶材料等,以满足高温环境下的测量和控制需求。
总之,L12相凭借其独特的高温特性和广泛的应用领域,在高温合金和其他高温材料领域发挥着重要作用。
随着科技的不断进步和高温环境的日益严酷,L12相的应用前
景将更加广阔。
金属间化合物的特点
金属间化合物的特点
1. 高熔点和强韧性
•金属间化合物通常具有较高的熔点,因为其中的金属元素具有较强的金属键结合力。
•由于金属间化合物结构中有金属-金属键的存在,使其具有优异的机械性能和强韧性。
2. 良好的电导性能
•金属间化合物中金属原子之间通过共价键和金属键的结合,形成电子云,使其具有良好的电导性能。
•这种电导性能使金属间化合物在电子学和导电材料领域具有重要应用。
3. 多样的晶体结构
•金属间化合物晶体结构多样,可以存在各种不同的晶体结构类型,如立方型、六方型、四方型等。
•这些不同的晶体结构赋予了金属间化合物独特的物理和化学性质。
4. 显著的金属元素特性
•金属间化合物中的金属元素展现出其特有的性质,如电子输运、磁性、光学性质等。
•这些特性可以广泛应用于电池材料、催化剂、磁性材料等领域。
5. 高度的化学反应活性
•金属间化合物常常表现出较高的化学反应活性,可以与其他物质发生络合反应、氧化反应等。
•这种活性使得金属间化合物在催化、电化学以及材料制备等方面具有重要应用前景。
总结:金属间化合物在物理、化学以及材料学等众多领域中具有独特的特点和潜在应用。
其高熔点和强韧性、良好的电导性能、多样的晶体结构、显著的金属元素特性以及高度的化学反应活性,使其成为研究和应用的热点领域之一。
六方钙钛矿结构
六方钙钛矿结构是一种特殊的晶体结构,由钙、钛和其他元素及其官能团在结构上形成的共生关系。
这种结构由六方对称性堆积晶体点状结构组成,其真实结构是由金属间化合物覆盖在晶体表面形成的六方空分子的结构。
钙原子位于晶体表面上方,钛原子位于晶体表面下方,氧原子填充六方体晶体表面中间。
六方钙钛矿结构具有良好的机械性能和电学性能,在几乎所有材料工程领域都有应用。
与多晶硅和其它传统单晶材料相比,由钙钛矿结构构成的晶体表面非常光滑,可以有效地减少高强度的晶体晶粒缺陷,从而改善材料的力学性能和抗热性能。
此外,钙钛矿结构还具有较高的原子密度,可以抑制空间等位原子的迁移,从而使材料的韧性增强并导致抗裂破能力的提高。
六方钙钛矿结构也具有良好的耐腐蚀性和气环境耐受性,因此在高温、高压及危险环境中,可以使材料具有较长的使用寿命和稳定性。
此外,它还具有良好的电学性能和热电性能,可以使电子加热晶体表面和产生脉冲延迟用于无线电电力系统。
不过,六方钙钛矿结构也存在一些缺点,例如材料的裂变容易性,因为他们的结构中有非常细小的有序转换区,相对容易被外界的外力扰乱,从而表现
出裂变的倾向。
但这个缺陷在工程实践中可以通过控制晶体晶粒结构装置和尺寸来解决。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询材料学专家。
金属间化合物是指由两个或两个以上的金属元素构成的化合物,它们的原子之间通过共享电子对而形成了化学键。
这些化合物通常具有不同于其组成金属的物理和化学性质。
金属间化合物可以根据它们的晶体结构进行分类,其中一些常见的类型包括:
1. 正常价化合物:这类化合物的形成是由于金属原子之间的电子转
移,以达到稳定的电子结构。
例如,在FeCl2 中,铁原子失去两个电子,而氯原子获得两个电子,形成了具有离子键的化合物。
2. 电子化合物:这类化合物的形成是由于金属原子之间的共享电子
对,以形成稳定的电子结构。
例如,在Al2Cu 中,铝原子和铜原子共享电子对,形成了具有共价键的化合物。
3. 间隙化合物:这类化合物是由较小的金属原子填入较大金属原子
的晶格间隙中形成的。
例如,在Fe3C 中,碳原子填入了铁原子的晶格间隙中,形成了具有复杂结构的化合物。
金属间化合物在材料科学中具有重要的应用,例如在合金设计、催化剂、电子材料和磁性材料等领域。
它们的特殊性质可以通过改变组成元素、晶体结构和制备方法等来调控,以满足不同的应用需求。
思考题及参考答案(从善海整理)第一章金属的晶体结构与结晶1.解释下列名词:点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
Al3Ti金属间化合物的研究进展惠林海1,耿浩然1,王守仁2,徐杰3(济南大学1.材料科学与工程学院;2.机械工程学院,山东济南250022;3.山东力诺瑞特新能源有限公司,山东济南250013)摘 要:综述了Al3Ti金属间化合物的研究进展,介绍了其室温脆性改善的方法,分析了合金化结构变异和复相强化对于材料塑性、韧性提高的机理,并对Al3Ti金属间化合物的制备方法和主要应用进行了分类评述,并指出了今后的研究和发展方向。
关键词:Al3Ti金属间化合物;合金化结构变异;复相强化中图分类号:T G146.2 文献标识码:A 文章编号:100023738(2007)0920001203Progress on the R esearch of Al3Ti IntermetallicsHUI Lin2hai1,GENG H ao2ran1,WANG Shou2ren2,XU Jie3(1,2.Jinan University,Jinan250022,China;3.Shandong Linuo Paradigma Co.Ltd,Jinan250013,China)Abstract:The progress on the research of Al3Ti intermetallics is reviewed.It introduces the methods to improve its brittleness under normal temperature and analyses the mechanism of the enhancement of its flexibility through structure2transformed treatment and multiphase reinforcement.It also reviews the production and application of Al3Ti intermetallics by classifications.Finally,f urther research directions are put forward.K ey w ords:Al3Ti intermetallic compound;L12modified titanium trialuminide;multiphase reinforcement0 引 言在众多的金属间化合物中,钛2铝系金属间化合物由于具有密度小、比强度高、高温力学性能和抗氧化性能优异等特点,成为近年来人们研究开发的热点,被认为是一类很有发展前景的航空航天、高温结构材料。
焊接接头的金属间化合物分析与评估焊接是一种常见的金属连接方式,通过热能将金属部件熔化并使其冷却后凝固,从而形成一个坚固的连接。
然而,焊接接头中的金属与基材之间常常会形成一种特殊的物质,即金属间化合物。
本文将对焊接接头中的金属间化合物进行分析与评估。
一、金属间化合物的形成机制焊接过程中,熔池中的金属与基材相互扩散,并发生化合反应,形成金属间化合物。
这种化合物的形成机制主要有以下几点:1. 扩散机制:焊接过程中金属离子在熔池中通过扩散聚集,与基材中的金属发生反应,形成金属间化合物。
2. 形核机制:焊接过程中,金属离子到达接头界面时,由于过饱和度高而形成过饱和团簇,然后发生核化反应,形成金属间化合物。
3. 相变机制:焊接过程中,金属由于温度变化引起相变,形成新的晶体结构以及金属间化合物。
二、金属间化合物的性质与影响焊接接头中的金属间化合物具有以下性质:1. 高硬度:金属间化合物通常具有较高的硬度,这是由于其晶格结构的特殊排列所致。
2. 脆性:金属间化合物通常具有较高的脆性,这是由于其晶格结构中存在较多的晶体缺陷所致。
3. 化学稳定性:金属间化合物通常具有较好的化学稳定性,能够抵抗腐蚀和氧化等环境因素的侵蚀。
金属间化合物对焊接接头的性能有着重要的影响:1. 强度:金属间化合物的形成可以增强焊接接头的强度,提高其抗拉强度与抗剪强度。
2. 脆性:金属间化合物的脆性特性可能导致焊接接头在受力时易发生开裂或断裂。
3. 耐腐蚀性:金属间化合物的化学稳定性能够提高焊接接头的耐腐蚀性,使其具有更长的使用寿命。
三、金属间化合物的分析方法为了准确评估焊接接头中的金属间化合物,需要采用适当的分析方法。
以下是常用的金属间化合物分析方法:1. 金相显微镜观察:通过金相显微镜观察焊接接头的横截面,可以清晰地分辨金属间化合物与母材的区别。
2. X射线衍射:利用X射线衍射技术可以得出金属间化合物的晶体结构以及其相对含量。
3. 扫描电子显微镜(SEM-EDS):结合扫描电子显微镜和能谱分析技术,可以获得金属间化合物的形貌和元素组成。
ti2alnb 密度1. 引言在材料科学领域,密度是一个重要的物理性质,它描述了物质的质量与体积之间的关系。
本文将重点讨论一种名为ti2alnb的材料的密度。
ti2alnb是一种金属间化合物,由钛(Ti)、铝(Al)和铌(Nb)三种元素组成。
它具有许多优越的性能,如高强度、低密度和优异的耐热性。
了解ti2alnb的密度对于研究其应用和性能非常重要。
2. ti2alnb的化学成分和晶体结构ti2alnb的化学式为Ti2AlNb,它由钛、铝和铌三种元素组成。
钛是一种常见的过渡金属元素,具有良好的耐腐蚀性和高强度。
铝是一种轻质金属,具有良好的导热性和机械性能。
铌是一种高熔点过渡金属,具有良好的耐热性和抗氧化性。
ti2alnb的晶体结构属于B2型金属间化合物。
B2型结构是一种典型的金属间化合物结构,具有简单的立方晶体结构。
在B2型结构中,钛、铝和铌原子分别占据晶体的不同位置,形成一种有序的排列。
3. ti2alnb的密度测量方法测量材料的密度是通过将样品的质量与其体积进行比较来实现的。
对于ti2alnb这样的金属间化合物,可以使用以下方法来测量其密度:3.1 实验方法实验方法是最常用的测量密度的方法之一。
首先,需要准备一个已知质量的ti2alnb样品。
然后,使用天平测量样品的质量。
接下来,使用一个体积计或密度计测量样品的体积。
最后,根据密度的定义,将样品的质量除以其体积,即可得到ti2alnb的密度。
3.2 理论计算方法除了实验方法,还可以使用理论计算方法来估算ti2alnb的密度。
理论计算方法基于原子的质量和晶体结构的参数。
通过计算每个原子的体积,并将其相加,可以得到整个晶体的体积。
然后,将晶体的质量除以体积,即可得到ti2alnb的密度。
4. ti2alnb的密度值根据实验测量和理论计算,ti2alnb的密度大约为4.5克/立方厘米。
这个数值相对较低,说明ti2alnb是一种轻质材料。
这使得ti2alnb在航空航天、汽车制造和其他领域中具有广泛的应用前景。
《工程材料》复习第一章材料科学的基础知识1.解释下列名词点缺陷,线缺陷,面缺陷,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理。
点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。
因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。
同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。
4.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
铁铝金属间化合物
铁铝金属间化合物通常指的是铁(Fe)和铝(Al)之间的合金或化合物。
这两种元素可以形成多种不同的化合物或合金,具体的性质和组成取决于它们的相对比例和处理条件。
以下是一些可能的铁铝化合物:
1.FeAl合金:铁铝合金是铁和铝的合金,通常以Fe₃Al、FeAl₃
和FeAl为代表。
这些合金通常具有高强度、高硬度和优异的耐
热性能。
它们在高温环境中的应用比较广泛,例如在航空航天
工业中。
2.Fe₂Al₅和Fe₅Al₈:这是铁和铝形成的两个化合物。
它们是金
属间化合物,具有特定的晶体结构。
这些化合物的性质在一些
应用中可能很有趣,例如在材料科学和磁性材料研究中。
3.Fe₂Al₂₂:这是另一个可能的铁铝化合物,常常出现在一些特
殊的铁铝合金中。
它的性质可能在高温或特殊环境中发挥作用。
这些化合物和合金的性质取决于具体的化学成分、结构和制备条件。
在一些特殊的应用中,工程师和研究人员可能会调整合金中铁和铝的比例,以实现所需的性能。
Ni3Al基金属间合金的研究S1******* 陈义高温结构材料起源于40年代军用飞机的需要, 目前已成为军用和民用高温燃汽轮机不可代替的关键性材料。
高温结构材料在高温下具有高强度, 以保证发动机的油耗不致过高; 具有很强的抗腐蚀能力, 在高温燃气的冲刷及腐蚀性介质的侵蚀下保持其性能; 还能长期安全可靠地工作。
而金属间化合物以其耐高温, 抗腐蚀和耐冲刷等特性成为航空航天、交通运输、化工机械等行业重要的结构材料, 并在近20年受到广泛研究。
由于金属间化合物晶体中金属键与共价键共存, 同时兼有金属韧性和陶瓷的高温性能, 因此具有很大的发展潜力。
由于金属间化合物Ni3Al 基高温结构材料在室温下具有优异的抗腐蚀性能, 受到工业界的注意, 但其晶间脆断是制约其工程化应用最大障碍, 表明这类材料具有巨大的应用潜力同时也存在一定缺陷。
1. Ni3Al 金属间化合物的特性Ni3Al 是一种具有L12 型晶体结构的长程有序金属间化合物( 表1) , 当接近其熔点时还能保持高度有序, 其晶格常数a= 0. 3561nm, 熔点为 ,杨氏模量, 电阻率为,热导率为, Ni3Al 金属间化合物熔点高, 抗高温氧化性能好, 有较高的高温强度和蠕变抗力以及强度大等特点, 而且在一定的温度范围内, 其屈服强度反而随温度的上升而提高, 这些特点都是高温结构材料所希望的。
2.合金元素在Ni3Al 金属间化合物中的作用2.1合金元素对力学性能的影响2.1. 1对强度的影响Ni3Al 在室温下通常强度不是很高。
但是大多数有序合金特别是那些具有L12 结构的大部分合金, 其塑性变形的一个显著特点是流变应力随温度升高而急剧增加。
Ni 基高温合金主要包括两相,固溶相 ( 无序的面心立方相, 具有A1结构)和中间化合物 ( 有序的面心立方相,具有L12 结构)。
通常,与无序或部分有序合金相比, 长程有序合金具有高的应变硬化速率。
W和Mo 的添加可大幅度地提高材料的高温抗拉强度和持久性能,W和Mo 同时加入要比单独添加Mo的强化效果好,但W和Mo 的加入降低了合金的塑性。
铋的极性金属间化合物的合成、晶体结构和能带结构研究的开题报告1. 研究背景和意义:金属间化合物广泛应用于电子学、储氢材料、导电高温超导材料等领域。
铋是一种重要的金属元素,其单质和化合物在吸收、传导和释放热量方面具有很好的性能。
铋的极性金属间化合物在化学反应和物理性质方面表现出独特的特性。
在过去的研究中,已经合成了许多铋的极性金属间化合物,并研究了其晶体结构和性质。
本研究旨在进一步深入探究铋的极性金属间化合物的结构和性质,为其在未来的应用提供基础研究。
2. 研究内容:本研究将依据已有的文献,在铋和其他元素的不同比例下,采用传统固相反应合成方法和热力学计算方法,合成铋的极性金属间化合物。
然后,通过X射线衍射仪和扫描电子显微镜等仪器对合成的化合物进行结构表征。
最后,使用第一性原理计算方法研究其能带结构和电子结构等性质。
3. 研究方法:3.1 合成方法:传统固相反应合成方法和热力学计算方法。
3.2 结构表征:X射线衍射仪,扫描电子显微镜等。
3.3 理论计算:第一性原理计算方法,主要包括密度泛函理论和赝势方法等。
4. 研究进展:本研究目前已完成对铋和其他元素不同比例下的化合物的合成工作。
同时,初步采用X射线衍射仪对化合物的晶体结构进行了表征。
接下来,将继续完善结构表征工作,并利用第一性原理计算方法研究其能带结构和电子结构等性质。
5. 研究意义:本研究通过对铋的极性金属间化合物的合成、晶体结构和能带结构等方面的深入研究,可以为其在储氢、电子器件等领域的应用提供基础性知识。
同时,对于深入理解其物理特性和催化机理等方面也具有重要意义。
⾦属间化合物1、什么是⾦属间化合物,性能特征答:⾦属间化合物:⾦属与⾦属或⾦属与类⾦属之间所形成的化合物。
由两个或多个的⾦属组元按⽐例组成的具有不同于其组成元素的长程有序晶体结构和⾦属基本特性的化合物。
⾦属间化合物的性能特点:⼒学性能:⾼硬度、⾼熔点、⾼的抗蠕变性能、低塑性等;良好的抗氧化性;特殊的物理化学性质:具有电学、磁学、声学性质等,可⽤于半导体材料、形状记忆材料、储氢材料、磁性材料等等。
2、含有⾦属间化合物的⼆元相图类型及各⾃特点答:熔解式⾦属间化合物相:在相图上有明显的熔化温度,并⽣成成分相同的液相。
通常具有共晶反应或包晶反应。
化合物的熔点往往⾼于纯组元。
分解式⾦属间化合物相:在相图上没有明显的熔解温度,当温度达到分解温度时发⽣分解反应,即β<=>L+α。
常见的是由包晶反应先⽣成的。
化合物的熔点没有出现。
固态⽣成⾦属间化合物相:通过有序化转变得到的有序相。
经常发⽣在⼀定的成分区间和较⽆序相低的温度范围。
通过固态相变⽽形成的⾦属间化合物相,可以有包析和共析两种不同的固态相变。
3、⾦属间化合物的溶解度规律特点答:(1)由于⾦属间化合物的组元是有序分布的,组成元素各⾃组成⾃⼰的亚点阵。
固溶元素可以只取代某⼀个组成元素,占据该元素的亚点阵位置,也可以分布在不同亚点阵之间,这导致溶解度的有限性。
(2)⾦属间化合物固溶合⾦元素时有可能产⽣不同的缺陷,称为组成缺陷(空位或反位原⼦)。
但M元素取代化合物中A或B 时,A和B两个亚点阵中的原⼦数产⽣不匹配,就会产⽣组成空位或组成反位原⼦(即占领别的亚点阵位置)。
(3)⾦属间化合物的结合键性及晶体结构不同于其组元,影响溶解度,多为有限溶解,甚⾄不溶。
表现为线性化合物。
(4)当第三组元在⾦属间化合物中溶解度较⼤时,第三组元不仅可能⽆序取代组成元素,随机分布在亚点阵内,⽽且第三组元可以从⽆序分布逐步向有序化变化,甚⾄⽣成三元化合物。
4、⾦属间化合物的结构类型及分类⽅法(未完)答:第⼀种分类⽅法:按照晶体结构分类(⼏何密排相( GCP相)和拓扑密排相(TCP相))。