第一节图形的对称与折叠
- 格式:docx
- 大小:408.81 KB
- 文档页数:7
五年级下数学教案-第一单元第1节折纸北师大版一、教学目标1. 知识与技能:通过折纸活动,让学生理解图形的对称性,掌握对称轴的概念,培养空间想象能力。
2. 过程与方法:通过观察、动手操作、讨论等环节,让学生体验数学探究的过程,提高解决问题的能力。
3. 情感态度与价值观:培养学生对数学美的感知,激发学习兴趣,增强合作意识。
二、教学内容1. 图形的对称性2. 对称轴的概念3. 折纸的基本方法4. 观察和分析对称图形三、教学重点与难点1. 教学重点:理解图形的对称性,掌握对称轴的概念,学会折纸的基本方法。
2. 教学难点:分析对称图形的特点,运用对称性解决问题。
四、教具与学具准备1. 教具:多媒体课件、折纸示例图2. 学具:彩纸、剪刀、胶水五、教学过程1. 导入:通过展示一些美丽的折纸作品,引导学生发现图形的对称性,激发学习兴趣。
2. 新课:讲解对称轴的概念,让学生观察和分析对称图形,了解对称轴的位置和特点。
3. 演示:演示折纸的基本方法,让学生跟随操作,学会简单的折纸技巧。
4. 练习:学生分组进行折纸练习,相互交流心得,教师巡回指导。
5. 展示与评价:学生展示自己的折纸作品,互相评价,教师点评并给予鼓励。
6. 小结:总结本节课所学内容,强调对称性的重要性。
六、板书设计1. 折纸2. 目录:教学目标、教学内容、教学重点与难点、教具与学具准备、教学过程、板书设计、作业设计、课后反思3. 正文:按照教学过程逐步展示板书内容,包括对称轴的概念、折纸的基本方法等。
七、作业设计1. 完成课后练习题,巩固对称轴的概念。
2. 尝试自己设计一幅对称图形,并折出实物。
3. 收集生活中的对称现象,与同学分享。
八、课后反思本节课通过折纸活动,让学生直观地理解了图形的对称性,掌握了对称轴的概念。
在教学过程中,要注意引导学生观察、思考和动手操作,培养他们的空间想象能力和解决问题的能力。
同时,要关注学生的个体差异,给予他们充分的展示和交流机会,激发学习兴趣,提高合作意识。
七年级数学上册折叠知识点本文主要介绍七年级数学上册的折叠知识点。
折叠是一种常见的数学操作,通过将图形沿着一条或多条直线折叠,在保持图形内部点相互对应的情况下形成新的几何图形。
在学习数学时,掌握折叠知识点对于理解几何概念和解决数学问题都有很大的帮助。
本文将从四个方面介绍七年级数学上册的折叠知识点。
一、对称性折叠中最常见的操作是图形的对折,即关于一条直线对称。
在七年级数学上册中,学生学习了平面直角坐标系以及坐标系中的对称性操作。
通过将平面图形沿着坐标轴折叠,学生可以直观地了解图形在坐标系中的对称性质。
此外,学生还学习了点、线和面的对称性,通过观察图形进行折叠操作,可以发现图形的对称性质,从而更好地掌握几何概念。
二、平移和旋转除了对称性操作外,平移和旋转也是折叠中常用的操作。
在数学上,平移和旋转是刚体变换的两种基本形式。
在七年级数学上册中,学生学习了平面直角坐标系中点的坐标表示方法,通过将平面图形进行平移和旋转操作,可以更好地理解几何概念。
此外,学生还可以通过对图形进行平移和旋转操作,解决一些有关位置关系的问题。
三、展开面积和体积折叠可以将一个平面图形转化为一个立体图形,通过将立体图形展开,可以求出该立体图形的面积和体积。
在七年级数学上册中,学生学习了三棱锥和四棱锥的展开图,通过将三棱锥和四棱锥展开,可以求出其面积和体积。
此外,学生还可以通过折纸来理解面积和体积的概念,同时也可以巩固折叠的基本操作。
四、解题技巧在学习折叠知识点的过程中,还需要掌握一些解题技巧。
例如,在解决角度问题时,可以将图形进行折叠,利用对称性和相似三角形的关系来求解问题。
在解决面积和体积问题时,可以将图形进行折叠,求出其展开图形的面积或者体积,进而得到所求的面积和体积。
此外,学生还可以通过尝试不同的折叠方式,来解决一些看似复杂的几何问题。
总结:折叠是数学中常见的操作,掌握折叠知识点对于理解几何概念和解决数学问题都有很大的帮助。
在七年级数学上册中,学生学习了对称性、平移和旋转、展开面积和体积以及解题技巧等折叠知识点。
图形的对称与不对称一、对称图形1.对称图形的定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做对称图形,这条直线叫做对称轴。
2.轴对称图形的性质:a)轴对称图形关于对称轴对称。
b)轴对称图形的每一对对应点关于对称轴距离相等。
c)轴对称图形的大小、形状不变。
3.常见的对称图形:f)等边三角形g)等腰三角形h)等腰梯形二、不对称图形1.不对称图形的定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分不能完全重合,这样的图形叫做不对称图形。
2.不对称图形的特点:a)不对称图形不关于任何直线对称。
b)不对称图形的对应点关于对称轴距离不相等。
c)不对称图形的大小、形状可能发生变化。
3.常见的对称图形:a)一般三角形b)一般四边形c)五边形及以上的多边形d)非圆曲线三、对称与不对称在实际生活中的应用1.建筑设计:在建筑设计中,对称与不对称的运用能够影响建筑的美观与实用程度。
例如,故宫的建筑设计中大量运用了对称手法,体现了皇权的威严;而现代建筑中,不对称设计则能够展现出创新与个性。
2.艺术创作:在绘画、雕塑等艺术领域,对称与不对称的运用能够表达艺术家内心的情感和创意。
如印象派绘画中,不对称的构图能够表现出强烈的视觉冲击力;而古典主义绘画中,对称的构图则给人以平衡、稳定的感觉。
3.服装设计:在服装设计中,对称与不对称的运用能够展现设计师的审美观和个性。
如正式场合的礼服往往采用对称设计,显得庄重、典雅;而休闲场合的服装则可能采用不对称设计,显得时尚、个性。
4.日常生活:在日常生活中,对称与不对称的运用也能够体现人们的审美观念。
如家庭装修、物品摆放等,对称的设计能够给人以和谐、平衡的感觉;而不对称的设计则能够给人以创新、独特的感觉。
四、对称与不对称的判断方法1.对称轴的寻找:判断一个图形是否对称,可以先寻找可能的对称轴,然后看图形沿对称轴折叠后两旁部分是否完全重合。
2.对应点的比较:观察图形中各对应点的位置关系,如果对应点距离对称轴相等,则可能为对称图形。
平面构成的对称与变换平面构成的对称与变换是几何学中的重要概念,通过对平面上的图形进行对称和变换操作,可以得到新的图形并且展现出独特的美感。
本文将探讨平面构成的对称与变换的概念、应用以及相关的数学原理。
一、对称对称是指一个物体或图形能够在某个中心轴线或平面上对称,即该物体或图形的一部分能够通过对称轴或平面得到完全相同的另一部分。
在平面几何中,常见的对称有点对称和轴对称。
1. 点对称点对称是指围绕一个点进行的对称。
以点为中心,画出某个图形的完全镜像,从而使得图形的两侧完全相同。
例如,我们可以绕着中心点进行旋转,使得旋转前后的图形完全一致。
2. 轴对称轴对称是指围绕一个轴进行的对称。
选择一个直线作为轴线,将图形沿轴线折叠,使得折叠前后的图形完全一致。
例如,我们可以将一张纸沿中心线对折,两侧的图形将完全相同。
对称在日常生活中随处可见,比如我们的身体左右对称、花朵的规则排列等。
对称的应用不仅能够增加美感,还在设计、艺术等领域发挥着重要作用。
二、变换变换是指通过平移、旋转、翻转等操作改变图形的位置、方向或形状。
变换可以将原始图形转换为新的图形,从而产生出无限多的图案和结构。
1. 平移平移是指将图形沿着特定的方向移动一定的距离,不改变图形的形状和方向。
例如,我们可以将一个矩形平移一段距离,得到一个相同大小的平行四边形。
2. 旋转旋转是指将图形绕着一个点或轴线进行旋转。
旋转可以改变图形的方向和形状,但是图形的大小不会改变。
例如,将一个正方形绕着中心点旋转90度,得到一个新的正方形。
3. 翻转翻转是指将图形绕着一条轴线进行对称翻转。
翻转可以改变图形的方向和形状,并且是轴对称的一种特殊形式。
例如,将一个字母"A"绕着一条垂直轴线翻转,得到一个对称的"A"。
变换在设计、绘画、动画等领域中得到广泛应用。
通过不同的变换操作,可以创造出多样化的图案和形态,为我们带来视觉上的享受和美感。
折叠的性质数学初中知识点数学是一门充满奥秘和美妙的学科,而数学中有一类有趣的性质叫做“折叠的性质”。
这些性质常常出现在初中数学中,帮助我们解决问题和理解数学概念。
本文将介绍一些常见的折叠性质,以及它们在数学中的应用。
1.线段的对称性:当我们将一段线段沿着中点对折时,两边的长度和形状是完全一样的。
我们可以用一张纸条来演示这个性质。
将纸条对折,使得两边长度相等,然后展开纸条,你会发现原来的线段被纸条分成了两段,而这两段是完全相同的。
这个性质在几何证明和图形构造中经常被使用。
2.角的对称性:与线段类似,角也有对称性。
当我们将一个角沿着顶点对折时,两边的夹角和形状是完全一样的。
这个性质在解决几何问题和证明中非常有用。
例如,我们可以利用角的对称性证明两个角相等,或者根据已知的角来构造相等的角。
3.图形的对称性:在平面几何中,图形的对称性是一个非常重要的性质。
当我们将一个图形沿着某个轴线对折时,两边的形状是完全对称的。
例如,当我们将一个长方形沿着中轴线对折时,可以得到两个形状完全相同的矩形。
这个性质在解决图形的性质和构造中非常有用。
4.数轴的对称性:数轴也有对称性。
当我们以0为中心,将数轴对折时,两边的数值是完全对称的。
例如,数轴上的点1和-1、点2和-2、点3和-3等等,都是关于0对称的。
这个性质在解决数轴上的问题和理解正负数的概念时非常有用。
5.函数的对称性:在函数图像中,对称性也是一个重要的性质。
例如,当一个函数的图像关于y轴对称时,我们称之为偶函数;当一个函数的图像关于原点对称时,我们称之为奇函数。
对称性不仅帮助我们理解函数的性质,还可以简化函数的求解和计算。
6.等式的对称性:在代数中,等式的对称性是一个十分有用的性质。
当等式两边互换位置后仍然成立时,我们称之为对称等式。
例如,a + b = b + a就是一个对称等式。
这个性质在解决方程和证明中经常使用。
通过了解和应用这些折叠性质,我们可以更好地理解数学概念,解决问题,并提高数学思维能力。
四年级上册折叠问题易错点
四年级上册的折叠问题是数学课程中的一个重要内容,也是学
生容易出现错误的地方。
首先,折叠问题主要涉及到图形的对称性
和折叠后的变化,学生在解题时需要注意以下几个易错点:
1. 对称性理解不清,学生可能会混淆图形的对称轴,导致在折
叠时出现错误。
他们需要理解对称轴的概念,并能够准确地找到图
形的对称轴。
2. 折叠方向混淆,在折叠问题中,学生有时会弄混折叠的方向,导致最终的图形与预期不符。
他们需要明确理解折叠的方向,并在
解题时仔细思考折叠后的图形变化。
3. 折叠线的位置选择错误,有些学生在选择折叠线的位置时容
易出错,他们需要理解折叠线的作用,并能够准确地选择合适的折
叠线。
4. 折叠后图形的位置关系,学生在折叠后图形的位置关系上也
容易出现错误,他们需要注意折叠后各部分的位置关系,确保折叠
后的图形符合要求。
针对以上易错点,老师可以通过讲解、示范和练习来帮助学生加深理解和掌握。
同时,鼓励学生多进行实际折叠操作,加强对折叠问题的理解和应用能力。
希望这些建议能够帮助学生更好地掌握四年级上册的折叠问题。
图形的对称-翻折变换(折叠问题)一.选择题(共30小题)1.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为()A.1 B.2 C.2D.122.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:213.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.4.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:85.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1个B.2个C.3个D.4个6.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A.70°B.65°C.80°D.35°7.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长()A.3 B.4 C.3.5 D.68.如图,四边形ABCD是矩形,AB=4,AD=3,把矩形沿直线AC折叠,点B 落在点E处,AE交CD于点F.连接DE,则DF的长是()A.B.C.D.9.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM 即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.2411.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE 沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为()A.B.C.D.12.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD 沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+14.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为()A.y=x+5 B.y=x+5 C.y=x+5 D.y=x+515.如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,当DE=2时,BC的长为()A.3 B.4 C.5 D.616.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是()A.AF=B.四边形ACDE是矩形C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形17.如图,有一张直角三角形纸片ABC,边AB=6,AC=10,∠ABC=90°,将该直角三角形纸片沿DE折叠,使点C与点B重合,则四边形ABDE的周长为()A.16 B.17 C.18 D.1918.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.19.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.220.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)21.如图,△ABC周长为36cm,把其边AC对折,使点C、A重合,折痕交BC 边于点D,交AC边于点E,连结AD,若AE=6cm,则△ABD的周长是()A.24cm B.26cm C.28cm D.30cm22.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.623.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.24.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm25.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.1226.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.1227.如图所示,有一块直角三角形纸片,∠C=90°,AC=2,BC=,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.B.C.1 D.28.如图所示,折叠平行四边形的一边AD,使点A落在DC边上的点E处,已知AB=6,BC=4,则EC的长为()A.1 B.2 C.3 D.1.529.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③S△DGF=120;④S△BEF=.其中所有正确结论的个数是()A.4 B.3 C.2 D.130.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1图形的对称-翻折变换(折叠问题)参考答案与试题解析一.选择题(共30小题)1.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为()A.1 B.2C.2D.12【考点】翻折变换(折叠问题);勾股定理的应用;菱形的性质;矩形的性质.【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【解答】解:∵菱形AECF,AB=6,∴假设BE=x,∴AE=6﹣x,∴CE=6﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6﹣x,解得:x=2,∴CE=4,利用勾股定理得出:BC2+BE2=EC2,BC===2,故选:C.【点评】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.2.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:21【考点】翻折变换(折叠问题).【分析】在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=:=14:25.故选B.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了勾股定理.3.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】在Rt△ABC中,设AB=2a,已知∠ACB=90°,∠CAB=30°,即可求得AB、AC的值,由折叠的性质知:DE=CE,可设出DE、CE的长,然后表示出AE的长,进而可在Rt△AEC中,由勾股定理求得AE、CE的值,即可求∠ACE 的正弦值.【解答】解:∵△ABC中,∠ACB=90°,∠BAC=30°,设AB=2a,∴AC=a,BC=a;∵△ABD是等边三角形,∴AD=AB=2a;设DE=EC=x,则AE=2a﹣x;在Rt△AEC中,由勾股定理,得:(2a﹣x)2+3a2=x2,解得x=;∴AE=,EC=,∴sin∠ACE==.故选:B.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.4.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:8【考点】翻折变换(折叠问题).【分析】如图,作辅助线;首先求出△BDP的面积,进而求出△DPC的面积;借助三角形的面积公式求出的值;由旋转变换的性质得到AB=PB,即可解决问题.【解答】解:如图,过点D作DE⊥BC于点E;由题意得:S△ABD=S△PBD=30,∴S△DPC=80﹣30﹣30=20,∴=,由题意得:AB=BP,∴AB:PC=3:2,故选A.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的方法是作高线,表示出三角形的面积;解题的关键是灵活运用翻折变换的性质来分析、判断、推理或解答.5.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1个B.2个C.3个D.4个【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】根据翻折变换的性质、相似三角形的判定定理解答即可.【解答】解:由翻折变换的性质可知,∠AEB+∠FEC=×180°=90°,则∠AEF=90°,即∠2=90°,①正确;由图形可知,∠1<∠AEC,②错误;∵∠2=90°,∴∠1+∠3=90°,又∠1+∠BAE=90°,∴∠BAE=∠3,④正确;∵∠BAE=∠3,∠B=∠C=90°,∴△ABE∽△ECF,③正确.故选:C.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A.70°B.65°C.80°D.35°【考点】翻折变换(折叠问题).【分析】根据平角的知识可求出∠DED′的度数,再由折叠的性质可得出∠D′EF=∠DEF=∠DED′,从而根据平行线的性质可得出∠EFB的度数.【解答】解:∵∠AED′=40°,∴∠DED′=180°﹣40°=140°,又由折叠的性质可得,∠D′EF=∠DEF=∠DED′,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=70°.故选:A.【点评】此题考查了翻折变换的知识,解答本题的关键是根据折叠的性质得出∠D′EF=∠DEF=∠DED′,难度一般.7.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长()A.3 B.4 C.3.5 D.6【考点】翻折变换(折叠问题).【分析】由矩形的性质得到∠1=∠CFE=60°,由折叠可得∠2=60°,从而求得∠4的度数,得到AE=EC,在Rt△CDE中利用勾股定理可求得EC的长度,即可得到答案.【解答】解:∵矩形ABCD,∴BC∥AD,∴∠1=∠CFE=60°,∵EF为折痕,∴∠2=∠1=60°,AE=EC,∴∠3=180°﹣60°﹣60°=60°,Rt△CDE中,∠4=90°﹣60°=30°,∴EC=2×DE=2×1=2,∴BC=AE+ED=EC+ED=2+1=3.故选:A.【点评】本题考查了翻折问题;由折叠得到角相等,得到AE=EC利用勾股定理求解是正确解答本题的关键.8.如图,四边形ABCD是矩形,AB=4,AD=3,把矩形沿直线AC折叠,点B 落在点E处,AE交CD于点F.连接DE,则DF的长是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】由四边形ABCD是矩形与△AEC由△ABC翻折得到,AD=CE,∠ADF=∠CEF,由AAS证得△ADF≌△CEF,的长FA=FC,设DF=x,则FA=4﹣x,由勾股定理得:DA2+DF2=AF2,即可求出DF的长.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AB=DC=4,∠ADF=90°,∵△AEC由△ABC翻折得到,∴BC=EC,∠CEF=∠ABC=90°,∴AD=CE,∠ADF=∠CEF,在△ADF与△CEF中,,∴△ADF≌△CEF(AAS),∴FA=FC,设DF=x,则FA=FC=DC﹣DF=4﹣x,在Rt△DFA中,由勾股定理得:DA2+DF2=AF2,即32+x2=(4﹣x)2,解得:x=,即DF的长是.故选C.【点评】本题主要考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握折叠的性质,得到相等的线段与角是解决问题的关键.9.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM 即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确【考点】翻折变换(折叠问题).【分析】在图1中,由BM=2BF推出∠BMF=30°,所以∠MBF=60°,再根据等边三角形的判定方法即可证明.在图2中,证明方法类似.【解答】解:图1中,∵四边形ABCD是正方形,∴AB=AD=BC∵AE=ED=BF=FC,AB=BM,∴BM=2BF,∵∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC,∴△MBC是等边三角形,∴张萌的作法正确.在图2中,∵BM=BC=2BF,∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC∴△MBC是等边三角形,∴小平的作法正确.故选D.【点评】本题考查正方形的性质、翻折不变性、直角三角形的性质,解题的关键是在一个直角三角形中如果斜边是直角边的两倍那么这条直角边所对的锐角是30度.10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.24【考点】翻折变换(折叠问题).【分析】先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,易得△CEF的周长.【解答】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC﹣BF=10﹣6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=12.故选A.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理,利用勾股定理得CF的长是解答此题的关键.11.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE 沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF中根据勾股定理列出关于x的方程,即可解决问题.【解答】解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中,由勾股定理得:AF2=52﹣32=16,∴AF=4,DF=5﹣4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3﹣x)2+12,解得:x=.故选B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.12.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD 沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm【考点】翻折变换(折叠问题).【分析】首先由勾股定理求出BC,由折叠的性质可得∠BED=∠C=90°,BE=BC=3cm,得出AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得出方程,解方程即可.【解答】解:∵∠C=90°,AB=5cm,AC=4cm,∴BC==3cm,∵将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,∴△BED≌△BCD,∴∠BED=∠C=90°,BE=BC=3cm,∴AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得:AE2+DE2=AD2,即22+x2=(4﹣x)2,解得:x=.故选:B.【点评】本题主要考查翻折变换的性质,全等三角形的性质,勾股定理;熟练掌握翻折变换的性质,由勾股定理得出方程是解决问题的关键.13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】由点A(0,4)、B(3,0),可求得AB的长,然后由折叠的性质,求得OA′的长,且△A′OC∽△AOB,再由相似三角形的性质,求得OC的长,继而利用待定系数法求得直线BC的解析式.【解答】解:∵点A(0,4)、B(3,0),∴OA=4,OB=3,∴AB==5,由折叠的性质可得:A′B=AB=5,∠OA′C=∠OAB,∴OA′=A′B﹣OB=2,∵∠A′OC=∠AOB=90°,∴△A′OC∽△AOB,∴,即,解得:OC=,∴点C的坐标为:(0,),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+.故选C.【点评】此题考查了折叠的性质、勾股定理、相似三角形的判定与性质以及待定系数法求一次函数的解析式.注意求得点C的坐标是解此题的关键.14.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为()A.y=x+5 B.y=x+5 C.y=x+5 D.y=x+5【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】首先在RT△ABE中,求出EB,再在RT△CDE中利用勾股定理即可解决问题.【解答】解:∵△ADE是由△ADO翻折,∴DE=DO,AO=AE=10,∵四边形OABC是矩形,∴OC=AB=8,AO=BC=10,∠B=∠BCO=∠BAO=90°,在RT△ABE中,∵AE=10,AB=8,∴EB===6,∴EC=4,设DO=DE=x,在RT△DCE中,∵CD2+CE2=DE2,∴(8﹣a)2+42=a2,∴a=5,∴点D(0,5),点E(4,8),设直线DE为y=kx+b,∴解得,∴直线DE为:y=+5.故选A.【点评】本题考查翻折变换、待定系数法确定一次函数的解析式,解题的关键是巧妙利用勾股定理,用方程的思想去思考问题,属于中考常考题型.15.如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,当DE=2时,BC的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】首先由DE∥BC与折叠的性质,可证得DE是△ABC的中位线,继而求得答案.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠EDF=∠BFD,由折叠的性质可得:∠ADE=∠EDF,AD=DF,∴∠B=∠BFD,∴BD=DF,∴AD=BD,同理:AE=EC,∴DE=BC,即BC=2DE=4.故选B.【点评】此题考查了折叠的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.16.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是()A.AF=B.四边形ACDE是矩形C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形【考点】翻折变换(折叠问题);平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,AD=BC,由折叠的性质得到AB=AE,BC=CE,等量代换得到AE=CD,AD=CE,推出四边形ACDE是平行四边形,于是得到AF=BC,四边形ACDE是矩形,故A,B 正确;根据平行四边形和矩形的性质得到△ACD≌△ACE≌△CDE≌△ADE≌△ABC,于是得到图中与△ABC全等的三角形有4个,故C正确;推出△BCE是等腰三角形,△AEF,△ACF,△CDF,△DEF是等腰三角形,于是得到图中有5个等腰三角形,故D错误.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC,由折叠的性质得到AB=AE,BC=CE,∴AE=CD,AD=CE,∵点B、A、E在同一条直线上,∴AE∥CD,∴四边形ACDE是平行四边形,∴AF=BC,四边形ACDE是矩形,故A,B正确;∵四边形ABCD是平行四边形,四边形ACDE是矩形,∴△ACD≌△ACE≌△CDE≌△ADE≌△ABC,∴图中与△ABC全等的三角形有4个,故C正确;∵BC=CE,∴△BCE是等腰三角形,∵四边形ACDE是矩形,∴AF=EF=CF=DF,∴△AEF,△ACF,△CDF,△DEF是等腰三角形,∴图中有5个等腰三角形,故D错误;故选D.【点评】本题考查了平行四边形的性质、折叠的性质以及等腰三角形的判定和性质,解题的关键是熟记等腰三角形和矩形的判定方法.17.如图,有一张直角三角形纸片ABC,边AB=6,AC=10,∠ABC=90°,将该直角三角形纸片沿DE折叠,使点C与点B重合,则四边形ABDE的周长为()A.16 B.17 C.18 D.19【考点】翻折变换(折叠问题).【分析】根据勾股定理得到BC=8,由折叠的性质得到BD=CD=BC=4,DE⊥BC,根据三角形的中位线的性质得到DE=AB=3,AE=AC=5,于是得到结论.【解答】解:∵AB=6,AC=10,∠ABC=90°,∴BC=8,∵将该直角三角形纸片沿DE折叠,使点C与点B重合,∴BD=CD=BC=4,DE⊥BC,∵∠ABC=90°,∴DE∥AB,∴DE=AB=3,AE=AC=5,∴四边形ABDE的周长=AB+AE+DE+BD=6+5+3+4=18,故选C.【点评】此题考查了折叠的性质,勾股定理,三角形的中位线的性质,注意掌握折叠前后图形的对应关系.18.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】根据对称的性质得到△BFE≌△DFE,得到DE=BE.根据已知条件得到∠DEB=90°,设AD=1,BC=4,过A作AG⊥BC于G,根据矩形的性质得到GE=AD=1,根据全等三角形的性质得到BG=EC=1.5,根据勾股定理得到AB=CD==5,通过△BDC∽△DEF,得到,求出BF=,于是得到结论.【解答】解:∵EF是点B、D的对称轴,∴△BFE≌△DFE,∴DE=BE.∵在△BDE中,DE=BE,∠DBE=45°,∴∠BDE=∠DBE=45°.∴∠DEB=90°,∴DE⊥BC.在等腰梯形ABCD中,∵,∴设AD=1,BC=4,过A作AG⊥BC于G,∴四边形AGED是矩形.∴GE=AD=1,∵Rt△ABG≌Rt△DCE,∴BG=EC=1.5,∴AG=DE=BE=2.5∴AB=CD==5,∵∠ABC=∠C=∠FDE,∵∠CDE+∠C=90°,∴∠FDE+∠CDE=90°∴∠FDB+∠BDC+∠FDB=∠FDB+∠DFE=90°,∴∠BDC=∠DFE,∵∠DEF=∠DBC=45°,∴△BDC∽△DEF,∴,∴DF=,∴BF=,∴AF=AB﹣BF=,∴=.故选B.【点评】此题考查等腰梯形的性质,翻折的性质,三角形全等的判定与性质,等腰直角三角形的性质,相似三角形的判定和性质等知识,注意结合图形,作出常用辅助线解决问题.19.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.2【考点】翻折变换(折叠问题).【分析】利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG 即可;【解答】解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=GF,∵E是边CD的中点,∴DE=CE=6,设BG=x,则CG=12﹣x,GE=x+6,∵GE2=CG2+CE2∴(x+6)2=(12﹣x)2+62,解得x=4∴BG=4.故选B.【点评】此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.20.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)【考点】翻折变换(折叠问题);坐标与图形性质.【分析】根据关于y轴对称的点的特点找到B',结合直角坐标系可得出点B′的坐标.【解答】解:∵将△ABC沿y轴翻折得到△A′B′C′,∴点B与点B′关于y轴对称,∴B′(2,3),故选B.【点评】本题考查了翻折变换﹣折叠问题,坐标与图形的关系,熟记关于y轴对称的点的特点是解答本题的关键.21.如图,△ABC周长为36cm,把其边AC对折,使点C、A重合,折痕交BC 边于点D,交AC边于点E,连结AD,若AE=6cm,则△ABD的周长是()A.24cm B.26cm C.28cm D.30cm【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得AE=EC,AD=CD,然后求出△ABD的周长=AB+BC,代入数据计算即可得解.【解答】解:∵△ABC的边AC对折顶点C和点A重合,∴AE=EC,AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=6cm,∴AC=AE+EC=6+6=12,∵△ABC的周长为36cm,∴AB+BC=36﹣12=24cm,∴△ABD的周长是24cm.故选A.【点评】本题考查了翻折变换的性质,熟记翻折前后的两个图形能够完全重合得到相等的边是解题的关键.22.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.【点评】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.23.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.【考点】翻折变换(折叠问题).【分析】根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.【解答】解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=5÷=cm,在Rt△BDE中,DE=BD•tan30°=×=cm.故选:D.【点评】本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.24.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】首先根据题意得到:△AED≌△ACD;进而得到AE=AC=6,DE=CD;根据勾股定理求出AB=10;再次利用勾股定理列出关于线段CD的方程,问题即可解决.【解答】解:由勾股定理得:==10,由题意得:△AED≌△ACD,∴AE=AC=6,DE=CD(设为x);∠AED=∠C=90°,∴BE=10﹣6=4,BD=8﹣x;由勾股定理得:(8﹣x)2=42+x2,解得:x=3(cm),故选B.【点评】该命题主要考查了翻折变换及其应用问题;解题的关键是借助翻折变换的性质,灵活运用勾股定理、全等三角形的性质等几何知识来分析、判断、推理或解答.25.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.26.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=AE+DE=AE+BE=9.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:A.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.27.如图所示,有一块直角三角形纸片,∠C=90°,AC=2,BC=,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.B.C.1 D.【考点】翻折变换(折叠问题).【分析】由有一块直角三角形纸片,∠C=90°,AC=2,BC=,利用勾股定理即可求得AB的长,然后由折叠的性质,求得AE的长,继而求得答案.【解答】解:∵∠C=90°,AC=2,BC=,∴AB==,由折叠的性质可得:AE=AB=,∴CE=AE﹣AC=.故选A.【点评】此题考查了折叠的性质以及勾股定理.注意掌握折叠前后图形的对应关系是解此题的关键.28.如图所示,折叠平行四边形的一边AD,使点A落在DC边上的点E处,已知AB=6,BC=4,则EC的长为()A.1 B.2 C.3 D.1.5【考点】翻折变换(折叠问题).【分析】利用平行四边形的对边相等得到AD=BC=4,DC=AB=6,再由折叠的性质得到DE=AD,由DC﹣DE求出EC的长即可.【解答】解:由折叠及平行四边形的性质得:AE=AD=BC=4,DC=AB=6,则EC=DC﹣DE=6﹣4=2,故选B.【点评】此题考查了翻折变换(折叠问题),以及平行四边形的性质,熟练掌握折叠的性质是解本题的关键.29.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:。
七年级下册数学折叠知识点数学中的折叠,是一种将平面图形沿着一条或多条直线折叠的方法,通过折叠,可以使得原本的形状变化或被拼合成为其他图形。
折叠不仅能加强数学的直观性和形象性,也能深化对立体几何的理解。
在七年级下册的学习中,折叠是一个重要的知识点,下面我们来看看具体的内容。
一、折叠的基本概念折叠是指将纸张或橡皮等平面物体按照一定的方法折叠成为一定形状的技巧。
在数学中,折叠不仅可以用来解决平面几何中的问题,还可以用来研究立体几何的性质。
二、折叠的方法与技巧1. 对称折叠对称折叠是将一张图案沿着它的对称线对折,使得图案的两侧完全重合的过程。
对称折叠常用于几何中,可以用来证明几何定理,也可以用来解决折纸难题。
2. 拼合折叠拼合折叠是指将图案中的不同部分通过折叠和组合的方式拼合成为一个整体的过程。
拼合折叠可以帮助学生理解平面图形的构造,也可以拓展他们的空间想象能力。
3. 折叠展开图折叠展开图是指将一个立体图形通过分解折叠成为平面图形后,再将平面图形展开为一个二维图形的过程。
折叠展开图可以帮助学生理解立体几何图形的构造和性质,并且可以用来计算面积和体积等问题。
三、折叠的应用领域1. 数学在数学中,折叠可以用来解决几何问题,比如通过折叠构造等获得图形的性质,或通过折叠展开图计算各种图形的面积和体积。
2. 工程学在工程学中,折叠可以用来制作各种模型和原型,比如汽车、船只、房屋等,可以帮助工程师们更好地理解和设计产品。
3. 艺术设计在艺术设计中,折纸、折扇等技巧十分常见,是展示创意的一种手段。
折纸艺术能够通过不同的折叠方式,来创造出各种美观、有趣的形态。
四、折叠的重要性折叠不仅能够锻炼学生的思维能力和空间想象能力,还能够拓展他们的艺术视野和文化素养。
通过折叠,学生们不仅可以加深对几何和数学的理解,还可以培养创造力和审美能力。
总之,折叠是一项充满趣味和挑战的技能,它不仅能够加强学生对数学的直观理解,也能够帮助他们在实践中掌握几何的基本概念和方法。
中考折叠问题解题方法
在中考数学中,折叠问题通常涉及到图形的对称性、重合等概念。
解决折叠问题的方法主要包括以下几个步骤:
理解问题:仔细阅读题目,理解图形的折叠方式,明确题目中的要求和条件。
观察图形:给定图形可能是一个平面图形,通过折叠后形成一个三维立体图形。
观察图形的对称性,找出可以重合的部分。
标记关键点:在图形的关键部位标记点,这有助于分析和计算折叠后的位置。
利用对称性:如果题目中提到折叠是对称的,可以利用对称性质,找到对应部分的重合点。
应用数学知识:有时需要应用一些几何知识,如角度、直线段长度等,计算折叠后的位置。
确定关系:找到折叠后各部分的关系,可以是平行、重合、相交等。
画图解题:在草稿纸上画出图形,通过手动折叠或模拟折叠的方式,帮助理清思路。
检查答案:完成计算后,要检查答案是否符合题目的要求,尤其是对称性和重合性。
以下是一个简单的折叠问题的解题示例:
题目:若正方形纸张上有一只小猫,如图所示。
问折叠后两只小猫是否重合?
(图示一只小猫)
解题步骤:
观察图形,确定折叠轴。
在小猫的关键点标记,如眼睛、鼻子等。
利用对称性,确定折叠后的位置。
画出折叠后的图形。
检查关键点,判断是否重合。
通过以上步骤,可以较为清晰地解决折叠问题。
在实际考试中,应保持冷静,有条理地分析,避免粗心错误。
第一节图形的对称与折叠,河北8年中考命题规律)
图形对称的判断(3次)
1.(2013河北3题2分)下列图形中,既是轴对称图形又是中心对称图形的是()
,A),B),C),D)
图形折叠及相关计算(6次)
2.(2013河北19题3分)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=________.
3.(2015河北3题3分)一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展
开铺平后的图案是( )
,A) ,B) ,C) ,D)
4.(2015石家庄模拟)下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )
,A) ,B) ,C) ,D)
5.(2015石家庄模拟)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置.若B (1,2),则点D 的横坐标是________.
6.(2015保定二模)如图,已知正方形ABCD 的对角线长为22,点O 为正方形的对称中心,将正方形ABCD 沿过点O 的直线EF 折叠,则图中阴影部分四个三角形周长的和为________.
,(第6题图)) ,(第7题图))
7.(2015唐山二模)将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD =________度.
,中考考点清单)
轴对称图形
轴对称
如果一个图形沿着某条直线
称,折叠前后的两图形全等,对应边和对应角相等.
【方法技巧】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.
1.与三角形结合:
①若涉及直角,则优先考虑直角三角形的性质(勾股定理及斜边上的中线等于斜边的一半),若为含特殊角的直角三角形,则应利用其边角关系计算;②若涉及两边(角)相等,则利用等腰三角形的相关性质计算,若存在60°角,则利用等边三角形性质进行相关计算,一般会作出高线构造特殊角的直角三角形进行求解;③若含有中位线,则需利用中位线的位置及数量关系进行量的代换;
2.与四边形结合:
①与平行四边形、矩形、菱形、正方形结合,往往会利用其特殊性质求解;②若为一般的四边形,则可通过构造特殊的三角形或四边形求解.
中心对称图形中心对称
如果一个图形绕某一点旋转180°后能与如果一个图形绕某点旋转180°后与另一
,中考重难点突破)
轴对称与中心对称图形的识别
【例1】(2015沧州中考)下列图形中是轴对称图形但不是中心对称图形的是( )
,A)
,B) ,C) ,D)
【解析】
【学生解答】
1.(2015石家庄一模)下列图形既是轴对称图形又是中心对称图形的是( )
,A)
,B)
,C)
,D)
2.(2015枣庄中考)在方格纸中,选择标有序号①、②、③、④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是________.
图形折叠的相关计算(高频考点)
【例2】(2014安徽中考)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )
A.53
B.5
2
C .4
D .5 【解析】要求BN 的长,可放在Rt △DBN 中计算,BD 已知,只要求出DN ,然后利用勾股定理计算,由折叠可得△AMN ≌△DMN ,即DN =AN ,可设BN =x ,则AN =DN =9-x ,再由D 是BC 的中点可知BD =3,在Rt △DBN 中,由BD 2+BN 2=DN 2,得x 2+32=(9-x )2,解得x =4.∴BN =4.
【学生解答】
3.(2015呼和浩特中考)如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F 则△CEF 的面积为( )
A.12
B.9
8
C .2
D .4
,中考备考方略)
1.(2015重庆中考)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) ,A) ,B) ,C) ,D)
2.(2015北京中考)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为( )
,A) ,B) ,C) ,D)
3.(2015邢台一模)下列图形既可看成轴对称图形又可看成中心对称图形的是( )
,A) ,B) ,C) ,D)
4.(2015邯郸一模)已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y ,表示y 与x 的函数关系的图像大致如图所示,则该封闭图形可能是( )
,A) ,B) ,C) ,D)
5.(2015唐山9中模拟)观察下列图形,是中心对称图形的是( )
,A)
,B)
,C)
,D)
6.(2015郑州中考)如图,四边形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD =5,BC =9,则EF =________.
7.(2015张家口模拟)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是( )
,A) ,B) ,C) ,D)
8.(2015安顺中考)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,折叠后,点B 恰好与点O 重合,若BC =3.则折痕CE 的长为( )
A .2 3 B.3
2
3 C. 3 D .6
,(第8题图))
,(第9题图))
9.(2015襄阳中考)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()
A.AF=AE B.△ABE≌△AGF
C.EF=2 5 D.AF=EF
10.(2015宁波中考)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为() A.①②B.②③C.①③D.①②③
,(第10题图)),(第11题图)) 11.(2016原创预测)如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为________.
12.在▱ABCD中,AB<BC,已知∠B=30°,AB=23,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD 所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为________.。