工业催化3.3 金属及合金催化剂及其催化作用
- 格式:ppt
- 大小:16.65 MB
- 文档页数:78
金属催化剂及其催化作用引言催化是一种重要的化学过程,它可以通过降低能量势垒的方式加速化学反应的速率。
金属催化剂作为一类常用的催化剂,广泛应用于有机合成、能源转化等领域。
本文将介绍金属催化剂的定义、分类以及其在化学反应中的催化作用。
金属催化剂的定义与分类金属催化剂是指能够在化学反应中加速反应速率,且在反应结束时保持不变的金属物质。
金属催化剂能够通过提供活性位点、调控反应的能垒、吸附反应物等方式实现催化作用。
根据催化剂的组成,金属催化剂可以分为两类:一类是纯金属催化剂,即单一金属元素或金属合金;另一类是负载型金属催化剂,即将金属颗粒负载于支撑物上。
负载型金属催化剂具有较大的比表面积和较高的催化活性,常用的负载物包括二氧化硅、氧化铝等。
金属催化剂还可以根据金属的化学性质进行分类。
常见的金属催化剂包括贵金属催化剂(如铂、钯、铑等)、过渡金属催化剂(如铁、铜、镍等)以及稀土金属催化剂(如钕、镧等)。
不同类型的金属催化剂具有不同的催化特性,适用于不同类型的化学反应。
金属催化剂的催化作用金属催化剂在化学反应中主要通过以下几个方面发挥作用:1.提供活性位点:金属催化剂上的金属离子或金属表面可以提供活性位点,吸附并激活反应物。
活性位点能够有效降低化学反应的活化能,加速反应速率。
2.调控反应的能垒:金属催化剂可以通过调整反应物与催化剂间的作用力,改变反应的活化能。
例如,在氢气化反应中,贵金属催化剂能够吸附氢气并削弱键合,从而降低氢与反应物之间的能垒,促进反应进行。
3.提供电子转移:金属催化剂可以通过提供或接收电子的方式参与反应。
贵金属催化剂常常参与电子转移反应,如氧化还原反应,通过调控电子转移过程来加速反应速率。
4.分子催化:金属催化剂中的金属离子或金属表面可以与反应物发生直接的化学反应,形成中间体,进而促进反应进行。
这种分子催化机制在有机合成中具有重要的应用价值。
金属催化剂的应用金属催化剂在化学合成、能源转化等领域具有广泛的应用。
工业催化原理知识要点金属催化剂及其催化作用1、金属催化剂的应用及其特性1 )金属催化剂的应用金属催化剂:指催化剂的活性组分是纯金属或者合金纯金属催化剂:指活性组分只由一种金属原子组成,这种催化剂可单独使用,也可负载在载体上合金催化剂:指活性组分由两种或者两种以上金属原子组成2 )金属催化剂的特性常用的金属催化剂的元素是 d 区元素,即过渡元素( ⅠB、ⅥB、ⅦB、Ⅷ族元素)金属催化剂可提供的各种各样的高密度吸附反应中心2、金属催化剂的化学吸附1 )金属的电子组态与气体吸附能力间的关系( 1 )金属催化剂化学吸附能力取决于金属温和体份子的化学性质,结构及吸附条件( 2 )具有未结合 d 电子的金属催化剂容易产生化学吸附( 3 )价键理论:不同过渡金属元素的未结合 d 电子数不同,他们产生化学吸附的能力不同,其催化性能也不同( 4 )配位场理论:金属表面原子核体相原子不同,裸露的表面原子与周围配位的原子数比体相中少,表面原子处于配位价键不饱和状态,他可以利用配位不饱和的杂化轨道与被吸附份子产生化学吸附。
( 5 )吸附条件对进水催化剂的吸附的影响:低温有利于物理吸附,高温有利于化学吸附高压有利于物理吸附,也有利于化学吸附2 )金属催化剂的化学吸附与催化性能的关系( 1 )金属催化剂的电子逸出功(脱出功)定义:将电子从金属催化剂汇中移到外界(通常是真空环境中)所需做的最小功,或者说电子脱离金属表面所需要的最低能量符号:Φ,在金属能带图中表现为最高空能级与能带中最高填充电子能级的能量差意义:其大小代表金属失去电子的难易程度或者说电子脱离金属表面的难易( 2 )反应物份子的电离势定义:指反应物份子将电子从反应物中移到外界所需的最小功,用 I 表示。
意义:其大小代表反应物份子失去电子的难易程度。
电离能:激发时所需的最小能量( 3 )化学吸附键和吸附状态①当ΦI时,电子将从反应物份子向金属催化剂表面专业,反应物分子变成吸附在金属催化剂表面上的正离子。
化工工业催化导论4金属催化剂及其催化剂作用金属催化剂是指在催化反应中,以金属元素或金属离子形式存在的催化剂。
金属催化剂对于化工工业起着极其重要的作用,许多化工工业过程都需要金属催化剂来促进反应的进行。
本文将主要介绍金属催化剂的种类以及它们在催化反应中的作用。
金属催化剂根据其组成和性质可以分为单金属催化剂和多金属催化剂。
单金属催化剂是指催化剂中只含有一种金属元素,例如铂、钯、铑等。
多金属催化剂则是指催化剂中含有两种以上的金属元素,例如铂-铑组合、钯-铑组合等。
不同种类的金属催化剂在催化反应中有不同的作用。
金属催化剂在催化反应中的作用可以归纳为三个方面:活化反应物、提供催化反应中的中间物和降低反应活化能。
首先,金属催化剂能够活化反应物,使其易于被催化反应进行。
金属催化剂通常具有良好的吸附性质,在吸附反应物分子的过程中,可以改变反应物的键的性质,使其易于发生反应。
例如,铂催化剂对氢气的吸附能力非常强,能够将分子中的氢原子剥离出来,使其与其他反应物发生反应。
其次,金属催化剂还能提供催化反应中的中间物。
催化反应通常会经历多个步骤,中间物在这些步骤中起着关键的作用。
金属催化剂可以提供活性位点,以吸附和催化反应物分子中的原子,从而形成中间物。
例如,钯催化剂可以通过吸附氢气和反应物形成Pd-H键,进而形成中间物,促进催化反应的进行。
最后,金属催化剂能够降低反应的活化能。
催化反应需要克服一个能垒才能进行,而金属催化剂则能降低这个能垒,使反应更容易进行。
金属催化剂通过改变反应物的电子结构、提供反应活性位点等方式,降低了反应的活化能。
因此,催化反应在金属催化剂的存在下能够更容易地发生。
综上所述,金属催化剂在化工工业中起着重要的作用。
它们可以活化反应物,提供催化反应中的中间物,以及降低反应的活化能。
通过这些作用,金属催化剂能够促进化学反应的进行,提高反应的速率和选择性。
因此,金属催化剂在许多化工工业过程中得到了广泛的应用,例如石油加工、有机合成、环境保护等领域。