工业催化第二章催化作用与催化剂
- 格式:ppt
- 大小:1.24 MB
- 文档页数:28
工业催化期末复习题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-第二章催化作用与催化剂电子型助催化剂的作用:改变主催化剂的电子结构,促进催化活性及选择性。
金属的催化活性与其表面电子授受能力有关。
具有空余成键轨道的金属,对电子有强的吸引力,吸附能力的强弱是与催化活性紧密相联的在合成氨用的铁催化剂中,由于Fe是过渡元素,有空的d轨道可以接受电子,故在Fe-Al2O3中加入K2O后,后者起电子授体作用,把电子传给Fe,使Fe原子的电子密度增加,提高其活性,K2O是电子型的助催化剂第三章吸附与多相催化1简述多相催化反应的步骤包括五个连续的步骤。
(1)反应物分子从气流中向催化剂表面和孔内扩散;(2)反应物分子在催化剂表面上吸附;(3)被吸附的反应物分子在催化剂表面上相互作用或与气相分子作用进行化学反应;(4)反应产物自催化剂表面脱附;(5)反应产物离开催化剂表面向催化剂周围的介质扩散。
上述步骤中的第(1)和(5)为反应物、产物的扩散过程。
属于传质过程。
第(2)、(3)、(4)步均属于在表面进行的化学过程,与催化剂的表面结构、性质和反应条件有关,也叫做化学动力学过程2外扩散与内扩散的区别外扩散:反应物分子从流体体相通过吸附在气、固边界层的静止气膜(或液膜)达到颗粒外表面,或者产物分子从颗粒外表面通过静止层进入流体体相的过程,称为外扩散过程。
内扩散:反应物分子从颗粒外表面扩散进入到颗粒孔隙内部,或者产物分子从孔隙内部扩散到颗粒外表面的过程,称为内扩散过程。
为充分发挥催化剂作用,应尽量消除扩散过程的影响外扩散阻力:气固(或液固)边界的静止层。
消除方法:提高空速内扩散阻力:催化剂颗粒孔隙内径和长度.消除方法:减小催化剂颗粒大小,增大催化剂孔隙直径3解离吸附的Langmuir等温式的推导过程4物理吸附与化学吸附的区别物理吸附是表面质点和吸附分子之间的分子力而引起的。
第二章催化作用与催化剂1、什么是催化剂?其有什么特点?⏹催化剂是一种物质,它能够加速反应的速率而不改变该反应的标准Gibbs自由焓变化。
⏹催化剂将反应物转变为产物,在循环的最终步骤催化剂再回到其原始状态。
更简单地说,催化剂是一种加速化学反应,而在其过程中自身不被消耗掉的物质。
⏹许多种类物质可用来作催化剂,包括金属、金属化合物(如金属氧化物、硫化物等)、有机金属络合物、酶或细胞等。
⏹光、电子、热及磁场等物理因素,虽有时也能引发并加速化学反应,但所起的作用一般也都不能称为催化作用(特殊的可称为电催化或光催化作用等,有专门研究)⏹引发剂与催化剂也有区别,它虽可引发和加速高分子的键反应,但在聚合反应中本身也被消耗,并最终进入了聚合产物的组成中。
⏹阻聚剂,而不适于叫负催化剂。
⏹水和其他溶剂,溶剂效应——物理作用。
2、催化作用有哪些特征?催化剂只能加速热力学上可以进行的反应,而不能加速热力学上无法进行的反应。
⏹催化剂只能加速反应趋于平衡,不能改变平衡的位置(平衡常数)。
⏹化学平衡是由热力学决定的∆G0=—RT1nKP ,其中KP为反应的平衡常数,∆G0是产物与反应物的标准自由焓之差,是状态函数,只决定于过程的始终态,而与过程无关,催化剂的存在不影响∆G0值,它只能加速达到平衡所需的时间,而不能移动平衡点。
催化剂对反应具有选择性催化剂的寿命3、催化剂的组成及作用(1)主催化剂-活性组分是催化剂的主要成分--活性组分,这是起催化作用的根本性物质(2)助催化剂是加到催化剂中的少量物质(<5~10%) ,是催化剂的辅助成分,本身没有催化活性或活性很小。
可以改变催化剂的化学组成、结构、价态、酸碱性、分散度等具有提高主催化剂的活性、选择性、稳定性和寿命。
助催化剂的种类:结构性助催化剂、电子型助催化剂和晶格缺陷助催化剂(3)载体是催化剂活性组分的分散剂、支撑体,是负载活性组分的骨架。
将活性组分、助催化剂负载于载体上所制得的催化剂,称为负载型催化剂。
绪论催化作用:是利用催化剂来加速(或减慢)化学反应速度的一种化学作用。
催化剂:一种能够改变化学反应速度,而它本身又不形成最终产物的物质。
催化科学:研究催化剂与催化过程的科学,涉及到物理、化学、材料等多类学科,是一门综合科学。
1.催化科学的重要性催化作用是现代工业极其重要的过程,是现代世界最重要的技术之一,如果没有催化作用,现在的生活将与我们实际所看到的截然不同。
大约90%的化学品与材料是借助催化作用通过分步反应生产出来的。
1960年Sohio (the Standard Oil Company of Ohio 俄亥俄标准石油公司) 开发成功磷钼铋氧系催化剂,由丙烯氨氧化生产丙烯腈时,原有的三种丙烯腈生产方法(环氧乙烷法、乙醛法、乙炔法)都变得不再有生命力了,并且随着磷钼铋氧系丙烯氨氧化生产丙烯腈催化剂的不断改进及非磷系丙烯氨氧化生产丙烯腈催化剂的成功开发,使该法日益成熟。
丙烯腈是三大合成材料——合成纤维、合成橡胶、塑料的基本且重要的原料2. 能源化工和环境化工的兴起,为工业催化提出了新课题和新的研究领域。
能源化工:目前能转化成燃料的碳源有以下三类:原油及相关物质;煤炭;生物质。
它们的充分开发和利用有赖于催化剂。
催化燃烧是燃烧的最高境界。
与直接燃烧相比,催化燃烧温度较低,燃烧比较完全。
催化燃烧为无焰燃烧,因此适用于安全性要求高的场合,如以H2和O2为原料的燃料电池、用汽油或酒精为原料的怀炉(催化剂为浸Pt石棉)等环境保护:造成大气污染的三个主要领域,都可通过催化技术加以控制:(1)对于污染大气的可燃性气体,采用催化燃烧技术;(2)对于工业装置排放的NO X气体,可将其催化还原为氮气;(3)对于各种车辆用燃料排放气的控制。
3.新型能源光催化分解水制氢气4. 生物体内广泛存在的酶,是生物赖以生存的一切化学反应的催化剂。
酶的催化作用至今还难在生物体外实现:效率高,选择性好,反应条件温和。
今天对酶本身及对酶化学模拟的研究已成为催化研究中一个非常有吸引力的领域。
《工业催化》课程教学大纲工业催化第一章催化作用与催化剂基础第一节催化作用的定义与特征一、定义二、特征1、只能加速热力学上可行的反应2、只加速反应趋于平衡,而不改变平衡的位置3、通过改变反应历程改变反应速度4、降低反应活化能5、催化剂对反应具有选择性6、催化剂的寿命三、其他基本概念第二节对工业催化剂的要求一、估量一个催化剂价值的四个重要因素二、催化剂的工业性能第三节催化剂的组成与功能一、催化剂成分(固体Cat)二、活性组分1、主剂成分2、按活性组分作用分类3、按导电性分三、载体1、定义2、分类3、载体催化剂命名4、催化剂载体功能四、助催化剂1、帮助载体2、帮助活性组分3、一些主要过程常用助Cat和其功能4、存在的最适宜含量第四节催化体系分类一、相的均一性分类二、作用机理分类三、按反应类别分类第二章催化剂中的吸附作用第一节多相催化的反应过程一、多相催化反应步骤二、外扩散与外扩散系数 DE1、外扩散2、外扩散速率影响因数三、内扩散与内扩散系数 DI1、内扩散2、内扩散的三种类型第二节固体表面结构一、几个概念二、晶体表面的晶面1、晶体2、金属晶体的三种典型结构3、晶格、晶面4、暴露晶面的影响因数三、晶体的不完整性1、固体中缺陷分类2、点缺陷3、线缺陷4、结晶剪切5、堆垛层错与颗粒边界四、晶体表面与体相比较1、合金表面组成2、晶体表面结构3、氧化物表面组成五、晶体表面能量的不均匀性1、原子水平的团体不均匀2、表面力的差别六、晶体的不完整性与催化作用1、不完整性关联到表面催化活性中心2、表面结构与所处气氛有关3、表面组成与反应混合物组成有关第三节分子在固体表面的吸附一、物理吸附与化学吸附1、定义2、物理吸附与化学吸附的区别3、化学吸附与催化二、吸附质的可动性1、吸附质点的两种平均寿命2、定位吸附与非定位吸附3、固体Xe上吸附惰性气体的表面势能三、吸附的位能曲线1、气体分子撞击晶面情况2、吸附位能曲线3、过渡态4、物理吸附价值5、双原子分子另一种吸附情况四、化学吸附的类型1、离解吸附和不离解化学吸附2、均裂离解吸附和非均裂离解吸附3、离解化学吸附的氧化与还原4、非离解化学吸附下氧化与还原5、三种化学吸附键第四节晶体的电子结构一、分子轨道理论和固体能带模型1、原子轨道近似,相对能量和形状2、分子轨道理论3、能带的形成(固体)4、能带结构5、能级的密度6、能带结构理论说明7、物质按能带结构分类8、固体按导电性分类二、配位场模型1、配位场效应2、 d 轨道取向性3、3、实例三、价键理论—金属键的d%1、电子配对理论2、金属价键理论3、d 特性%第三章各类催化剂及催化作用第一节金属催化剂及催化作用一、金属催化剂1、种类2、用途3、特征二、金属催化剂的化学吸附1、气体在不同金属上化学吸附热变化2、气体在金属上化学吸附强度顺序3、金属按其对气体分子化学吸附的能力分类三、金属催化剂化学吸附的状态1、金属催化剂的电子逸出功φ2、反应物粒子的电势 I3、吸附状态四、化学吸附中的几何因素1、几何因素对活性影响2、理论五、吸附与催化——火山型原理1、火山型原理2、火山曲线3、实例六、一些气体的化学吸附态1、氢的吸附2、氧的吸附态2、氮的吸附态3、CO的吸附态5、烃类的吸附态6、乙炔7、苯8、饱和烃第二节固体酸碱催化剂一、定义、分类1、定义Brφnsted 和Lewis 定义2、分类二、机理1、金属氧化物2、混合金属氧化物3、影响酸位和碱位的因数三、固体表面酸、碱性测定1、酸位的类型及鉴定2、固体酸强度和酸量3、固体碱强度与碱量4、酸—碱对协同位5、固体超强酸、超强碱四、固体酸、碱催化作用1、酸位的性质与催化作用关系2、酸强度与催化活性和选择性关系3、酸量与催化剂活性关系4、正碳离子的形成及反应规律5、固体碱催化剂第三节分子筛催化剂一、概述1、沸石:2、沸石特点:3、沸石存在形式4、分类5、分子筛二、发展史1、五十年代——沸石2、六十年代——人工合成工业催化剂3、七十年代——工艺路线、产品质量改进4、八十年代——AlPO4磷酸铝分子筛5、九十年代以来三、分子筛沸石的结构特点1、基本结构单元2、环结构3、笼结构4、分子筛结构四、沸石分子筛的酸、碱催化性能及其调变1、酸中心的形成与本征催化性能2、沸石分子筛酸性调变五、分子筛择型催化性质1、反应物择型催化2、产物择型催化3、过渡状态限制择形催化剂4、分子交通控制的择型催化六、沸石分子筛催化剂碱催化和酸、碱协同催化作用七、新型磷酸铝分子筛 AlPO4第四章催化剂设计与制备第一节催化剂的分子设计基础一、催化剂分子设计的理论与实验1、理论2、实验二、催化剂分子设计的特点第二节催化剂分子设计方法一、催化剂设计方法分类1、传统经验法2、定性催化剂设计方法3、数学模型模拟辅助催化剂设计4、电子计算机辅助催化剂设计二、催化剂分子设计方法1.程序框图2.组分筛选3.热力学可行性分析4.催化剂原料的确定三、催化剂类别第三节工业催化剂的制备原理一、沉淀法1、沉淀过程和沉淀剂的选择2、影响沉淀的因素3、沉淀法类型4、典型沉淀法生产工艺二、浸渍法1、载体的选择和浸渍液的配制2、活性组分在载体上的分布与控制3、浸渍法分类4、工艺三、离子交换法1、无机离子交换剂制备(分子筛)2、有机离子交换剂制备(离子交换树脂)四、共混法五、固体催化剂的成型1、形状及使用性能六、干燥与焙烧1、干燥2、焙烧第三节常用催化剂的制备工艺一、活性氧化铝的制备(沉淀法)1、酸法沉淀工艺2、影响因素二、新型甲醇酮系催化剂制备(分步沉淀)1、目前使用工业催化剂(生产甲醇)2、新型合成甲醇铜素催化剂三、负载型镍催化剂的制备(浸渍沉淀法)1、浸渍沉淀的制备流程2、影响因素四、分子筛的合成(导晶沉淀法)1、高硅钠型分子筛原粉2、最佳原料配比第五节催化剂制备技术的新进展一、微乳化技术与催化剂二、稀土元素与催化剂三、纳米技术与催化剂四、超临界技术五、膜技术与催化剂六、绿色化学化工及环境友好催化剂。