机车制动技术课件——机车制动机对车辆制动的控制
- 格式:ppt
- 大小:2.03 MB
- 文档页数:18
和谐3型电力机车CCB-Ⅱ制动机概述第一节 CCB-Ⅱ制动机简介一、什么是CCBⅡ制动系统?该制动机的原创是德国产的KLR型制动机,后经美国加以改造,是目前世界上最先进的制动机,尤其适用于牵引重载列车的机车使用。
CCBⅡ制动系统是第二代微机控制制动系统,为在客运和货运机车上使用而设计。
该制动系统将26L型制动机和电子空气制动设备兼容。
CCBⅡ制动系统是基于微处理器的电空制动控制系统,除了紧急制动作用的开始,所有逻辑是微机控制的。
二、 CCB-Ⅱ型制动机系统(EPCU)由8个电脑模块组成,排列方式如下:BPCP ERCP DBTV 16CP20CP BCCP 13CP PSJBCCB-Ⅱ型制动机系统(EPCU)各电脑模块作用为:BPCP-列车管控制。
ERCP-均衡风缸模拟控制,无火回送塞门装在面部。
DBTV-备份。
电脑失效时,自动控制空气制动。
16CP-作用管控制。
20CP-平均管控制。
BCCP-制动缸管控制。
13CP-单独缓解控制。
PSJB-电源模块。
三、说明制动机系统各模块的名称及代号。
答:控制管路模块——U43弹簧停车模块——B40踏面清扫模块——B50撒砂模块——F41继电器接口模块RIM——B47处理器模块IPM——B46四、CCBⅡ制动系统的优点是什么?答:(1)组装部分①采用管路柜集成组装,将EPCU、IPM、IRM、停车制动、撒砂装置、踏面清扫、升弓控制等模块安装在制动柜中,方便操作和检修②管路采用走廊地板下集中布置,管路连接采用滚压式螺纹连接方式满足制动系统气密性要求(2)控制部分①CCBII采用微机(IPM)控制模式,EPCU上各部件为智能、可更换模块②司机室LCDM制动显示屏具有本务/补机,客/货,列车管补风/不补风,列车管投入/切除等转换功能,且有系统自检,故障记录,报警等功能,方便司机操作③采用MGS2型防滑器,使制动更加有效、安全。
五、、说明CCBⅡ型电空制动机主要部件的控制方式。
电力机车的制动方式及其原理1、制动技术概念列车制动就是人为地制止列车的运动,包括使它减速、不加速或停止运行。
对已制动的列车或机车解除或减弱其制动作用,则称为“缓解”。
为施行制动和缓解而安装在机车、车辆、列车上的一整套设备,总称为“制动装置”。
“制动”和“制动装置”俗称为“闸”。
施行制动常简称为“上闸”或“下闸”,施行缓解则简称为“松闸”。
“列车制动装置”包括机车制动装置和车辆制动装置。
不同的是,机车除了具有像车辆一样使它自己制动和缓解的设备外,还具有操纵全列车制动作用的设备。
2、机车制动方式1)闸瓦制动:铁路机车车辆采用的制动方式最普遍的是闸瓦制动。
用铸铁或其他材料制成的瓦状制动块,在制动时抱紧车轮踏面,通过摩擦使车轮停止转动。
在这一过程中,制动装置要将巨大的动能转变为热能消散于大气之中。
而这种制动效果的好坏,却主要取决于摩擦热能的消散能力。
使用这种制动方式时,闸瓦摩擦面积小,大部分热负荷由车轮来承担。
列车速度越高,制动时车轮的热负荷也越大。
如用铸铁闸瓦,温度可使闸瓦熔化;即使采用较先进的合成闸瓦,温度也会高达400~450℃。
当车轮踏面温度增高到一定程度时,就会使踏面磨耗、裂纹或剥离,既影响使用寿命也影响行车安全。
可见,传统的踏面闸瓦制动适应不了高速列车的需要,需要一种新型的制动装置以满足要求。
2)盘形制动:它是在车轴上或在车轮辐板侧面安装制动盘,用制动夹钳使以合成材料或者粉末冶金制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,使列车停止前进。
由于作用力不在车轮踏面上,盘形制动可以大大减轻车轮踏面的热负荷和机械磨耗。
另外制动平稳,噪声小。
盘形制动的摩擦面积大,而且可以根据需要安装若干套,制动效果明显高于踏面制动,尤其适用于时速120公里以上的列车,这正是各国普遍采用盘形制动的原因所在。
但不足的是车轮踏面没有闸瓦的磨刮,将使轮轨粘着恶化;制动盘使簧下重量及冲击振动增大,运行中消耗牵引功率。
踏面制动和盘形制动都要通过轮轨之间的粘着来实现,因此都属于粘着制动。
机车制动原理
机车制动是通过运用摩擦力来减慢或停止机车运动的一种装置。
它的工作原理通常有以下几种:
1. 制动片制动原理:机车制动片通常安装在车轮上,制动片上面有摩擦材料,如制动鞋面片。
当机车运动时,制动片与车轮接触,摩擦产生阻力,从而减缓车轮转动,实现制动效果。
2. 压力制动原理:机车制动系统还包括压力制动原理。
在这种机制中,制动装置通过增加管道内的压力来传递力量,将力传送到制动器,使制动器施加在车轮上的压力增加,从而实现制动效果。
3. 制动力的调节:为了确保制动效果的稳定性和安全性,机车制动系统通常还配备了调节装置。
该装置能够根据需要调整制动力大小,以适应不同的行驶条件和速度要求。
4. 制动系统操作:机车制动系统一般由司机通过操纵手柄或踏板来操作。
当司机施加制动力时,制动装置中的摩擦材料与车轮接触,制动效果就会产生。
机车制动的原理主要是通过摩擦力来实现的。
通过调整制动力大小和操作制动装置,司机可以实现机车的减速或停止。
这种系统能够确保机车在行驶过程中的安全性和稳定性。
机车制动原理
机车制动原理是指通过一系列机械和液压传动装置来使机车减速或停车的过程。
机车制动系统主要包括手动制动和自动制动两种方式。
手动制动通过人工操作制动杆或踏板,使得机车制动器(如空气制动器或电阻制动器)起作用,从而产生制动力。
制动器通常由摩擦力产生制动力,将机车减速或停车。
自动制动则是通过机车上的自动控制装置来实现制动。
当列车运行过程中出现紧急情况或需要减速时,自动控制装置会通过下达指令,使制动器起作用。
同时,制动器起作用后产生的制动力会通过传动装置传递给车轮,使机车减速或停车。
机车制动原理关键在于制动器的工作原理。
以空气制动器为例,当机车司机操作制动杆时,空气制动器进气阀开启,系统内的气压通过管道传递到制动器。
制动器内的气压作用在制动盘或制动鼓上,产生摩擦力,使得车轮减速或停止转动。
当司机释放制动杆时,进气阀关闭,制动器内的气压释放,制动力消失,车轮恢复正常运行。
液压制动器的工作原理类似,使用液体代替气体传递制动力。
当司机操作制动杆时,液压制动器通过液压油的作用产生制动力,使机车减速或停车。
释放制动杆后,液压油流回系统,制动力消失,车轮恢复正常运行。
总之,机车制动原理基于制动器的工作原理,通过人工或自动
控制装置使制动器起作用,产生制动力,从而使机车减速或停车。