线性代数(课堂PPT)
- 格式:ppt
- 大小:6.03 MB
- 文档页数:460
DOI:10.3969/j.issn.1671-489X.2024.07.061线性代数课程中思政元素的发掘与实践詹亮 裴峥西华大学理学院 成都 610097作者简介:詹亮,讲师;裴峥,通信作者,西华大学理学院党委书记,教授,博士。
摘 要 为了更好地在线性代数课程中积极地、有效能地开展思想教育工作,以西华大学线性代数课程为例,分析线性代数的学科和学情特点。
围绕政治认同、国家意识、文化自信和公民人格四大核心要点,从可视化的教学内容、体系化的教学方法和教学全过程展现课程思政元素和实践课程思政,列举大量的思政元素案例,为线性代数课程思政教育提供一定的参考。
关键词 线性代数;课程思政;思政元素中图分类号:G641 文献标识码:B 文章编号:1671-489X(2024)07-0061-04教育部印发的《高等学校课程思政建设指导纲要》指出,全面推进高校课程思政建设,将课程思政教育贯穿课程教学过程中,融价值塑造、知识传授和能力培养为一体,积极发挥课堂的主导作用,推进“三全育人”“立德树人”的教育目标[1]。
课理想信念层的精神指导。
党的十八大以来,西华大学线性代数教学团队全面贯彻和学习习近平总书记重要讲话精神,全面推进课程思政建设,落实立德树人根本任务,按照大思政育人思路,促进课程教学内容与思政育人同向而行。
传统的线代课程主要是讲授课本上的知识点,学生以掌握课本知识为主要的教学目标。
学生对课程的理解深度不够,认为线代运算量大,章节交叉混乱,学习主动性和积极性低,缺乏主动学习和深度学习的能力,提出“我为什么要学?”“学了有什么用?”“我要怎么学”等问题。
为了贯彻落实新时代教育方针,需要做好守正创新。
在坚持原有教学理论体系、理论框架下做出更多的教育教学模式方法的创新。
西华大学线性代数教学团队从教学目标和教学内容出发,研究分析线性代数课程的思政元素,打造优秀的教师团队,培养教师精炼思政元素,创新性、有趣性进行思政教学的能力,在整个教学流程中研究并实践在最佳时间和教学环境中把思政元素融入课前预习、课前测试、课中讨论、课中质疑、课后任务、学生相关竞赛等各个环节。
线性代数教学教案第3章 向量与向量空间授课序号01 教 学 基 本 指 标教学课题 第3章 第1节 维向量及其线性运算课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学教学手段 黑板多媒体结合 教学重点 维向量的概念、向量的线性运算的性质教学难点 向量的线性运算的性质 参考教材 同济版《线性代数》作业布置 课后习题大纲要求 理解维向量的概念 教 学 基 本 内 容一. 维向量的概念1.维向量:由个数组成的有序数组称为维向量.2.称为维行向量,称为维列向量. 二.维向量的线性运算1.定义:(1)分量全为0的向量称为零向量;(2)对于,称为的负向量; (3)对于,,当且仅当时,称与相等;(4)对于,,称为与的和;(5)对于,,称为与的差; (6)对于,为实数,称为的数乘,记为.2.向量的线性运算的性质:对任意的维向量和数,有:n n n n n n n a a a ,,,21 n ),,,(21n a a a n 12⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n a a a n n ()12T n αa ,a ,,a = ()12---Tn a ,a ,,a αT n a a a ),,,(21 =αT n b b b ),,,(21 =β),,2,1(n i b a i i ==αβT n a a a ),,,(21 =αT n b b b ),,,(21 =βT n n b a b a b a ),,,(2211+++ αβT n a a a ),,,(21 =αT n b b b ),,,(21 =β()1122---Tn n a b ,a b ,,a b αβT n a a a ),,,(21 =αk T n ka ka ka ),,,(21 ααk n γβα,,l k ,(1);(2);(3);(4);(5);(6);(7);(8).三.例题讲解例1. 某工厂两天的产量(单位:吨)按照产品顺序用向量表示,第一天为第二天为求两天各产品的产量和.αββα+=+)()(γβαγβα++=++αα=+00-αα=αα=⋅1αα)()(kl l k =βαβαk k k +=+)((k l )αk αl α+=+1(15,20,17,8),=T α2(16,22,18,9),=T α授课序号02 教 学 基 本 指 标教学课题 第3章 第2节 向量组的线性关系 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合教学重点 线性组合与线性表示、向量组线性相关、线性无关的定义,向量组线性相关、线性无关的有关性质及判别法教学难点 有关线性相关、线性无关的证明 参考教材 同济版《线性代数》作业布置 课后习题大纲要求 1.理解向量的线性组合与线性表示。
《线性代数》课程思政教学设计的两个案例目录•课程思政教学背景与意义•案例一:结合历史人物故事进行思政教育•案例二:利用实际问题探讨社会责任意识培养•教学方法与手段创新•考核方式改革及评价标准制定•总结与展望01课程思政教学背景与意义线性代数涉及大量抽象概念,如向量空间、线性变换等,需要学生具备较强的抽象思维能力。
高度抽象性广泛应用性严密逻辑性线性代数作为数学的一个重要分支,在自然科学、社会科学、工程技术等领域都有广泛应用。
线性代数课程强调逻辑推理和证明,有助于培养学生的逻辑思维能力和数学素养。
030201线性代数课程特点思政教育融入线性代数课程必要性落实立德树人根本任务将思政教育融入线性代数课程,有助于实现全员全程全方位育人,落实立德树人根本任务。
培养学生正确价值观通过在线性代数课程中融入思政教育元素,可以引导学生树立正确的价值观、世界观和人生观。
提高学生综合素质思政教育不仅关注学生的知识传授,还注重学生的能力培养和素质提升,有助于提高学生的综合素质。
通过线性代数课程的学习,培养学生追求真理、尊重科学、勇于创新的价值观念。
价值观引导学生认识数学与自然界的内在联系,理解数学在认识世界和改造世界中的重要作用,树立正确的世界观。
世界观鼓励学生将所学的线性代数知识和方法应用于实际问题的解决中,培养学生积极向上、勇于探索的人生态度。
人生观培养学生正确价值观、世界观和人生观02案例一:结合历史人物故事进行思政教育选取具有代表性历史人物故事01选择在数学或科学领域有杰出贡献的历史人物,如华罗庚、陈景润等。
02讲述他们为数学或科学事业奋斗的故事,包括他们的成长经历、学术成就以及为国家和社会做出的贡献。
挖掘故事背后所蕴含思政元素强调历史人物的爱国情怀和民族精神,如华罗庚在困难时期坚持数学研究,为国家的科学事业做出贡献。
突出历史人物的科学精神和创新精神,如陈景润在数论领域的突破性研究,展现了他对数学科学的追求和勇于创新的精神。
《线性代数》课程教学大纲Linear Algebra—、课程基本信息二、教学目标本课程以应用型人才的培养计划为LI标,以提高学生的数学素质、掌握线性代数的基本思想方法、基本讣算方法与培养学生的数学应用创新能力为教学LI标。
同时为学习后继课程和自我更新奠定必要的数学基础。
(一)知识LI标线性代数将使学生获得行列式、n维向量、矩阵、线性方程组、特征值和特征向量、二次型等相关的基本知识,同时接受基本运算技能的训练,为今后学习各类后继课程和进一步扩大数学知识面奠定必要的数学基础。
(二)能力LI标线性代数培养学生抽象思维能力和逻辑推理的理性思维能力,综合运用所学知识分析问题和解决问题的能力以及较强的自主学习能力,进而培养学生的创新意识和能力。
(三)素质□标随着社会的发展,线性代数的内容更为丰富、方法更为综合、应用更为广泛。
线性代数不仅是一种工具,而且是一种思维模式;它不仅是一种知识, 而且是一种素养;它不仅是一种科学,而且是一种文化。
本课程将培养学生的思维能力、数学素养及数学文化,在应用型高素质人才培养中起到不可替代的作用。
培养学生科学思维的能力。
为今后学习各类后继课程和进一步扩大数学知识面奠定必要的数学基础。
三、基本要求本课程是理工等学科各专业的一门重要基础理论课程。
要求学生掌握行列式、n 维向量、矩阵、线性方程组、特征值和特征向量、二次型等基本知识和基本计算方法, 并能利用所学知识解决一些实际问题。
(-)了解克莱姆法则及应用;向量组线性相关、线性无关的有关性质及判别法; 初等矩阵的性质和矩阵等价的概念;线性方程组的基本概念;二次型秩的概念、二次型的标准型的概念及惯性定理。
(二)理解矩阵的等价、相似与合同,矩阵的初等变换和秩;向量的线性相关性, 极大无关组与向量组的秩;齐次线性方程组的基础解系,线性方程组的通解:矩阵的特征值与特征向量,矩阵的相似对角化;二次型与标准形。
(三)掌握矩阵与行列式的运算;向量组线性相关性的判定,向量组的极大无关组和秩的计算;线性方程组的解法;矩阵的特征值与特征向量的计算,矩阵的相似对角化的判定;化二次型为标准形的方法。
《线性代数》课程思政教学设计案例目录•课程思政背景与目标•课程内容与思政元素融合•教学方法与手段创新•教学过程设计与实施•教学效果评估与反思•课程思政建设展望与挑战课程思政背景与目标线性代数课程注重培养学生的逻辑思维能力、抽象思维能力和空间想象能力,是理工科学生必修的数学基础课程之一。
线性代数课程的知识点相互关联,层层递进,需要学生具备扎实的数学基础和较强的思维能力。
线性代数是数学的一个重要分支,主要研究线性方程组、矩阵、线性空间等内容,具有高度的抽象性和广泛的应用性。
线性代数课程特点思政教育与线性代数课程的融合,有助于培养学生的综合素质和创新能力,促进学生的全面发展。
线性代数课程中蕴含着丰富的思政教育资源,如爱国主义情怀、职业道德、人文素养等,通过挖掘这些资源,可以引导学生树立正确的世界观、人生观和价值观。
将思政教育融入线性代数课程,可以帮助学生更好地理解数学知识的本质和意义,激发学生的学习兴趣和动力,提高学生的学习效果。
思政教育融入意义教学目标与要求知识与技能目标掌握线性代数的基本概念、基本理论和基本方法,能够运用所学知识解决实际问题。
过程与方法目标通过线性代数课程的学习,培养学生的逻辑思维能力、抽象思维能力和空间想象能力,提高学生的自主学习能力和创新能力。
情感态度与价值观目标引导学生树立爱国主义情怀,增强民族自豪感和自信心;培养学生的职业道德和人文素养,提高学生的综合素质和社会责任感。
同时,要求学生具备严谨、求实的科学态度,追求真理、勇于创新的科学精神。
课程内容与思政元素融合强调矩阵理论的严谨性和逻辑性,培养学生追求真理、勇于探索的精神。
通过矩阵的运算性质,引导学生理解团队合作、协同发展的重要性。
结合矩阵在实际问题中的应用,如图像处理、数据分析等,激发学生关注国家科技发展和社会进步的热情。
矩阵理论中的思政元素线性方程组求解中的思政元素通过线性方程组的求解过程,培养学生解决问题的能力和毅力。
线性代数教学教案行列式21⋅.如果一对数的排列顺序与自然顺序相反,即排在左边的数比排在它右边的数大,i的逆序数记为那么它们就称为一个逆序,一个排列中逆序的总数就称为这个排列的逆序数,排列n )i.n3.定义:逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列二.二阶、三阶行列式1.引例:解方程组1,2,3,n )排成123132333123nnn n n n nn a a a a a a a 2323331123(1)n n n n nna a a a a a =-+21222,12123231323,13133312112,1131)+(1)n n n n nn n n n n n n nna a a a a a a a a a a a a a a a a a a --++-+-阶行列式(递归定义).余子式与代数余子式:由行列式D 中划去ij a 所在的第i 行和第j 列后,余下的元素按照原来的顺序构ij M ,称为元素ij a 的余子式,(1)i j ij A M +-称为元素ij a 的代数余子式D 11=n n a A a A =na ∑1,2,3,n )组成的阶行列式定义为 123132333123n nn n n n nna a a a a a a 1212)12=n n nj j j j nj j j j a a a ∑nj ∑表示对所有的列标排列12n j j j 求和.四.例题讲解1.求解二元线性方程组122321221x x x x -=⎧⎨+=.1233300n nn nn a a a a . 11121,121222,111,11,210000n n n n n a a a a a a D a a ----=,112122313233123000000n n n nn a a a a a a a a a a , 1122330000000000nna a a a .授课序号02in jn a A =,n ,i ≠0ni nj a A =,n ,i ≠综合上一节和该推论,对于行列式和代数余子式的关系有如下重要结论:, ,0, .i j i j =≠ , =0, kj D i A ⎧⎨⎩授课序号030000000000x y yx.(Vandermonde)行列式1221231111112311n n n i j nn n n n nx x D x x x x x ≤<≤----==∏31111111n a +12(0)n a a a ≠.3434340a a x x a a a a a ++=的根.0000000003200013.12211000100000001nn n x x x a a a a x a -----+.00000000000000000000000a b a b a b c d c dc d.22231112342344,证明:()0f x '=有且仅有两个实根授课序号041222222n n n n nn n a x a x x a x +=+++=1112121222120n n n n nna a a a a a a a a ≠,122n n D D Dx x D D D==,,,, 列换成常数项所得的n 阶行列式1,111,11212,122,121,1,1j j n j j n n n j nn j nna b a a a b a a a a b a a -+-+-+112222222n n n n nn n na xb a x b x a x b +=+=++=当12,,,n b b b 全为0时,得到11112121122221122n n n n n n nn n a x a a x a x a a x a x a x a x ++⎧⎪++⎪⎨⎪⎪+++⎩335111x x =-=-=211311213313n n n n n n n n n a x a x a x a x x a x ----+=+==+=,n ).互相关联,X 公司持有股份,持有Z 股份,持有Z 公司20%持有Y 公司20%,Z 公司各自的净收入分别为万元,每家公司的联合收入是净收入加上其他公司的股份按比例的提成收入,试求各公司的联合收入及实际收入《市场营销》是商业和经贸专业学生的一门核心课程,商经类学校的所有专业都开设本课程,是一门公共基础课。
第二节 行列式的性质与计算教学目标:⑴使学生掌握行列式的性质;⑵使学生熟练掌握行列式的计算.教学重点:行列式的性质、行列式的展开. 教学难点:行列式的展开;n 阶行列式的计算.教学关键:使学生明确行列式的计算方法:一个是利用性质来把行列式化简为上三角行列式;一个是按行按列展开为低阶的行列式来计算;但在实际计算过程中,往往结合起来使用.教学方法:启发式教学法 教学时数:2课时 教学过程: 第一环节:新课引入第二节 行列式的性质与计算第二环节:讲授新课§2.1 行列式的性质考虑111212122212nn n n nna a a a a a D a a a = 将它的行依次变为相应的列,得112111222212n n Tnn nna a a a a a D a a a =称T D 为D 的转置行列式 .性质1 行列式与它的转置行列式相等.(T D D =)事实上,若记111212122212nn Tn n nnb b b b b b D b b b =则(,1,2,,)ij ji b a i j n ==1212()12(1)n n p p p T p p np D b b b τ∴=-∑ 1212()12(1).n n p p p p p p n a a a D τ=-=∑说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立.性质2 互换行列式的两行(i j r r ↔)或两列(i j c c ↔),行列式变号.例如123123086351.351086=- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =.性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即111211112112121212n n i i in i i in n n nnn n nna a a a a a ka ka ka k a a a a a a a a a =推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) D 中某一行(列)所有元素为零,则0D =;性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零.性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即11121112212n i i i i in in n n nna a a ab a b a b a a a +++=111211212ni i in n n nna a a a a a a a a + 111211212ni i in n n nna a ab b b a a a. 证: 由行列式定义1212()12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑12121212()()1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i jr kr D D +=,即111211212i jnr kr i i in n n nna a a a a a a a a += 11121112212n i j i j in jn n n nna a a a ka a ka a ka a a a +++计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 例1: 计算行列式2324311112321311(1)(2)3234113104251113D --=- 解: 211231231232123223240188(1)3234086204250425r r r r r r D +↔-----=------=43324130858412321232018801880058620058621430303729r r r r r r -++------==143[1(1)58]28629=-⨯-⨯⨯=. 41212,3,4666611111111131113110200(2)66113111310020111311130002i i i r r r r i D =+-=∑===6(1222)48=⨯⨯⨯⨯=. 此方法称为归边法. 例2: 计算n 阶行列式12111111(1)(2)111(0,1,2,,)n n ni a xa a a a x a D D a aaxa i n ++==+≠=解: (1)1112132,3,1111100000i r r ni nna a a D a a a a -=+---=22111111100101nna a a a a -=+-(箭形行列式)11223122,3,,1111000iinc c i ia n i nna a a a a a a +==++∑=2312122111(1)(1)nnn n n i i i ia a a a a a a a a a a ===++=+∑∑(2) 注意到行列式各行元素之和等于(1)x n a +-,有12,3,,(1)(1)(1)i c c ni nx n aa a x n a x a D x n aa x +=+-+-+-=11[(1)]1a ax ax n a ax=+-12,3,,100[(1)]00i r r i naa x a x n a x a-=-+--=1[(1)]()n x n a x a -=+--.例3: 设1111111111110,k k kk k n n nkn nna a a a D c cb bc c b b =11111,k k kk a a D a a =11121,nn nnb b D b b =证明:12.D D D =证: 对1D 作行运算i j r kr +, 把1D 化为下三角形行列式:1111110;kk k kkp D p p p p ==对2D 作列运算i j c kc +, 把2D 化为下三角形行列式:1121110.nn n nkq D q q q p ==先对D 的前k k 行作行运算i j r kr +, 然后对D 的后n 列作列运算i j c kc +, 把D 化为下三角形行列式:11111111110,k kkk n nkn nnp p p D c c q c c q q =故, 111112.kk nn D p p q q D D =⋅= . 思考练习 1.计算行列式111222122512123714(1)(2)(2)5927124612n n n n a a a n a a a n D D n a a a n+++-+++--==≥-+++-2.证明1111111112222222222a bb c c aab c a b b c c a a b c a b b c c a a b c ++++++=+++ 3. 证明2222222222222222(1)(2)(3)(1)(2)(3)(1)4(2)0(1)(2)(3)(1)(2)(3)a a a a ab ac aeb b b b bdcd de abcdef cc c c bfcfefd d d d +++-+++-==+++-+++4.计算行列式2324323631063a b c d a a b a b c a b c dD a a b a b c a b c d a a b a b c a b c d ++++++=++++++++++++答案134152217341.(1)29571642c c D ↔------= 3243422152215220113011311(3)390030003000330003r r r r r r -++--⨯⨯-⨯---==== 112122,3,,111111,2(2)0,2111i c c ni nn a n a n a a n D n a n -=+-+--=⎧==⎨>⎩+-2.左边=21111111111111222222222222c c a b b c c aa bc a c a a b b c c a a b c a c a a b b c c a a b c a c a -++++-++++=+-+++++-+ 32111111111122222222222222c c a b c a ca bc a c a b c a c a b c a c a b c a c a b c a c ++-+-=+-=+-+-+- 2312121111111222222222c c c c c c a ba cb a ca b a c b a c a b a c b a c -+↔+--=+-=-=+--1112222ab c a b c a b c . 3. 证(1)左边111111111abcdef -=--213111102020r r r r abcdef ++-=2311120002r r abcdef ↔-=-4.abcdef = 21312341,215221522021601130113021601200120r r r r r r r r +----------==(2)左边12222,3,42214469214469214469214469i c c i a a a a b b b b cc c cd d d d -=++++++=++++++324222223221262126021262126c c c c a a b b cc d d --++==++=右边4. 解: 从第4行开始,后行减前行得,002320363a b c d a a b a b c D a a b a b c a a b a b c +++=++++++4332r r r r -=-002003ab c da ab a bc a a b a a b +++++43r r -=0002000ab c d a a b a b ca ab a++++4a =§2.2 行列式按行(列)展开对于三阶行列式,容易验证:111213212223313233a a a a a a a a a 222321232123111213323331333133aa a a a a a a a a a a a a a =-+可见一个三阶行列式可以转化成三个二阶行列式的计算.问题:一个n 阶行列式是否可以转化为若干个n -1阶行列式来计算?一、余子式与代数余子式定义:在n 阶行列式111212122212nn n n nna a a a a a D a a a =中,划去元素ij a 所在的第i 行和第j 列,余下的元素按原来的顺序构成的1n -阶行列式,称为元素ij a 的余子式,记作ij M ;而(1)i j ij ij A M +=-称为元素ij a 的代数余子式.例如 三阶行列式 111213212223313232a a a a a a a a a 中元素ij a 的余子式为1112233132aa M a a =元素23a 的代数余子式为23232323(1)A M M +=-=-四阶行列式101102511230301x ---中元素x 的代数余子式为3232111(1)0515001A +-=--=二、行列式按行(列)展开定理 n 阶行列式111212122212n n n n nna a a a a a D a a a = 等于它的任意一行(列)的各元素与其对应的代数余子式的乘积之和,即11221122(1,2,,)(1,2,,)i i i i in inj j j j nj nj D a A a A a A i n D a A a A a A j n =++==++= 或证 (1)元素11a 位于第一行、第一列,而该行其余元素均为零;此时 1121222120n n n nna a a a D a a a =1212121211()()121211(1)(1)n n n n j j j j j j j j nj j j nj j j a a a a a a ττ=≠=-+-∑∑2223()112()(1)n n n j j j nj j j j a a a τ=-∑ 1111a M =而11111111(1)A M M +=-=,故1111D a A =;(2)1111100j n ij n nj nna a a a D a a a =将D 中第i 行依次与前1i -行对调,调换1i -次后位于第一行; 将D 中第j 列依次与前1j -列对调,调换1j -次后位于第一列; 经(1)(1)2i j i j -+-=+-次对调后,ij a 就位于第一行、第一列,即2(1)(1)i j i j ij ij ij ij ij ij D a M a M a A +-+=-=-=.(3) 一般地111211212000000n i i in n n nna a a D a a a a a a =+++++++++1112111121111211212121200000n n ni i in n n nnn n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++1122i i i i in in a A a A a A =++1122j j j j nj nj D a A a A a A =++ 同理有.推论 n 阶行列式111212122212nn n n nna a a a a a D a a a =的任意一行(列)的各元素与另一行(列)对应的代数余子式的乘积之和为零,即112211220()0()i s i s in sn j t j t nj nt a A a A a A i s a A a A a A j t ++=≠++=≠ 或证 考虑辅助行列式1111121222112jj n j j n n njnjn a a a a a a a a D a a a a i j =列列 1122).t j t j t nj nt a A a A a A j t =++≠ 按第列展(该行列式中有两列对应元素相等.而10D =,所以1122)0j t j t nj nt a A a A a A j t ++≠= (. 关于代数余子式的重要性质1,,0,;n ki kj ijk D i j a A D i j δ==⎧==⎨≠⎩∑ 1,,0,;nik jk ij k D i j a A D i j δ==⎧==⎨≠⎩∑1,0,.iji j i j δ=⎧=⎨≠⎩,其中 在计算数字行列式时,直接应用行列式展开公式并不一定简化计算,因为把一个n阶行列式换成n 个(n -1)阶行列式的计算并不减少计算量,只是在行列式中某一行或某一列含有较多的零时,应用展开定理才有意义.但展开定理在理论上是重要的.三、行列式的计算利用行列式按行按列展开定理,并结合行列式性质,可简化行列式计算:计算行列式时,可先用行列式的性质将某一行(列)化为仅含1个非零元素,再按此行(列)展开,变为低一阶的行列式,如此继续下去,直到化为三阶或二阶行列式.计算行列式常用方法:化零,展开.例4: 计算四阶行列式1234101231101205D =---.解: 314121222100031461217c c c c D -------=()22122211146217+=⨯------按第行展()()122(1)111121146217r r ÷÷--⨯⨯---= 1112146217=--21311002135239c c c c ----=()113521139+=⨯⨯---按第1行展3522439==---.例5 已知4阶行列式4142434430402222,..07005322ij ij D M M M M M a =+++--求的值其中为的余子式 解: (方法1) 直接计算4(1,2,3,4),.i A i =的值然后相加(略) (方法2)利用行列式的按列展开定理,简化计算.414243441424344441424344111(1)1M M M M A A A A A A A A +++=-+++=-⋅+⋅+-⋅+⋅3040222207001111=---3407222111=--34014111002=342811=28=-.例6: 计算n 阶行列式00001000000020(1)(2)0000001000000n n x y x y D D x y n y x n ==-解:11111212111(1)n n n D a A a A a A =++ 按第列展1110000000000000(1)(1)00000000000000n x y y x y x y x y x y y x x y ++=-+-1(1)n n n x y +=+-.11111212111(2)n n n D a A a A a A =++ 按第列展1110000200(1)(1)!00200001n n n n n n ++=-=--- .例7: 计算四阶行列式400000000a b a ba b a b D a b a b a b a b+-+-=-+-+.解: 按第1行展开,有1114400()(1)0()(1)00000a b a b a b a bD a b a b a b a b a b a b a b a b +++-+-=+--++---++-,对等式右端的两个3阶行列式都按第3行展开,得 22[()()]a b a bD a b a b a b a b +-=+---+4222a b =.例8: 证明范得蒙行列式(Vandermonde )12111112111()(2)nn i j j i nn n n nx x x D x x n x x x ≤<≤---==-≥∏ ,其中1()i j j i nx x ≤<≤-∏表示所有可能的())i j x x j i -<(的乘积.证: (用数学归纳法)2n =时,2211211,D x x x x ==-结论正确;假设对n -11n -范得蒙行列式结论成立,以下考虑n 阶情形.21311222221331111121222133111111000n n n n n n n n n n n n x x x x x x D x x x x x x x x x x x x x x x x x x ---------=------2131122133112222213311111100()()()0()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------=------112()n i i x x ==-∏按第列展提取公因子2322223111nn n n nx x x x x x --- 1()i j j i nx x ≤<≤=-∏.例9 用范德蒙行列式计算4阶行列式1111437516949256427343125D -=-解 :对照范德蒙行列式,此处12344,3,7,5x x x x ====- 所以有14()i j j i D x x ≤<≤=-∏213141324243()()()()()()x x x x x x x x x x x x =---⋅--⋅-(34)(74)(54)(73)(53)(57)10368=----⋅---⋅--=.第三环节:课堂练习练习:已知4阶行列式1424344411713180,..21435125ij ij D A A A A A a -=+++-求的值其中为的代数余子式 解: (方法1) 直接计算4(1,2,3,4),.i A i =的值然后相加(略) (方法2)利用行列式的按列展开定理,简化计算. 14243444142434441111A A A A A A A A +++=⋅+⋅+⋅+⋅ 它是D 中第2列元素与第4列元素的代数余子式的乘积之和,故有 142434440.A A A A +++=。
《线性代数》课程思政典型教学案例(一)1. 案例名称“Matlab 被禁”事件的启示2. 结合知识点矩阵乘法3. 案例意义以2020年“Matlab 被禁”事件给我们中国社会大众敲响警钟——中国科技的发展更需要依赖于自身实力,未来国产替代进口刻不容缓。
此次事件让我们认识到我们不能将国家和企业的信息安全完全寄托于外国软件的商业道德与自律,加快研发自主可控软件是保证中国信息安全的重要手段。
使学生认识有关线性代数应用的科技发展现况与趋势,培养持续学习的习惯和勇于探索的创新精神,培育学生精益求精的大国工匠精神,激发学生科技报国的使命担当。
4.案例设计与实施(1)教学设计(1.1)总体思路课前要求学生观看教师在泛雅平台开设的湖南省一流本科建设课程《线性代数》在线开放课程视频,并且回答矩阵的乘法与数的乘法有何不同?是否满足交换律?可交换的条件是什么?这一系列问题环环相扣,层层递进,引导学生在回答问题链的过程中还原科学探索路径,并归纳提取抽象的定义和一些重要的结论。
课中内容导入:由国产片《哪吒之魔童降世》导入本章主题,对比国内外动画电影技术,简单概括矩阵相关理论在其中的应用,点出中国技术的快速发展,增强民族自豪感、激发奋斗激情。
同时,简单介绍5G 网络技术.5G 网络技术即第五代移动通信网络技术,其技术基础是极化码。
极化码看起来很复杂,但本质上还是一些矩阵的乘法,教师还可简要介绍人工智能技术以及民营企业之星“华为”的故事。
内容讲解:抓住“矩阵”这一根主线进行教学,从实际问题出发探索矩阵概念的形成、矩阵运算的定义,完成由具体问题到抽象数学符号语言的转化, 从中归纳处相应的数学本质。
在讲解矩阵乘法时介绍案例“Matlab 被禁”事件,强调科技报国和工匠精神。
课堂测验:采用学习通在线测试,检验学生课堂学习效果。
通过课后作业和思考题的形式复习巩固课堂所学知识点;设置在线问卷,了解学情。
(1.2)思政设计知识点精讲:矩阵的乘积:设()ij m s A a ⨯=矩阵,()ij s n B a ⨯=矩阵,即:课后111221222112s m m ms s a a a A a a a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 121222122111n n s s sn b b b b B b b b b b ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 则定义A 与B 的乘积是一个m n ⨯的矩阵()ij m n C c ⨯=,记作: ()ij m n AB C c ⨯==其中,1122ij i j i j is sj c a b a b a b =+++1(1,2,,;1,2,,).sik kj k a b i m j n ====∑ (ij c 等于A 第i 行的所有元素与B 的第j 列的对应元素乘积的和) 几点说明① 相乘条件: 左矩阵A 的列数等于右矩阵B 的行数;② 相乘方法:——乘积C 矩阵的元素ij c 等于左A 的第i 行与右B 的第j 列的对应元素乘积的和);③ 相乘结果:——乘积C 矩阵的行列数,分别取自左A 的行数,右B 的列数。