高速变频电机测试解决方案
- 格式:pdf
- 大小:357.29 KB
- 文档页数:2
最大频率运行发热盲点——测试电压不固定,测试多台样机过程中是按最高不出现限频的低压运行,但对于很多样机实际用的电压通常偏高,测试的恶劣性就会比原来的低了技巧、注意事项——①热电偶包括:变频模块附近散热器表面、整流桥堆附近散热器表面、PFC模块附近散热器表面、其他功率器件附近散热器表面、电控盒腔体、滤波器表面、滤波电容表面、电抗器电容表面、室内变压器、PFC电感绕组表面、电抗器表面、室外电机外壳、外机开关电源芯片、外机三端稳压器芯片、开关电源变压器(后三个为新增加的)②热电偶很多接在元器件表面,要注意其是否带电,防止短路造成以外③确定测试电压时,要在工况稳定后再调节电压,测试电压为出现限频的最低电压+5V ④测试最大频率运行发热一般情况下要求测试高低压压力,在测试过程中特别注意压力表和连接处是否出现冷媒泄漏⑤测试过程中要监控压机运行频率⑥样机元器件有标有T值的要做好记录;常见问题——①压缩机过载保护器跳开②样机压机在关、开机操作时,由于电流冲击过大出现电流保护,且次数在2次以上③排气温度过高,大于125℃④室外风机出现过载导致系统压力过大保护⑤冷凝器高温保护停压机或长运后冷凝器脏导致系统压力过大保护⑥元器件温度超过温度极限值⑦当额定电压下如果仍不能达到最大频率,判不合格。
(如内销不能大于220V,出口额定电压在220V-240V,不能大于230V。
)最高室外环境温度运行发热试验测试要加发热板,其他大体与最大频率运行发热最大频率运行制热试验盲点——测试电压不固定,测试多台样机过程中是按最高不出现限频的低压运行,但对于很多样机实际用的电压通常偏高,测试的恶劣性就会比原来的低了技巧、注意事项——①外侧测试工况干球温度一般为2度,内销与出口的电压不同,测试过程中应注意②热电偶很多接在元器件表面,要注意其是否带电,防止短路造成以外③测试时要测试压机频率,监控其是否最大频率运行⑤测试若要求测试高低压压力时,在测试过程中特别注意压力表和连接处是否出现冷媒泄漏⑥热电耦线要贴好,用束紧带固定牢靠,热电耦感温处的铝箔纸只能贴一层,避免影响散热效果⑦箔纸必须粘贴到位,不允许有翘起,或搭在不同电位(弱电上也不允许,变频机模块上的散热器也属于带电部件)的现象;常见问题——①压缩机过载保护器跳开②样机压机在关、开机操作时,由于电流冲击过大出现电流保护,且次数在2次以上③排气温度过高,大于125℃④室外风机出现过载导致系统压力过大保护⑤冷凝器高温保护停压机或长运后冷凝器脏导致系统压力过大保护⑥元器件温度超过温度极限值⑦当额定电压下如果仍不能达到最大频率,判不合格。
变频调速电机轴电压和轴电流问题及解决措施2017年12月目录1变频调速电机轴电压和轴电流问题的种类和形成原因 (1)2低压大功率变频调速电机轴电压和轴电流问题的重要性 (2)3低压大功率变频调速电机轴电压和轴电流问题的难点 (3)4.一般变频调速电机轴电压和轴电流问题的解决方案 (4)5.低压大功率变频调速电机轴电压和轴电流问题的解决方案初探 (5)4变频调速电机轴电压和轴承电流试验测试 (11)1变频调速电机轴电压和轴电流问题的种类和形成原因电机运行时,轴承两端之间产生的电位差称之为“轴电压”,该电压加在由电机转轴、轴承、端盖、机座构成的回路中,从而引起了轴承电流(该电流也可能通过联轴器传递至传动机械,见图1)。
轴承电流一般存在3种不同的形式:环路电流、 dV/dt电流和EDM(electrical discharge machining)电流。
这3种不同的形式可以单独出现,也可以同时出现。
图1➢环路电流:正弦波驱动的电机系统中电机的结构上的不对称、气隙不均匀等)。
不对称的磁路会在磁轭产生环形交流磁通(环状磁通),从而产生交流感应电压。
当感应电压破坏轴承润滑剂的绝缘能力时,就会有电流流过此回路。
流经途径为导电的电机轴、机壳、轴承沟道、滚动体等。
图2为环路电流可能流经的各部分零部件所组成的通路。
图2➢dV/dt电流:PWM逆变器中,由于电路、元器件、连接和回路阻抗的不平衡,电源电压将不可避免的产生零点漂移,从而产生高频的共模电压。
由于寄生电容Cwr的存在,在电机轴上会形成轴电压Vshaft。
由于电机端输入的是PWM脉冲电压,这些脉冲序列电压耦合到电机轴上会得到交变轴电压,经过轴承电容流到大地,从而产生形成dV/dt轴承电流。
dV/dt电流一般只有0.1~0.15A,主要为高频分量,对轴承影响很小,主要是持续不断地腐蚀着轴承上的润滑剂,最后造成电介质击穿。
➢EDM电流:第3种形式的轴承电流是由内外圈的间隙(包括油膜)电容放电引起的轴承电流,又叫EDM电流。
变频器调试方案范文一、概述本方案旨在介绍变频器调试的具体步骤,包括变频器硬件连接、参数设置、主要功能调试、输出波形观测等内容,以确保变频器的正常运行。
二、变频器硬件连接1.检查变频器的输入和输出电源是否符合需求,确保输入和输出电压、频率和相数一致。
2.确保变频器的输入和输出电缆连接良好,接线端子连接牢固、插头没有松动。
3.检查变频器的离线电路和过电流保护电路,确保正常工作。
三、参数设置1.按照变频器的使用说明书,设置变频器的基本参数,包括电压、频率、过载保护等。
2.调整变频器的PID控制参数,使变频器在各种负载情况下的运行稳定。
3.检查变频器的运行模式,选择合适的模式,如V/F控制、闭环矢量控制等。
四、主要功能调试1.运行停止测试:通过控制台或外部开关,测试变频器的运行和停止功能是否正常。
2.转速调节测试:调整变频器的转速设置,观察变频器的输出电压和频率是否随之改变。
3.加/减速测试:通过连续调节变频器的输出频率,测试变频器的加速和减速功能是否正常。
4.紧急停止测试:通过急停按钮、断电测试变频器的急停功能是否正常。
5.稳定性测试:在不同负载情况下,测试变频器的运行稳定性和输出波形是否正常。
五、输出波形观测1.连接示波器和变频器的输出端子,选择合适的测试模式,观测输出波形的电压、频率和相位。
2.观测输出波形的失真程度,检查是否存在谐波和干扰。
3.根据观测结果调整变频器的输出滤波器和控制参数,以提高输出波形的质量。
六、安全措施1.在调试过程中,确保所有人员已经了解并遵守相关安全操作规程,佩戴个人防护装备。
2.在操作变频器时应先断开电源,确保操作的安全。
3.在急停测试时,应用急停按钮或者直接断电操作,确保操作及时有效。
七、小结通过以上调试步骤,可以确保变频器在使用前能够正常工作。
在实际操作过程中,应注意安全措施,合理选择测试方法和参数,按照调试方案进行操作。
如有需要,可以通过观测输出波形来优化调整参数,以提高变频器的性能和稳定性。
变频器的常见故障原因及解决方案变频器的控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路。
无速度检测电路为开环控制。
在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行控制更精确的闭环控制。
运算电路将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
与主回路电位隔离检测电压、电流等。
为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。
为了变频器更好人机交互,变频器具有多种输入信号的输入 (比如运行、多段速度运行等)信号,还有各种内部参数的输出“比如电流、频率、保护动作驱动等)信号。
以装在异步电动轴机上的编码器的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转及定位控制等。
检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。
逆变器控制电路中的保护电路,可分为逆变器保护和异步电动机保护两种,保护功能有以下几点:①瞬时过电流保护由于逆变电流负载侧短路等,流过逆变器器件的电流超出允许峰值时,瞬时停止逆变器运转,切断电流。
变流器的输出电流达到异常值,也同样停止逆变器运转。
逆变器输出电流超过额定值,且持续流通达规定的时间以上,为了防止逆变器器件、电线等损坏要停止运转。
恰当的保护需要反时限特性,采用热继电器或者电子热保护(使用电子电路)。
过载是由于负载的GD2(惯性)过大或因负载过大使电动机堵转而产生。
采用逆变器是电动机快速减速时,由于再生功率直流电路电压将升高,有时超过容许值。
可以采取停止逆变器运转或停止快速减速的方法,防止过电压。
对于数毫秒以内的瞬时停电,控制电路工作正常。
但瞬时停电如果达数 10ms以上时,通常不仅控制电路误动作,主电路也不能供电,所以检出后使逆变器停止运转。
变频器调试总结变频器调试是指对变频器进行安装、接线、参数设定、运行测试等一系列工作的实施与验证。
通过调试工作,可以确保变频器的正常运行,保障机械设备的稳定运行,提高生产效率。
在变频器调试过程中,需要按照以下步骤进行操作:1. 确定变频器的配置和安装位置。
首先,需要根据设备的需求,选择合适的变频器型号,并确定变频器的安装位置,确保能够方便接线和通风散热。
2. 进行电气接线。
根据变频器的接线图,将主电源、电机、机械设备等进行正确的接线。
确保接线牢固可靠,防止漏电、短路等情况发生。
3. 设置变频器参数。
根据设备的运行要求,需要正确设置变频器的参数。
这些参数包括电网频率、电机功率、运行方式、加速时间、减速时间等。
适当的参数设置可以提高设备的性能,减少能耗。
4. 进行运行测试。
在设置完变频器参数后,需要进行运行测试,检验是否可以正常启动和运行。
测试中需要注意电机的转速、运行平稳性、响应速度等指标。
5. 调试反馈和调整。
在运行测试过程中,如果发现问题,需要及时记录并进行调整。
例如,如果出现振动、噪音、温度过高等异常情况,可能需要调整参数或更换元件。
在整个调试过程中,需要注意以下几个方面:1. 安全性。
在进行电气接线时,需要确保断电并采取安全措施,避免触电和其他事故发生。
此外,在变频器运行测试时,也需要保持警惕,随时注意设备的运行状况,防止意外事故的发生。
2. 测试准确性。
在进行运行测试时,需要采用合适的测试方法和工具,确保测试的结果准确可靠。
测试数据应该与实际情况相符,以便进行后续的调整和改进。
3. 经验积累。
每一次变频器调试都是一个宝贵的经验积累过程。
通过总结和分析调试过程中遇到的问题和解决方案,可以积累更多的经验,提高调试效率和质量。
变频器调试的主要目的是确保变频器的正常运行,同时也是对机械设备的保护和优化。
通过正确的安装、接线和参数设定,可以提高设备的性能和效率,减少故障发生的可能性,延长设备的使用寿命。
变频器产生的干扰及解决方案一、引言在工业生产过程中,变频器被广泛应用于控制电机的转速和运行。
然而,变频器的使用也带来了一些问题,其中之一就是产生的干扰。
本文将详细介绍变频器产生的干扰的原因和影响,并提供一些解决方案,以帮助企业有效地解决这一问题。
二、变频器产生的干扰原因1. 高频电磁干扰:变频器在工作过程中会产生高频电磁干扰,这些干扰信号会通过电源线、信号线和地线传播到其他设备和系统中。
2. 电源线谐波干扰:变频器的输入端会引入谐波电流,这些谐波电流会对电源系统造成干扰,导致其他设备的正常工作受到影响。
3. 电磁辐射干扰:变频器在工作时会产生电磁辐射,这些辐射会干扰周围的设备和系统,导致它们的正常工作受到影响。
三、变频器产生的干扰影响1. 信号干扰:变频器产生的干扰信号可能会影响其他设备和系统的正常工作,导致信号传输错误或丢失。
2. 电源系统不稳定:变频器引入的谐波电流会导致电源系统的电压波动,进而影响其他设备的正常工作。
3. 电机故障:变频器产生的干扰信号可能会对电机的正常运行产生影响,导致电机故障或损坏,进而影响生产效率。
四、解决变频器产生的干扰的方案1. 滤波器的使用:安装滤波器可以有效地减少变频器产生的高频电磁干扰。
滤波器可以在变频器的输入端或输出端安装,通过滤波器对干扰信号进行滤波,减少干扰的传播。
2. 接地措施:合理的接地系统可以有效地降低变频器产生的电磁辐射干扰。
确保变频器和其他设备都良好接地,减少接地电阻,提高接地效果。
3. 屏蔽措施:对变频器和其他设备进行屏蔽处理,可以有效地减少电磁辐射干扰。
使用金属屏蔽罩、屏蔽线缆等材料对设备进行屏蔽,减少干扰信号的传播。
4. 谐波滤波器的应用:安装谐波滤波器可以有效地减少变频器引入的谐波电流对电源系统的干扰。
谐波滤波器可以将谐波电流滤波,使其不会对其他设备和系统造成影响。
5. 电磁兼容性测试:进行电磁兼容性测试可以帮助企业了解变频器产生的干扰情况,并采取相应的措施进行干扰的消除和防护。
变频器调试方案简介变频器是一种用于调节电机转速的电子设备,可实现电机的启停、转速调节、运行方向控制等功能。
在工业自动化和机械设备领域被广泛应用。
本文将介绍变频器调试的基本步骤和注意事项。
调试步骤步骤一:现场准备在开始调试变频器之前,需要进行一些现场准备工作,包括: - 确保变频器的安装位置符合要求,且固定可靠。
- 检查电源连接是否正确,确保电源稳定。
- 检查变频器与电机之间的连接是否正确,如电缆接头是否紧固。
- 调试所需工具的准备,包括电压表、频率表等。
步骤二:变频器参数配置接下来,需要进行变频器参数的配置,以适应实际的工作需要。
主要配置项包括: - 输入电压和频率:根据现场电源的实际情况,设置变频器的输入电压和频率。
- 输出电压和频率:根据所需的电机转速,设置变频器的输出电压和频率。
- 控制方式:选择合适的控制方式,如恒定转矩控制、恒定功率控制等。
- 保护参数:设置过流保护、过压保护、欠压保护等参数,保护电机和变频器的安全运行。
步骤三:变频器调试完成参数配置后,即可进行变频器的调试。
主要包括以下内容: 1. 启动测试:按照设定的参数,启动变频器,观察电机的启动过程。
注意观察启动是否平稳,电机是否有异常声音或振动。
2. 转速调节:通过调整变频器的输出频率,逐步调节电机的转速。
观察电机转速的变化是否与设定值一致。
3. 转向控制:测试变频器的转向控制功能,观察电机的运行方向是否与设定一致。
4. 负载测试:在不同负载条件下,观察变频器的响应和电机的运行状态。
重点观察电流、温度等参数,确保变频器和电机在不同负载下的稳定性和安全性。
步骤四:参数优化在调试过程中,可能会出现电机转速不稳定、响应不够灵敏等问题。
此时,需要进行参数优化,以提高系统的性能。
优化主要包括: - PID参数调整:对PID控制参数进行调整,以提高系统的动态性能和稳定性。
- 加速、减速时间调整:根据实际需求,调整变频器的加速、减速时间,以实现更加平滑的运行过程。
变频器常规试验方案
1. 背景
变频器是一种能够将电源的频率和电压进行调整的电力设备。
为了确保变频器的正常工作和安全性能,需要进行常规试验。
2. 目的
本试验方案的目的是验证变频器的各项功能和性能,以确保其符合相关标准和要求。
3. 试验内容
3.1 标准试验
- 静态参数测试:包括输入电压、输出电压、频率、功率因数等参数的测试。
- 动态响应测试:测试变频器在不同负载条件下的动态响应能力。
- 故障保护测试:测试变频器在输入过流、过压、欠压等故障情况下的保护能力。
3.2 特殊试验
- 高温试验:将变频器置于高温环境中,测试其在高温条件下的工作能力和稳定性。
- 抗干扰试验:测试变频器在电磁干扰环境下的抗干扰能力。
- 振动试验:模拟变频器在振动环境中的工作情况,测试其在振动条件下的可靠性。
4. 试验方法
- 使用标准测试设备和工具进行试验。
- 根据试验要求设置试验参数和负载条件。
- 记录试验数据,并进行分析和评估。
- 根据试验结果进行必要的调整和改进。
5. 试验记录和报告
- 每次试验都应当有详细的试验记录,包括试验日期、试验条件、试验结果等。
- 根据试验数据和评估,编写试验报告,包括试验目的、试验方法、试验结果等内容。
6. 试验安全注意事项
- 在试验过程中,应当严格遵循相关安全操作规程。
- 保持试验现场整洁和安全,避免可能的意外伤害。
- 在进行高温试验和振动试验时,应当注意相应的安全措施。
以上为变频器常规试验方案,根据试验要求和目的进行试验,以确保变频器的正常工作和安全性能。
高速电机的六大关键技术目录前言 (1)1 .散热的问题 (1)2 .电机选型问题 (2)3 .转子结构的问题 (3)4 .震动噪音的问题 (4)5 .高效的问题 (5)6 .轴承的问题 (7)前言“在体积更小、功率更高追求驱动下,电机的转速一路攀升,从早期的两三千转,一直攀升到几万甚至几十万转,更高的转速使得功率密度和原材料利用率提高。
因此高转速是强趋势,以新能源驱动为例,丰田PriUS推出的第一代产品最高转速才6000r∕min,到第四代产品转速达到17000r/min。
本期我们用更高的视角去看看转速电机的应用场合及背后的关键技术。
”高速、超高速的应用前景广阔但同时给电机带来了极高的挑战,我们将这些问题合并同类项后发现有六大类:散热、选型、转子结构、振动噪音、高效设计、轴承。
1.散热的问题电机损耗随转速几何级数提高,高损耗产生的热使得电机温升极速提升,为维持高速运行,必须设计散热良好的冷却方式。
我们能看到常见的高速电机冷却方式为:1) “内强迫风冷”如下图所示,强冷风能够直接吹入电机内部带走绕组和铁芯上的热量,这种方式一般出现在空压机、鼓风机、飞机电机这类本来就有强风可利用的场合。
2) “内油冷”在电机必须封闭防护,或者无强风的应用环境中,采用最多的是内油冷方式,比如AV1设计的高速电机采用的定子槽内油冷的方式的组合。
有些电机也采用绕组喷油冷却+定子油冷+转子油冷等多种方式的组合。
高速电机带来的问题High1oss=4158W,1owweight=18kg冷却方式举例某25OkW@2OkrPmSPM高速空压机强迫风冷结构AV1230kw@20krpmSPM槽内冷却技术油路通过幅口庖接为了实现高功率密度、发热和冷却是高速电机必须要面对的重要问题。
2.电机选型问题永磁电机还是感应电机?还是开关磁阻等其它类型的电机,高速电机种类的选择一直是一个没有标准答案的问题。
一般从功率密度和效率的角度出发,选择永磁电机比较有优势,而从可靠性出发选择感应电机和开关磁阻电机。
变频器选择和使用注意事项变频器常见问题解决方法首先我们要知道不是在任何情况下都能正常使用,因此用户有必要对负载、环境要求和变频器有更多了解。
共分为七个注意的地方:1、长期低速动转,由于电机发热量较高首先我们要知道不是在任何情况下都能正常使用,因此用户有必要对负载、环境要求和变频器有更多了解。
共分为七个注意的地方:1、长期低速动转,由于电机发热量较高,风扇冷却本领降低,因此必需接受加大减速比的方式或改用6级电机,使电机运转在较高频率相近。
2、变频器安装地点必需符合标准环境的要求,否则易引起故障或缩短使用寿命;变频器与驱动马达之间的距离一般不超过50米,若需更长的距离则需降低载波频率或加添输出电抗器选件才能正常运转。
3、负载类型和变频器的选择:所带动的负载不一样,对变频器的要求也不一样。
4、风机和水泵是最一般的负载:对变频器的要求较为简单,只要变频器容量等于电动机容量即可(空压机、深水泵、泥沙泵、快速变化的音乐喷泉需加大容量)。
5、起重机类负载:这类负载的特点是启动时冲击很大,因此要求变频器有确定余量。
同时,在重物下放肘,会有能量回馈,因此要使用制动单元或接受共用母线方式。
6、不均行负载:有的负载有时轻,有时重,此时应依照重负载的情况来选择变频器容量,例如轧钢机械、粉碎机械、搅拌机等。
7、大惯性负载:如离心机、冲床、水泥厂的旋转窑,此类负载惯性很大,因此启动时可能会振荡,电动机减速时有能量回馈。
应当用容量稍大的变频器来加快启动,避开振荡。
搭配制动单元除去回馈电能。
—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为调节电机转速的重要设备,被广泛应用于各个行业。
然而,变频器在工作过程中会产生一定的电磁干扰,对其他电子设备和系统造成负面影响。
本文将详细介绍变频器产生的干扰及其解决方案。
二、变频器产生的干扰类型1. 电磁辐射干扰:变频器工作时,电源和电机之间会产生高频电流和电压,导致电磁辐射干扰,影响周围电子设备的正常工作。
2. 电源电压波动干扰:变频器在工作时,由于电机负载的变化,会引起电源电压波动,对其他设备的电源供应造成干扰。
3. 电磁感应干扰:变频器的高频电流和电压会在电源线和控制线上引起电磁感应,进而对周围设备和系统产生干扰。
三、变频器干扰的影响1. 对其他电子设备的干扰:变频器产生的电磁辐射干扰可能导致其他电子设备的噪声增加、通信异常、数据传输错误等问题。
2. 对电源系统的干扰:变频器的电源电压波动干扰可能引起其他设备的电源不稳定,甚至导致设备损坏。
3. 对控制系统的干扰:变频器的电磁感应干扰可能导致控制系统的误差增加,影响系统的稳定性和精度。
四、变频器干扰的解决方案1. 电磁屏蔽措施:通过在变频器和电机之间安装屏蔽罩、屏蔽线缆等措施,减少电磁辐射干扰的传播。
2. 滤波器的应用:在变频器的输入端和输出端安装滤波器,可以有效抑制电源电压波动干扰和电磁感应干扰。
3. 接地措施:合理的接地设计可以降低变频器产生的干扰,例如使用良好的接地网、接地线等。
4. 优化布线:合理布置电源线和控制线,减少电磁感应干扰的可能性。
5. 选择合适的变频器:在购买变频器时,应选择具有良好抗干扰性能的产品,降低干扰的概率。
五、干扰测试与评估为了确保变频器的干扰问题得到解决,可以进行干扰测试和评估。
测试过程中可以使用专业的测试设备,如频谱分析仪、示波器等,对变频器产生的干扰进行定量分析。
评估结果可用于判断干扰是否达到标准要求,并指导后续的干扰解决方案。
六、结论变频器产生的干扰对其他电子设备和系统造成不可忽视的影响。
变频电机和驱动全攻略解读8大常见问题原理及其检测方案Motor And Drive变频技术在工业生产中有着举足轻重的作用,它的技术核心就是变频器和变频电机。
日常工作中如何采用适合的工具对它们进行有效地检测和维护呢?绕组绝缘击穿和轴承磨损是最常见的两种电机故障原因,但导致这些故障发生的原因却多种多样。
01电能质量问题1. 瞬态电压--电机绕组绝缘击穿造成电机早期故障以及计划外停工2. 电压不平衡--某相或某几相上电流过大,从而造成温度升高——导致绝缘击穿3. 谐波畸变--降低电机效率,增加维护维修费用,工作温度升高推荐检测方案438-II电机效率和电气性能综合分析仪1.在无需机械传感器的情况下计算机械功率和效率2.测量电压、电流、功率、视在功率、功率系数、谐波失真和不平衡度等电源参数,以确定影响电机效率的特性3.识别暂降、暂升、瞬变、谐波和不平衡等电能质量问题02变频驱动问题1. 过充电压变频驱动采用脉宽调制(PWM)技术来控制电机的输入电压和频率。
当电源和负载之间存在阻抗不匹配时,就会产生反射。
阻抗不匹配的原因可能是安装不正确、元件选择不正确或随着时间推移设备发生了老化。
在电机驱动电路中,反射峰值与直流总线的电压一样高。
影响:电机绕组绝缘击穿造成计划外停工。
推荐检测方案MDA-550电机驱动分析仪1.采用引导式测试测量,使分析工作变得比以往更容易2.分步对电机驱动器输入、直流总线、驱动器输出、电机输入和电机轴进行测量。
3.测量电机驱动器的主要参数,包括电压、电流、直流总线电压电平和交流波纹、电压和电流失衡和谐波、电压调制和电机轴电压放电。
2. 过载电机负载过大时,即发生电机过载。
伴随电机过载发生的主要现象有电流过大、扭矩不足及过热。
电机过热是电机故障的主要原因之一。
由于30 %的电机故障是由于过载引起的,所以理解如何测量并判断电机过载非常重要。
影响:电机的电气和机械部件过早磨损,造成永久性失效。
高速调节高速调节型号变频器的速度响应评估高速调节型号变频器的速度响应评估随着工业发展的不断推进,高速调节型号变频器作为一种重要的控制设备,被广泛应用于各种行业中。
其主要功能是对电动机的电源进行频率和电压的调节,从而实现对电机的速度控制。
然而,针对高速调节型号变频器的速度响应评估方面还存在一些挑战和问题。
本文将对高速调节型号变频器的速度响应进行评估,并提出一些相关的改进措施。
一、高速调节型号变频器的速度响应评估方法为了评估高速调节型号变频器的速度响应,可以采用以下方法:1. 实验测试法:通过在实验室或现场进行测试,使用合适的仪器设备记录变频器的速度响应数据,如加速时间、减速时间、速度波动等。
通过数据分析,可以评估变频器在高速调节过程中的性能和响应速度。
2. 模拟仿真法:利用计算机软件进行仿真模拟,建立变频器的数学模型,并设置合适的参数和信号输入,模拟高速调节过程,观察和分析其速度响应。
通过仿真分析,可以更直观地评估无法在实际实验中获得的数据和性能。
二、高速调节型号变频器速度响应评估改进措施针对高速调节型号变频器的速度响应评估,可以考虑以下改进措施:1. 优化控制算法:通过改善变频器的控制算法,提高速度的闭环控制精度,使变频器在高速调节过程中能够更准确地响应变化,减小速度波动。
可以采用PID控制算法或者模糊逻辑控制算法等优化方法。
2. 提高采样频率:增加变频器的采样频率,可以更精细地检测电机的速度变化,提高速度控制的精度和响应速度。
同时也需要优化采样方式和信号滤波器的设计,减小采样误差和噪音对速度响应的影响。
3. 优化硬件设计:对变频器的硬件设计进行优化,如提高电路部件的质量和稳定性,降低传感器和电压源的噪音干扰,改善信号的采集和处理能力。
这些优化可以提高变频器的速度响应和稳定性。
4. 增加保护机制:在变频器中加入合理的保护机制,如过流过压保护、短路保护等,以及设定合理的参数范围和限制值。
这样可以提高变频器的安全性,防止在高速调节过程中发生故障或损坏。
关于变频发电机耐压测试的问题,在**的大力配合下,现已达成一致。
我司原来的测试方法存在一定的问题,测试时先通高压电,然后用高压棒去探测输出端,这样会存在接触不良的情况,造成对逆变器的多次冲击,而逆变器内部元件电容、电感会叠加多次冲击的电压,使电子元件实际受到的电压超过设定的1500V,所以耐压测试无法通过。
改进原测试方法,先把耐压测试仪地线与机器接地端、高压棒与输出端可靠连接,再接通测试仪电压,这样抽检15只逆变器均合格,模拟整机接上点火器、电机也测试合格。
逆变器、点火器在力华已作耐压全检,零部件进厂时增加耐压测试项目,要求为交流1500V,10mA,5S。
变频发电机整机也增加耐压出厂检验,要求为交流1500V,20mA,5S。
测试时,耐压测试仪设定时间为5秒,严格按上述改进后的测试方法接线,再按启动按钮,待5秒后测试仪自动复位。
为防止耐压试验可能导致零件的损坏,整机测试在电性能测试前进行。
请相关技术员在技术文件上增加耐压要求。
浅谈变频电机试验的功率测量徐伟专1,2,董行健1,3,方宏1(1.国防科学技术大学,湖南 长沙 410073;湖南银河电气有限公司, 湖南 长沙410073 ;2.西南交通大学电气工程学院, 四川 成都 610031)摘要:本文首先对三表法和二表法在电机试验中的测量方式进行了比较,其次分析了电容电流存在时的电机功率测量方法及误差,并对两表法测量进行了改进,最后讨论了电容电流对功率测量的影响以及消除方法。
关键词: 电机试验,功率测量,二表法,三表法,电容电流A Brief Talk on Power Measurement of Variable Frequency Electrical MachineXu Wei-zhuan 2,DONG Xing-jian 1,2(1.HuNan Yinhe Electric Co..Ltd, Changsha Hunan 410073, China2.Department of Electric Engineering, Southwest Jiaotong University, Chengdu Sichuan 610031, China ;)Abstract: The comparison between double meter method and three meter method on Electrical Machine test is firstly introduced. Then the power measurement method and its error with capacitor current existing are analyzed. Next, a method to improve the double meter method is proposed. Finally, the influence and its eliminations are discussed.Key words: Electrical machine test, Power measurement, Double meter method, Three meter method, Capacitor current0 引言随着变频调速技术的高速发展。
电机测速方案1. 引言电机是现代工业中常用的设备之一,其运行状态的监测和测量是非常重要的。
而电机的测速方案,就是用来测量电机转速的一种解决方案。
2. 电机测速原理电机测速的原理可以根据测速方法的不同而有所区别。
这里介绍两种常见的电机测速原理。
2.1. 电机反电势测速原理电机反电势测速是一种基于电磁感应原理的测速方法。
当电机旋转时,其产生的磁场会引起定子绕组中的感应电动势,这个电动势与电机的转速成正比关系。
通过测量电机绕组上的感应电动势,就可以间接地得到电机的转速。
2.2. 光电编码器测速原理光电编码器是一种将机械运动转化为光电信号的装置。
在电机上安装一个光电编码器,通过检测其输出的脉冲信号的频率,就可以得到电机的转速。
3. 电机测速方案根据上述的电机测速原理,可以设计出多种电机测速方案。
下面介绍两种常见的电机测速方案。
3.1. 电机反电势测速方案电机反电势测速方案基于电磁感应原理,其主要步骤如下:1.将电机绕组中的一个相线与一个外部负载电阻相连。
2.通过测量该外部负载电阻上的电压,得到感应电动势的大小。
3.根据感应电动势与转速成正比的关系,计算出电机的转速。
3.2. 光电编码器测速方案光电编码器测速方案是通过光电编码器检测脉冲信号的频率来测量电机转速。
其主要步骤如下:1.在电机轴上安装一个光电编码器,并通过连接线将其与测速仪器相连。
2.测速仪器接收到光电编码器输出的脉冲信号。
3.通过测量脉冲信号的频率,计算出电机的转速。
4. 电机测速应用电机测速方案广泛应用于工业控制领域和工程实践中。
以下是几个电机测速应用的例子:4.1. 机械设备故障诊断电机转速是机械设备故障诊断的重要参数之一。
通过测量电机转速的变化,可以判断设备是否存在故障,并及时进行维修。
4.2. 控制系统反馈在一些需要精确控制的系统中,电机转速是一个重要的反馈信号。
通过测量电机转速,可以对系统进行闭环控制,保证系统的稳定性和精度。
4.3. 电机控制策略优化通过测量电机转速,并结合其他参数,可以对电机控制策略进行优化。
高速变频电机测试解决方案
高速变频电机是指转速超过10000r/min,一般都是几万转甚至达到十几万转,在电动汽车、家电和无人机系统中具有广阔的应用前景。
在高速和超高速运行情况下,电机的运行特性与常规电机有很大的不同,对高速电机进行相关测试是至关重要的。
高速变频电机是指转速超过10000r/min,一般都是几万转甚至达到十几万转,电机输入基波频率范围达到1000Hz甚至更高,极数基本为2级。
高速电机具有转速高、相对尺寸小、功率密度大、效率高等显著优点,在空调或冰箱的离心式压缩机、储能飞轮、纺织、高速磨床等诸多场合具有较多应用,在电动汽车、分布式发电系统中具有广阔的应用前景。
在高速和超高速运行情况下,电机的运行特性与常规电机有很大的不同,对高速电机进行相关测试是至关重要的。
高速电机测试内容
(1)高速电机效率测试
高速电机功率密度高,但是单位体积内的损耗也大,尤其是转子的风磨损耗和涡流损耗是一般电机的数十倍。
通过电机的输入电量测量(包括电压,电流,功率、功率因数等)、输出量测量(转速,转矩,功率等)、励磁测量等得到高速电机的效率。
通过高速电机效率测试,从而分析高速电机的相关损耗,是高速电机的结构设计、改善机械特性、提高散热能力、减小损耗的关键。
(2)高速电机供电系统监测
高速电机一般采用变频器供电,对于供电系统的基波频率、谐波分量十分敏感。
变频器输出的电压波形是PWM波,除了基波外,还包含大量的整数倍载波频率的高次谐波,会给高速电机带来高频附加损耗,所以对供电系统运行状态及可靠性监测是十分必要的。
高速电机测试关键要求
1、为了准确获得电机的效率,必须要求确保电机输入电功率与电机输出轴功率严格同步测量。
2、必须满足变频器输出PWM波的基波电压、基波频率、谐波分析等的测量需要。
3、传感器及测试仪器组成的测试系统,整体精度必须达到0.2级。
4、由于高速电机的空载试验时功率因数低于0.2,所以测试系统的角差指标,必须满足低功率因数条件下功率测量精度的要求。
5、高速电机的测试现场一般电磁环境复杂,测试系统必须拥有强的抗电磁干扰能力。
高速电机测试解决方案
本测试系统采用广州致远电子研制的PA8000功率分析仪,致远公司PA系列功率分析仪能够执行最多6个功率输入的测量,通过测量变频器输入输出的电功率和机械功率,可准确评估变频器的效率、驱动系统的电能和机械之间的转换功率。
同时,通过详尽的频谱分析和动态扭矩计算,PA功率分析仪可准确测量出由变频器引起的开关损耗,并且能够全面评估高频下的扭矩瞬态和谐波。
高速电机测试系统构成框图,如图1所示。
本测试选用PA8000功率分析仪具有行业标杆最高精度0.01%,完全满足高速电机测试需求;同时具有高采样率与宽带相结合的特点,可选择多通道的电机输入单元,采样率高达2MS/s,并且独家含有录波功能,可以完整的分析电机的启动波形,可用于测量电机起动与负载变化过程中的瞬时电压、电流、功率及相关的曲线波形,评估电机起动与负载变化特性,可帮助用户查找异常波形,定位错误细节。
适用于科研与认证机构。