FDM(熔融沉积制造)资料讲解
- 格式:ppt
- 大小:7.66 MB
- 文档页数:49
FDM技术简介FDM技术,即熔融层积技术,Fused Deposition Modeling的简称,又可以称为熔融堆积技术,是快速成型技术的一种。
快速成型技术,即Rapid Prototyping(简称RP技术)。
RP技术是一项20世纪80年代后期由工业发达国家率先开发的新技术,其主要技术特征是成型的快捷性,能自动、快捷、精确地将设计思想转变成一定功能的产品原型或直接制造零部件,该项技术不仅能缩短产品研制开发周期,减少产品研制开发费用,而且对迅速响应市场需求,提高企业核心竞争力具有重要作用。
1、快速成型技术的功能作用●设计验证:快速原型作为一种可视化的工具,用于设计验证、产品评估,在投入大量的资金进行批量生产之前,及时发现产品设计中存在的问题,改进设计,保证产品的研发成功率。
●功能测试:使用快速成型技术制作的原型可直接进行装配检验、干涉检查,模拟产品真实工作情况的一些功能试验,如运动分析、应力分析、流体和空气动力学分析等,从而迅速完善产品的结构和性能,改进工艺及所需模具的设计。
●可制造性、可装配性检验:对于开发结构复杂的新产品(如汽车、飞机、卫星、导弹等),可事先验证零件的可制造性、零件之间的相互关系以及部件的可装配性。
●模具制造:通过快速原型与传统制造工艺相结合,制造模具和金属零件。
比如由快速原型制作真空铸造件和熔模铸造件的母模;由快速原型通过电弧喷涂、电铸制造模具或EDM 电极,由快速原型直接制造注塑模等。
●生物医疗方面的应用:为外科医生制作病例模型,制作DNA分子结构模型等。
2、运用快速成型技术的工作流程图3、快速成型技术的应用领域该技术可广泛应用于教育、科研、汽车、摩托车、家电、电动工具、医疗、机械制造、精密铸造、航天航空、工艺品、礼品制作以及玩具等行业。
4、FDM技术原理这种技术的材料一般是热塑性材料,如蜡、ABS、PC、尼龙等,以丝状供料。
材料在喷头内被加热熔化。
喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结。
3D打印技术之FDM熔融沉积成型工艺(Fused Deposition Modeling)熔融沉积成型工艺(Fused Deposition Modeling,FDM)是继LOM工艺和SLA工艺之后发展起来的一种3D打印技术。
该技术由Scott Crump于1988年发明,随后Scott Crump创立了Stratasys公司。
1992年,Stratasys公司推出了世界上第一台基于FDM技术的3d打印机——“3D造型者(3D Modeler)”,这也标志着FDM技术步入商用阶段。
熔融沉积有时候又被称为熔丝沉积,它将丝状的热熔性材料进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来。
喷头可以沿X轴的方向进行移动,工作台则沿Y 轴和Z轴方向移动(当然不同的设备其机械结构的设计也许不一样),熔融的丝材被挤出后随即会和前一层材料粘合在一起。
一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。
下面我们一起来看看FDM的技术原理(如图所示):图FDM熔融沉积成型工艺热熔性丝材(通常为ABS或PLA材料)先被缠绕在供料辊上,由步进电机驱动辊子旋转,丝材在主动辊与从动辊的摩擦力作用下向挤出机喷头送出。
在供料辊和喷头之间有一导向套,导向套采用低摩擦力材料制成以便丝材能够顺利准确地由供料辊送到喷头的内腔。
喷头的上方有电阻丝式加热器,在加热器的作用下丝材被加热到熔融状态,然后通过挤出机把材料挤压到工作台上,材料冷却后便形形成了工件的截面轮廓。
采用FDM工艺制作具有悬空结构的工件原型时需要有支撑结构的支持,为了节省材料成本和提高成型的效率,新型的FDM设备会采用了双喷头的设计,一个喷头负责挤出成型材料,另外一个喷头负责挤出支撑材料。
一般来说,用于成型的材料丝相对更精细一些,而且价格较高,沉积效率也较低。
用于制作支撑材料的丝材会相对较粗一些,而且成本较低,但沉积效率会更高些。
支撑材料一般会选用水溶性材料或比成型材料熔点低的材料,这样在后期处理时通过物理或化学的方式就能很方便地把支撑结构去除干净。
fdm和mem工艺原理一、FDM工艺原理FDM工艺(Fused Deposition Modeling)即熔融沉积成型,在3D打印领域广泛应用。
该工艺主要通过加热熔融的热塑性聚合物,将其喷射到工作平台上,根据预设轨迹进行控制,逐层堆积形成三维实体。
1.加热喷嘴FDM工艺最基本的组成部分是加热喷嘴,其主要作用是将热塑性聚合物加热至一定温度,使其熔化,便于喷射。
加热喷嘴还需要能够准确的控制喷射的速度和位置,以实现对打印模型的精细控制。
2.热床热床是FDM工艺中的另一个重要部分,其主要作用是加热打印的工作平台,以减少模型变形或撕裂的风险。
热床的加热方式通常是通过加热丝、加热板或者PID温控系统进行。
3.打印材料FDM工艺使用的打印材料主要是热塑性聚合物,如ABS、PLA、PETG等。
它们通过在加热喷嘴中熔化,然后被逐层堆积到工作平台上进行打印。
4.逐层堆积FDM工艺最为独特的部分就是逐层堆积的过程。
当打印机将喷嘴移动到工作平台的特定位置时,聚合物被加热喷嘴熔化,然后通过石英管和挤出机喷出,逐层堆积成模型。
MEM工艺(Micro-Electromechanical Systems)即微电子机械系统,是一种通过微纳加工技术制造微小机械结构的技术。
MEM工艺可以制造出很小的元件,比如传感器、阀门、显示器等,应用非常广泛。
1.微电子技术微电子技术是MEM工艺的核心技术之一,其主要用于制造微小的电路、传感器和集成电路等。
它的制造工艺一般分为晶圆制造、微影制造、刻蚀、沉积、半导体器件制造等环节。
2.微加工技术MEM工艺中的微加工技术包括激光加工、电化学加工、微切削、离子束刻蚀等。
这些技术一般都能够对材料进行较为精确的加工处理,以满足微小结构的制造需求。
3.微纳米制造微纳米制造是MEM技术的重要内容,其主要包括微型器件的设计、制造和组装等过程。
制造微米级物体需要高分辨率的制造设备,并且需要具备高度的精度和可靠性。
4.微机械结构MEM工艺可以制造各种微型机械结构,如微型电机、微型阀门、微型传感器等。
熔融沉积造型(FDM-Fused Deposition Modeling)一、概念FDM喷头受CAD分层数据控制使半流动状态的材料中挤压出来,凝固型成轮廓形状的薄层每层厚度范围在0.025~0.762mm,一层叠一层最后形成整个零件模型。
熔融沉积制造(FDM)丝状材料选择性溶覆、工艺原理:丝状材料和支撑材料由供丝机构送至各自对应的喷头,并在喷头中加热至熔融状态。
系统组成:硬件系统(机械运动、加工为主、电器控制和温度控制)、软件系统、供料系统。
机械系统:运动、喷头、成型室、材料室、控制室和电源室等。
温度控制器:检测与控制成型喷嘴、支撑喷嘴和成型室的温度。
软件系统:几何建模和信息处理两部分信息处理:由STL文件处理、工艺处理、数控、图形显示等模块组成,分别完成STL 文件错误数据检验和修复、层片文件生成、填充计算、数控代码生成和对成型机的控制。
特点:成型材料广泛,,成本低目前存在的问题:适合成型中、小塑料件;成型件的表面有较明显的条纹;沿成型轴垂直方向的强度比较弱,需设计、制作支撑结构,需对整个截面进行扫描涂覆,成型时间长。
熔融沉积工艺的特点:1)系统构造原理与操作简单,维护成本低,系统运行稳定。
2)可以使用无毒的原材料制造系统可以在办公环境中安全使用。
3)用蜡成形的零件原型,可以直接用于失蜡铸造。
4)可以成形任意复杂程度的零件,常用于成形具有很复杂的内腔,孔等零件。
5)原材料在成型过程中,无化学变化,制作的翘曲变形小。
6)原材料利用率高,且材料寿命长。
7)支撑去除简单,无需化学清洗,分离容易。
二、使用的材料主要材料:石蜡、塑料、尼龙丝等低熔点材料和低熔点金属、陶瓷等线材和丝材。
熔丝:ABS、人造橡胶、铸蜡和聚酯热塑性塑料。
材料要求:FDM要有良好的成丝性;相变过程中有良好的化学稳定性,且FDM材料要有较小的收缩性。
优点缺点费用损耗应用(1) 成形材料种类较多,成形样件强度好,能直接制作ABS塑料;(2) 尺寸精度较高,表面质量较好,易于装配;(3) 材料利用率高;(4) 操作环境干净、安全可在办公室环境下进行。
2D图案定制个性化礼物、3D打印产品/手板和3D打印机—首选忆典定制3D打印技术之熔融沉积成型工艺(FDM)熔融沉积成型工艺(Fused Deposition Modeling,FDM)是继LOM工艺和SLA 工艺之后发展起来的一种3D打印技术。
该技术由Scott Crump于1988年发明,随后Scott Crump创立了Stratasys公司。
1992年,Stratasys公司推出了世界上第一台基于FDM技术的3D打印机——“3D造型者(3D Modeler)”,这也标志着FDM技术步入商用阶段。
国内的清华大学、北京大学、中科院广州电子技术有限公司都是较早引进FDM技术并进行研究的科研单位。
FDM工艺无需激光系统的支持,所用的成型材料也相对低廉,总体性价比高,这也是众多开源桌面3D打印机主要采用的技术方案。
熔融沉积有时候又被称为熔丝沉积,它将丝状的热熔性材料进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来。
喷头可以沿X轴的方向进行移动,工作台则沿Y轴和Z轴方向移动(当然不同的设备其机械结构的设计也许不一样),熔融的丝材被挤出后随即会和前一层材料粘合在一起。
一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。
下面我们一起来看看FDM的详细技术原理:2D图案定制个性化礼物、3D打印产品/手板和3D打印机—首选忆典定制热熔性丝材(通常为ABS或PLA材料)先被缠绕在供料辊上,由步进电机驱动辊子旋转,丝材在主动辊与从动辊的摩擦力作用下向挤出机喷头送出。
在供料辊和喷头之间有一导向套,导向套采用低摩擦力材料制成以便丝材能够顺利准确地由供料辊送到喷头的内腔。
喷头的上方有电阻丝式加热器,在加热器的作用下丝材被加热到熔融状态,然后通过挤出机把材料挤压到工作台上,材料冷却后便形形成了工件的截面轮廓。
采用FDM工艺制作具有悬空结构的工件原型时需要有支撑结构的支持,为了节省材料成本和提高成型的效率,新型的FDM设备会采用了双喷头的设计,一个喷头负责挤出成型材料,另外一个喷头负责挤出支撑材料。
熔融沉积造型(FDM-Fused Deposition Modeling)一、概念FDM喷头受CAD分层数据控制使半流动状态的材料中挤压出来,凝固型成轮廓形状的薄层每层厚度范围在0.025~0.762mm,一层叠一层最后形成整个零件模型。
熔融沉积制造(FDM)丝状材料选择性溶覆、工艺原理:丝状材料和支撑材料由供丝机构送至各自对应的喷头,并在喷头中加热至熔融状态。
系统组成:硬件系统(机械运动、加工为主、电器控制和温度控制)、软件系统、供料系统。
机械系统:运动、喷头、成型室、材料室、控制室和电源室等。
温度控制器:检测与控制成型喷嘴、支撑喷嘴和成型室的温度。
软件系统:几何建模和信息处理两部分信息处理:由STL文件处理、工艺处理、数控、图形显示等模块组成,分别完成STL 文件错误数据检验和修复、层片文件生成、填充计算、数控代码生成和对成型机的控制。
特点:成型材料广泛,,成本低目前存在的问题:适合成型中、小塑料件;成型件的表面有较明显的条纹;沿成型轴垂直方向的强度比较弱,需设计、制作支撑结构,需对整个截面进行扫描涂覆,成型时间长。
熔融沉积工艺的特点:1)系统构造原理与操作简单,维护成本低,系统运行稳定。
2)可以使用无毒的原材料制造系统可以在办公环境中安全使用。
3)用蜡成形的零件原型,可以直接用于失蜡铸造。
4)可以成形任意复杂程度的零件,常用于成形具有很复杂的内腔,孔等零件。
5)原材料在成型过程中,无化学变化,制作的翘曲变形小。
6)原材料利用率高,且材料寿命长。
7)支撑去除简单,无需化学清洗,分离容易。
二、使用的材料主要材料:石蜡、塑料、尼龙丝等低熔点材料和低熔点金属、陶瓷等线材和丝材。
熔丝:ABS、人造橡胶、铸蜡和聚酯热塑性塑料。
材料要求:FDM要有良好的成丝性;相变过程中有良好的化学稳定性,且FDM材料要有较小的收缩性。
优点缺点费用损耗应用(1) 成形材料种类较多,成形样件强度好,能直接制作ABS塑料;(2) 尺寸精度较高,表面质量较好,易于装配;(3) 材料利用率高;(4) 操作环境干净、安全可在办公室环境下进行。