晶体结构几何理论
- 格式:pdf
- 大小:1.38 MB
- 文档页数:77
第七章晶体结构第一节晶体的点阵结构一、晶体及其特性晶体是原子(离子、分子)或基团(分子片段)在空间按一定规律周期性重复地排列构成的固体物质。
晶体中原子或基团的排列具有三维空间的周期性,这是晶体结构的最基本的特征,它使晶体具有下列共同的性质:(1)自发的形成多面体外形晶体在生长过程中自发的形成晶面,晶面相交成为晶棱,晶棱会聚成顶点,从而出现具有几何多面体外形的特点。
晶体在理想环境中应长成凸多面体。
其晶面数(F)、晶棱数(E)、顶点数(V)相互之间的关系符合公式:F+V=E+2 八面体有8个面,12条棱,6个顶点,并且在晶体形成过程中,各晶面生长的速度是不同的,这对晶体的多面体外形有很大影响:生长速度快的晶面在晶体生长的时候,相对变小,甚至消失,生长速度小的晶面在晶体生长过程中相对增大。
这就是布拉维法则。
(2)均匀性:晶体中原子周期性的排布,由于周期极小,故一块晶体各部分的宏观性质完全相同。
如密度、化学组成等。
(3)各向异性:由于晶体内部三维的结构基元在不同方向上原子、分子的排列与取向不同,故晶体在不同方向的性质各不相同。
如石墨晶体在与它的层状结构中各层相平行方向上的电导率约为与各层相垂直方向上电导率的410倍。
(4)晶体有明显确定的熔点二、晶体的同素异构由于形成环境不同,同一种原子或基团形成的晶体,可能存在不同的晶体结构,这种现象称为晶体的同素异构。
如:金刚石、石墨和C60是碳的同素异形体。
三、晶体的点阵结构理论1、基本概念(1)点阵:伸展的聚乙烯分子具有一维周期性,重复单位为2个C原子,4个H 原子。
如果我们不管其重复单位的内容,将它抽象成几何学上的点,那么这些点在空间的排布就能表示晶体结构中原子的排布规律。
这些没有大小、没有质量、不可分辨的点在空间排布形成的图形称为点阵。
构成点阵的点称为点阵点。
点阵点所代表的重复单位的具体内容称为结构基元。
用点阵来研究晶体的几何结构的理论称为点阵理论。
(2)直线点阵:根据晶体结构的周期性,将沿着晶棱方向周期的重复排列的结构单元,抽象出一组分布在同一直线上等距离的点列,称直线点阵。
实验一、晶体结构分析一一、实验目的掌握14种空间格子的几何特征与球体密堆积理论,了解配位多面体的配置。
二、实验仪器十四种空间点阵结构模型,球形模型三、实验内容1.了解14种空间格子的几何形态,分析空间格子类型;2.熟悉密堆积理论,注意观察球体堆积时,周围空隙的类型、位置与数量情况;3.了解几种配位多面体的配置情况。
四、实验方法1.观察14种空间格子模型表征14种空间格子,用晶格常数α、β、γ和a、b、c;并判断其所属晶系。
2.观察球体密堆积模型用球体模型进行面心立方紧密堆积、六方紧密堆积和体心立方近似密堆积,分析球体周围空隙的类型、数目和位置分布。
观察分析面心立方紧密堆积、六方紧密堆积和体心立方近似密堆积的单位晶胞,注意其四、八面体空隙分布,判断其数量。
3.观察配位多面体模型模型五、实验报告1.绘制14种空间格子的几何形态,并用注明晶格常数的形式表示出所有14种空间格子;2.分析三种常见的球体堆积情况,绘制出其单位晶胞,画出其(111)、(110)(100)晶面原子排布图[ 密排六方需画出(0001)晶面 ];3.分析体心立方与面心立方单位晶胞中四、八面体空隙的位置分布与数量,并绘图;4.对不同配位多面体绘图,讨论其临界半径比。
(注:在预习报告中要将14种空间格子的几何图形画好)六、思考题面心立方结构中四面体空隙的数目有几个?他们都是如何分布的?八面体空隙有几个?如何分布?实验二、典型晶体结构分析一、实验目的掌握几种典型矿物的结构,了解晶胞的几何特征。
二、实验仪器晶体结构模型,球和短棒三、实验内容1.对照实际具体结构模型,熟悉金刚石、石墨、氯化钠、氯化铯、闪锌矿、纤锌矿、金红石、碘化镉、萤石、钙钛矿、尖晶石的晶体结构特征;2.观察层状和架状硅酸盐矿物的晶体结构模型的特点,注意观察高岭土、方石英的结构;3.标定萤石模型中所有质点的几何位置;4.组装一个晶体结构模型。
四、实验方法1.分析晶胞模型金刚石、石墨、氯化钠、氯化铯、闪锌矿、纤锌矿、金红石、碘化镉、萤石、钙钛矿、尖晶石均为一个单位晶胞,通过一个单位晶胞,分析晶胞所属空间格子类型及正负离子或原子所处的空间位置,对照模型,分析正负离子的配位数。
绪论结晶化学的研究对象结晶化学的研究对象是晶体的化学组成与其内部结构的关系,晶体结构与晶体性质的关系。
晶体的性质,是由晶体的结构所决定的,晶体具有怎样的结构,就会表现出怎样的性质。
结构发生了变化,性质也就随之而变。
根据晶体所表现的性质,就可推求或测定晶体的内部结构。
知道了晶体结构就能解释晶体为什么具有这种性质而不具有另一种性质;知道了晶体结构,就能推测该晶体应该还具有些什么性质是人们尚未知道的。
但是,晶体的结构,又紧密地与晶体的化学组成相联系着,在化学上,人们遇到的物质非常繁多,因此所遇到的晶体结构情况也就非常复杂。
甚至还有多晶型现象,即一种物质在不同的物理化学条件下,具有不同的晶体结构,这样,在研究晶体结构,即研究原子、分子等微粒在空间如何排列及真相互作用时,就必然与物质的化学组成密切有关。
学习结晶化学的意义结晶化学对于生产实践及科学研究活动有些什么意义呢?现在简略他说明如下。
在生产实践中,涉及结晶化学的问题很多。
例如新的科学技术的发展,要求人工培养出大粒的单晶体,作为超声波发生器的基本元件。
培养单晶体,是一门综合性的技术,必须具有结晶化学的知识。
半导体的性能、催化剂的性能,皆与晶体结构密切有关。
晶体结构中杂质原子的存在及晶格的某些缺陷,对半导体的导电性能有着极大的影响。
催化剂中晶粒的大小,晶格的类型,微粒间的键型等也都会大大地影响催化效果。
工业上,金属材料的强度直接与晶体结构内部的缺陷有关。
要试制特殊性能的合金,也必须以一定的结晶化学知识作为基础。
结晶化学的发展,与生产实践及其他科学如矿物学、物理学金属学等分不开。
结晶化学对于其他科学部门的发展,也起了促进作用。
例如矿物学的发展,促进了结晶学、结晶化学的发展。
而结晶化学又使矿物学不再停留在矿物晶体的外形研究上,而深入到矿物的内部结构里去,使矿物的组成、结构和性质三者更好地统一起来。
结晶化学的知识对于研究地球构造及其发展历史,提供了很多根本的数据资料,发展成了一门新兴的科学——地球化学。