组合的概念
- 格式:ppt
- 大小:598.50 KB
- 文档页数:17
组合一、基本定义及性质1、组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2、组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 3、组合数公式:(1)(2)(1)!m mnnmmA n n n n m C A m ---+==或)!(!!m n m n C m n-=,,(n m N m n ≤∈*且4、组合数的性质1:mn n m n C C -=.规定:10=n C ;5、组合数的性质2:m n C 1+=m n C +1-m nC二、典型例题 例1、(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?例2、4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?例3、100件产品中,有98件合格品,2件次品从这100件产品中任意抽出3件. (1)一共有多少种不同的抽法;(2)抽出的3件都不是次品的抽法有多少种?(3)抽出的3件中恰好有1件是次品的抽法有多少种? (4)抽出的3件中至少有1件是次品的取法有多少种?例4、从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?例5、现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:例6、甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?例7、6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?例8、6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙三人,每人至少1本例9、身高互不相同的7名运动员站成一排,(1)其中甲、乙、丙三人自左向右从高到矮排列的排法有多少种?(2)其中甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?例10、(1)四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?例11、马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?例12、九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?例13、某考生打算从7所重点大学中选3所填在第一档次的3个志愿栏内,其中A校定为第一志愿;再从5所一般大学中选3所填在第二档次的三个志愿栏内,其中B、C两校必选,且B在C前问:此考生共有多少种不同的填表方法?例14.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到4只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?例15.在一次象棋比赛中,进行单循环比赛其中有2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,问:比赛开始时参赛者有多少人?三、课堂练习:1.判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法? 2.7名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( )A .42B .21C .7D .63.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( ) A .15对 B .25对 C .30对 D .20对4.设全集{},,,U a b c d =,集合A 、B 是U 的子集,若A 有3个元素,B 有2个元素,且{}A B a = ,求集合A 、B ,则本题的解的个数为 ( )A .42B .21C .7D .35.从6位候选人中选出2人分别担任班长和团支部书记,有 种不同的选法6.从6位同学中选出2人去参加座谈会,有 种不同的选法 7.圆上有10个点:(1)过每2个点画一条弦,一共可画 条弦;(2)过每3个点画一个圆内接三角形,一共可画 个圆内接三角形8.(1)凸五边形有 条对角线;(2)凸n 五边形有 条对角线9.计算:(1)315C ;(2)3468C C ÷.10.,,,,A B C D E 5个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?11.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?12.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?13.写出从,,,,a b c d e 这5个元素中每次取出4个的所有不同的组合14.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;15.要从5件不同的礼物中选出3件分送3位同学,不同的方法种数是 ; 16.5名工人分别要在3天中选择1天休息,不同方法的种数是 ;17.集合A 有m 个元素,集合B 有n 个元素,从两个集合中各取出1个元素,不同方法的种数是 .18、从1,2,3,,20 这20个数中选出2个不同的数,使这两个数的和为偶数,有_ 种不同选法19.正12边形的对角线的条数是 .20.6人同时被邀请参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法? 21.在所有的三位数中,各位数字从高到低顺次减小的数共有 个22.有两条平行直线a 和b ,在直线a 上取4个点,直线b 上取5个点,以这些点为顶点作三角形,这样的三角形共有( )A .70B .80C .82D .8423.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案有 ( )种A .4441284C C C B .44412843C C C C .4431283C C AD .444128433C C C A24.5本不同的书,全部分给4个学生,每个学生至少一本,不同分法的种数为 A .480 B .240 C .120 D .9625.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛成员的组成共有 种可能26.在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,第3题的2个小题中选做1个小题,有 种不同的选法27.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成 个没有重复数字的五位数28.正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共有 个 29.从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有 种选法;(2)如果男生中的甲与女生中的乙必须在内,有 种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有 种选法; (4)如果4人中必须既有男生又有女生,有 种选法30.在200件产品中,有2件次品从中任取5件,(1)“其中恰有2件次品”的抽法有 种; (2)“其中恰有1件次品”的抽法有 种; (3)“其中没有次品”的抽法有 种;(4)“其中至少有1件次品”的抽法有 种 四、课后作业:1.以一个正方体的顶点为顶点的四面体共有 个 2.以一个正方体的8个顶点连成的异面直线共有 对3.⑴6本不同的书全部送给5人,有多少种不同的送书方法?⑵5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法? ⑶5本相同的书全部送给6人,每人至多1本,有多少种不同的送书方法?4.某班元旦联欢会原定的5个学生节目已排成节目单,开演前又增加了两个教师节目如果将这两个教师节目插入原节目单中,那么不同插法的种数为 ( )A .42B .30C .20D .125.从7人中选派5人到10个不同的交通岗的5个中参加交通协管工作,则不同的选派方法有 ( )A .5557105C A AB .5557105AC A C .55107C CD .55710C A 6.某班分成8个小组,每小组5人,现要从中选出4人进行4个不同的化学实验,且每组至多选一人,则不同的安排方法种数是 ( )A .4484C AB .441845C A C C .444845C AD .44404C A7.5个人分4张同样的足球票,每人至多分一张,而且票必须分完,那么不同的分法种数是 .8.某学生要邀请10位同学中的6位参加一项活动,其中有2位同学要么都请,要么都不请,共有 种邀请方法9.一个集合有5个元素,则该集合的非空真子集共有 个10.平面内有两组平行线,一组有m 条,另一组有n 条,这两组平行线相交,可以构成 ___________个平行四边形11.空间有三组平行平面,第一组有m 个,第二组有n 个,第三组有t 个,不同两组的平面都相交,且交线不都平行,可构成 个平行六面体12.在某次数学考试中,学号为(1,2,3,4)i i =的同学的考试成绩(){85,87,88,90,93}f i ∈,且满足(1)(2)(3)(4)f f f f ≤<<,则这四位同学的考试成绩的所有可能情况有 种 13.某人制订了一项旅游计划,从7个旅游城市中选择5个进行游览如果其中的城市A 、B 必选,并且在旅游过程中必须按先A 后B 的次序经过A 、B 两城市(A 、B 两城市可以不相邻),则不同的游览路线有 种14.高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有 种不同的调换方法15.某兴趣小组有4名男生,5名女生:(1)从中选派5名学生参加一次活动,要求必须有2名男生,3名女生,且女生甲必须在内,有种选派方法;(2)从中选派5名学生参加一次活动,要求有女生但人数必须少于男生,有____种选派方法;(3)分成三组,每组3人,有种不同分法16.学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是()A.64B.20C.18D.1017.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有()A.90B.180C.270D.54018.公共汽车上有4位乘客,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有种;如果其中任何两人都不在同一站下车,那么这4位乘客不同的下车方式共有种19.4名男生和3名女生排成一行,按下列要求各有多少种排法:(1)男生必须排在一起;(2)女生互不相邻;(3)男女生相间;(4)女生按指定顺序排列.20.有排成一行的7个空位置,3位女生去坐,要求任何两个女生之间都要有空位,共有种不同的坐法21.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中挑选6人上艇,平均分配在两舷上划桨,共有种选法22.,,,,A B C D E5位同学进行网页设计比赛,决出了第1至第5名的名次A、B两位同学去询问名次,主考官对A说:“很遗憾,你和B都未拿到冠军”;对B说:“你当然不会是最差的”从这个回答分析,5位同学的名次排列共可能有种不同的情况23.学校餐厅供应客饭,每位学生可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位学生有200种以上的不同选择,则餐厅至少还需准备种不同的素菜种24.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到测出1只次品为止,求第一只次品正好在第五次测试时被发现的不同情形有 _______种25.圆周上有12个等分点,以其中3个点为顶点的直角三角形的个数为个。
高中高三数学教案:组合一、教学目标1.理解组合的概念,掌握组合数的计算公式。
2.能够运用组合知识解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
二、教学重点与难点重点:组合的概念及组合数的计算公式。
难点:实际问题的解决。
三、教学过程1.导入师:同学们,我们之前学习了排列,今天我们来学习排列的兄弟——组合。
大家先来看一个例子:从a,b,c,d四个元素中任选两个元素,可以组成哪些不同的组合?生:ab,ac,ad,bc,bd,cd。
师:很好,这就是组合。
下面我们来详细学习一下组合的概念。
2.教学新课(1)组合的概念师:组合是指从n个不同元素中,任取m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合。
(2)组合数的计算公式师:那么,如何计算组合数呢?这里有一个公式:C(n,m)=n!/[m!(n-m)!],其中n!表示n的阶乘,即1×2×3×…×n。
(3)实例讲解师:下面我们来讲解几个实例,加深大家对组合的理解。
实例1:从5名男生和4名女生中,任选3名男生和2名女生组成一个班级,一共有多少种组合方式?实例2:一个班级有10名学生,其中3名是班委,现要从非班委中选2名学生参加比赛,一共有多少种组合方式?3.练习与讨论师:现在请大家来做几个练习题,巩固一下组合的知识。
练习1:从a,b,c,d,e五个元素中,任选3个元素组成一个组合,一共有多少种组合方式?练习2:一个篮球队有12名队员,其中5名是主力,现要从非主力中选2名队员参加比赛,一共有多少种组合方式?师:同学们,你们在解题过程中遇到了什么问题吗?我们来一起讨论一下。
师:通过今天的学习,我们了解了组合的概念和组合数的计算公式,也解决了一些实际问题。
现在请大家回顾一下,我们今天学习了哪些内容?有哪些收获?生1:我们学习了组合的概念和组合数的计算公式。
生2:我们学会了如何运用组合知识解决实际问题。
组 合【要点梳理】要点一:组合1.定义:一般地,从n 个不同元素中取出m (m n ≤)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.要点诠释:① 从排列与组合的定义可知,一是“取出元素”;二是“并成一组”,“并成一组”即表示与顺序无关. 排列与元素的顺序有关,而组合与元素的顺序无关,这是它们的根本区别.② 如果两个组合中的元素相同,那么不管元素的顺序怎样都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.因此组合问题的本质是分组问题,它主要涉及元素被取到或未被取到.要点二:组合数及其公式1.组合数的定义:从n 个不同元素中取出m (n m ≤)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.记作m n C .要点诠释:“组合”与“组合数”是两个不同的概念:一个组合是指“从n 个不同的元素中取出m (m ≤n )个元素并成一组”,它不是一个数,而是具体的一件事;组合数是指“从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数”,它是一个数. 例如,从3个不同元素a ,b ,c 中取出2个元素的组合为ab ,ac ,bc ,其中每一种都叫做一个组合,而数字3就是组合数.2.组合数的公式及推导求从n 个不同元素中取出m 个元素的排列数m n A ,可以按以下两步来考虑:第一步,先求出从这n 个不同元素中取出m 个元素的组合数m n C ;第二步,求每一个组合中m 个元素的全排列数mm A .根据分步计数原理,得到m m m n n m A C A =⋅. 因此这里n ,m ∈N +,且m ≤n ,这个公式叫做组合数公式.因为!()!m n n A n m =-,所以组合数公式还可表示为:!!()!m n n C m n m =-.要点诠释:组合数公式的推导方法是一种重要的解题方法!在以后学习排列组合的混合问题时,一般都是按先取后排(先组合后排列)的顺序解决问题。
幼小衔接数学分解组合幼小衔接数学是指从幼儿园到小学的过程中,让幼儿逐渐接触和学习数学的基础知识与技能。
其中,分解与组合是数学中的重要概念,应用广泛且具有实际意义。
下面就分解与组合的概念及其在幼小衔接数学中的应用进行详细介绍。
一、分解与组合的概念1.分解:将一个整体分成若干部分,每个部分都具有独立的特性和性质。
例如,将数10分解为2和8,其中2和8是10的两个部分,它们可以分别研究、计算和应用。
2.组合:将若干个部分合并成一个整体,整体具有不同于每个部分的独立特性和性质。
例如,将2和8组合起来,可以得到数10,数字10有着不同于2和8的特性,可以进行不同的运算和应用。
分解与组合概念的理解对于幼儿学习初等数学具有重要意义。
通过分解与组合,幼儿能够学会将一个复杂的问题拆分成较容易解决的小问题,并学会将小问题的解决方法再组合起来解决整个问题。
二、分解与组合在幼小衔接数学中的应用1.数字的分解与组合在数的认知过程中,通过将数字进行分解与组合,幼儿可以更好地理解数字之间的关系和运算方法。
例如,通过将10分解为2和8,幼儿可以认识到10可以是2和8的组合,同时也可以通过2和8组合得到10。
这种理解有助于幼儿在进行加减法运算时更加灵活和准确。
2.几何图形的分解与组合在学习几何图形时,通过分解与组合可以帮助幼儿更好地认识图形的特征和属性。
例如,将矩形分解为两个三角形,幼儿可以认识到矩形是两个三角形的组合,并且矩形与三角形具有不同的性质和特征。
同时,通过将三角形组合成矩形,幼儿也能够认识到几何图形之间的转换和转化关系。
3.数量的分解与组合在进行数的运算时,分解与组合的概念也被广泛应用。
例如,在进行加法运算时,幼儿可以将一个数分解成两部分再进行求和。
例如,将8分解为3和5,可以得到3+5=8。
同样,也可以将8分解为2和6,可以得到2+6=8。
通过这种分解与组合的方式,幼儿可以更好地理解加法的意义和性质。
4.问题的分解与组合在解决实际问题时,分解与组合的思维方法也非常重要。