同济大学数学分析2000
- 格式:doc
- 大小:62.00 KB
- 文档页数:2
2000—2010年历年上海大学数学分析真题上海大学2000年度研究生入学考试试题数学分析1、 设122(1)n n x x nx y n n +++=+,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2n n ay →∞=; (2)当a =+∞时,lim n n y →∞=+∞.2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且[]0,1min ()1f x =-证明:[]0,1max ()8f x ''≥3、 证明:黎曼函数[]1, x= (0,,)()0,10,p q p q qq R x ⎧>⎪=⎨⎪⎩当为互质整数在上可积当x 为无理数. 4、 证明:12210()lim (0),t tf x dx f t x π+-→=+⎰其中()f x 在[]1,1-上连续.5、 设()1ln 11n n p a n ⎛⎫=+- ⎪⎝⎭,讨论级数2n n a +∞=∑的收敛性.6、 设()f x dx +∞⎰收敛且()f x 在[]0,+∞上单调,证明:001lim ()()h n h f nh f x dx ++∞+∞→==∑⎰.7、 计算曲面2222x y z a ++=包含在曲面22221(0)x y b a a b+=<≤内的那部分的面积.8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数1sin k kk +∞=∑的值. 上海大学2001年度研究生入学考试试题数学分析1、 计算下列极限、导数和积分:(1) 计算极限1lim();xx x +→ (2) 计算2()()x x f t dt ϕ=⎰的导数()x ϕ',其中()f x 2,(1).1,(1)t t t t ≤⎧=⎨+>⎩(3)已知)211sin x x'⎤=⎥+⎦,求积分2011sin I dx x π=+⎰. (4) 计算()()22222()0x y z t f t xyz dxdydz t ++≤=>⎰⎰⎰的导数()f t '(只需写出()f t '的积分表达式).2、 设()f x 在[],a b 上连续,在(),a b 上可导,若()()0f a f b >且()02a bf +=,试证明必存在(),a b ξ∈使得()0f ξ'=. 3、 令(),1y F x y y xe =+-(1)、证明:111311,0,,;,0,,.2121221212F x x F x x ⎛⎫⎛⎫⎛⎫⎡⎤<∈->∈- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2)、证明:对任意的11,1212x ⎛⎫∈- ⎪⎝⎭,方程(),0F x y >在13,22y ⎛⎫∈ ⎪⎝⎭中存在唯一的解()y x .(3)、计算(0)y '和(0)y ''. 4、一致连续和一致收敛性(1)、函数2()f x x =在[]0,1上是一致连续的,对210ε-=,试确定0δ>,使得当1201x x ≤<≤,且12x x δ-<时有3321210x x --<.(2)、设[]2231(),0,1,1,2,,2n n x f x x n n x+=∈=+证明:()n f x 在[]0,1上是内闭一致收敛的,但不是一致收敛的.5、曲线积分、格林公式和原函数. (1)计算第二型曲线积分()221,2L xdy ydxI x y π-=+⎰其中L 是逐段光滑的简单闭曲线,原点属于L 围成的内部区域,(L)的定向是逆时针方向.(2)设(),p x y ,(),q x y 除原点外是连续的,且有连续的偏导数,若<a>()(),,0,0p qx y y x∂∂=≠∂∂ <b>()0,L pdy qdx c +=≠⎰其中(L)的参数方程cos ,(02)sin x tt y tπ=⎧≤≤⎨=⎩ 证明:存在连续可微函数()()(),,,0,0F x y x y ≠,使得()()2222,,,22F c y F c xp x y q x y x x y y x yππ∂∂=+=-∂+∂+. 上海大学2002年度研究生入学考试题数学分析1、 求α和β使得当x →+∞等价于无穷小量x βα.2、 求椭圆2221Ax Bxy Cy ++=所围成的面积S ,其中20,0,,,A AC B A B C >->均为常数.3、 试给出三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中系数的计算公式(不必求出具体值),使得该级数在[]0,1上一致收敛到2x ,并说明理论依据。
考研数学二教材
对于考研数学二的教材,可以考虑以下几本:
1. 《高等数学》(同济大学出版社),这是一本比较全面的高等数学教材,包括数学分析、高等代数、数学物理方法等多个方面的内容,可以作为考研数学二的参考教材。
2. 《数学分析习题集》(北京大学出版社),这是一本比较系统的数学分析习题集,包括微积分、级数、函数论等多个方面的内容,可以帮助考生巩固和提高数学分析的基本能力。
3. 《线性代数及其应用》(高等教育出版社),这是一本比较经典的线性代数教材,包括向量空间、线性变换、特征值和特征向量等多个方面的内容,可以帮助考生提高线性代数的能力。
4. 《数学物理方法》(高等教育出版社),这是一本比较专业的数学物理方法教材,包括常微分方程、偏微分方程、傅里叶分析等多个方面的内容,可以帮助考生提高数学物理方法的能力。
以上教材都是比较经典和权威的教材,可以帮助考生提高数学能力和应对考研数学二的挑战。
同济大学教材高等数学pdf高等数学作为大学数学的基础课程之一,对于理工类专业的学生来说至关重要。
同济大学作为中国一流的综合性大学,在高等数学领域也有着丰富的教学资源和研究成果。
同济大学教材高等数学PDF,是同济大学针对高等数学课程所编写的电子版本教材。
1. 同济大学教材高等数学PDF简介同济大学教材高等数学PDF是一本由同济大学数学系编写的高等数学教材的电子版本。
该教材以同济大学高等数学课程的教学大纲为依据,内容涵盖了高等数学的基础理论和应用技巧。
该版本教材经过多年的实际教学验证,已经成为同济大学高等数学课程的主要参考资料。
2. 同济大学教材高等数学PDF特点(1)全面而系统的知识结构:同济大学教材高等数学PDF包含了高等数学的基础理论和应用技巧,内容涵盖了微积分、数学分析、线性代数等多个领域。
它详细而全面地介绍了这些领域的基本概念、定理和方法。
(2)注重实用性和应用性:同济大学教材高等数学PDF在讲解高等数学的基础理论的同时,也注重了理论与实际应用的结合。
通过举例和习题,教材引导学生将所学的数学知识应用于实际问题的求解。
(3)严谨的逻辑和推导过程:同济大学教材高等数学PDF在内容的组织和表达上非常严谨和逻辑,每一个定理和推导过程都有详细的解释和证明,使学生能够清晰地理解数学知识的推导过程和思维方法。
3. 同济大学教材高等数学PDF的使用同济大学教材高等数学PDF可供同济大学学生和其他高校学生作为高等数学课程的参考资料使用。
学生可以通过网络或者其他途径获取该教材的电子版本,并进行学习和研究。
在学习过程中,学生可以结合教材中的例题和习题进行练习,加深对高等数学的理解和应用能力。
4. 同济大学教材高等数学PDF的优势(1)权威性和可靠性:同济大学作为中国一流的综合性大学,其教材编写具有权威性和可靠性。
同济大学教材高等数学PDF经过多年的实际应用和教学验证,内容准确、全面。
(2)便于学习和查阅:同济大学教材高等数学PDF的电子版便于学生随时随地进行学习和查阅,无需携带大量的纸质教材。
考研数学二教材参考书目
考研数学二教材参考书目如下:
1.《高等数学》第二册,同济大学数学系编,高等教育出版社,主要讲解微积分、多元函数及其应用等。
2.《线性代数及其应用》(原书第四版),Gilbert Strang,清华大学出版社,重点讲解矩阵、向量、线性方程组等内容。
3.《概率论与数理统计》(第二版),郭玉珍、李定洲编,高等教育出版社,主要讲解概率、随机变量、假设检验等。
4.《数学分析习题集》(第二册),数学分析教师组编,高等教育出版社,包含涉及微积分、实分析、泰勒展开等的习题。
5.《离散数学及其应用》(第七版),肯尼思·罗森,人民邮电出版社,主要讲解集合论、图论、布尔代数等。
6.《数值分析》(第九版),理查德·赫斯特、克里斯汀·汉兹尔,电子工业出版社,主要讲解数值计算方法、插值、微积分等。
以上为考研数学二教材参考书目,供大家参考使用。
专科高等数学教材推荐书目导言:专科高等数学作为一门重要的基础课程,对于专业学科的学习和发展具有重要意义。
选择一本合适的教材对学生学习数学知识和提高数学能力至关重要。
本文将推荐几本适合专科高等数学教材供读者参考。
一、《高等数学》(第七版)作者: 同济大学数学系《高等数学》是专科高等数学的经典教材之一,广泛应用于我国高校数学专业。
该书内容全面,结构合理,难度适中,适合专科高等数学课程的学习。
书中涵盖了数列与极限、连续与微分、微分学应用、定积分、不定积分和微分方程等重要内容。
必要的理论分析和大量的例题详细说明,有助于读者理解数学概念和方法,培养问题解决能力。
二、《工科数学分析》(第二版)作者: 林元烈、金明睿《工科数学分析》是一本注重实际应用的数学教材。
作者将基本数学概念与实际问题相结合,讲解了数列极限、函数极限、连续性、可微性等基础知识,并通过具体场景的例题和习题,在实际问题中引入数学分析的思维与方法。
这本教材适用于需要运用数学工具解决实际问题的专科高等数学学习,能够培养学生的应用能力和创新思维。
三、《数学分析导引》(第三版)作者: 郑凤岐《数学分析导引》是一本基础且系统的数学教材,内容包括数列与极限、数值级数、函数极限、一元函数微分学、一元函数积分学等。
作者通过数学分析的基本概念和方法来解决实际问题,以培养学生的数学思维和分析能力。
此外,该书还包含大量习题,供学生巩固知识和提高解题能力。
四、《大学数学分析教程》(第七版)作者: 李钟原《大学数学分析教程》是专科高等数学课程中常用的教材之一。
该书内容清晰明确,涵盖了数列与极限、实数与函数、微分学、积分学和级数等方面的内容。
书中的例题和习题设计合理,既考察基本知识的掌握,又注重培养学生的分析与推理能力,对于提高学生的数学水平有很大的帮助。
结语:以上推荐的几本专科高等数学教材,内容涵盖了数学分析的主要知识点和方法,适合专科高等数学课程的学习。
学生在选择教材时应根据自身的学习需求和教学要求,选择适合自己的教材。
大学数学阅读书目推荐150本以下是针对大学数学研究的一些推荐书目,涵盖了数学的各个领域和不同难度级别。
这些书籍将为大学生提供坚实的数学基础和深入的数学知识。
基础数学1. 《普通数学》(作者:程路、左国光)2. 《高等数学》(作者:同济大学)3. 《线性代数与解析几何》(作者:谢金星、宁先念)4. 《概率论与数理统计》(作者:李建国)5. 《离散数学及其应用》(作者:肖平、刘源、陈景林)微积分1. 《微积分学教程》(作者:苏步青)2. 《微积分学》(作者:郭廷宇)3. 《微积分》(作者:邵发)4. 《微积分学教程》(作者:王尧、毛红新)5. 《微积分学辅导与题解析》(作者:许正章)线性代数1. 《线性代数及其应用》(作者:David C. Lay)2. 《线性代数》(作者:张贤达、朱桂香)3. 《线性代数》(作者:丘维声、张维皓)4. 《线性代数基础教程》(作者:陈佩民)5. 《线性代数》(作者:Charles Curtis)概率论与数理统计1. 《概率论与数理统计》(作者:吴喜之)2. 《概率论与数理统计》(作者:邵发)3. 《概率论与数理统计》(作者:陈希孺)4. 《概率论与数理统计教程》(作者:严新华)5. 《概率论与数理统计》(作者:黄启广)数学分析1. 《数学分析教程》(作者:吴文俊)2. 《数学分析教程》(作者:王浩)3. 《数学分析教程》(作者:郑曾良)4. 《数学分析教程》(作者:冯克勤)5. 《数学分析教程》(作者:水木清华)抽象代数1. 《抽象代数导论》(作者:David S. Dummit、Richard M. Foote)2. 《抽象代数教程》(作者:朱浩生)3. 《抽象代数教程》(作者:吴文智)4. 《抽象代数教程》(作者:邵红明)5. 《抽象代数研究指导与题解答》(作者:郑也夫)这只是一个推荐书目的小小部分,希望对正在学习大学数学的同学们有所帮助。
高等数学同济版教材有几种《高等数学同济版教材有几种》高等数学作为大学本科阶段必修的一门学科,对于理工科学生而言非常重要。
而教材的选择则是学习高等数学的第一步,同济大学出版社的高等数学教材是其中的一种经典教材,对于同济版高等数学教材的种类,我们来做一个梳理和总结。
同济版高等数学教材是以系统性、逻辑性和实用性为总体设计准则,内容丰富、触及面广,深入浅出地讲解了高等数学的基本理论和方法,适用于大学本科高等数学的教学和学习。
以下将介绍同济版高等数学教材的几种常见版本。
1. 同济版《高等数学》教材(第七版)同济版《高等数学》教材第七版是同济大学出版社于2015年出版的新版本教材。
本教材从理论到实践,从基础知识到拓展应用,从几何到代数,从微积分到微分方程等内容进行全面系统的阐述和讲解。
该版本教材较之前版本进行了全面的修订和更新,更加贴合现代高等数学的发展动态。
2. 同济版《高等数学》教材(第六版)同济版《高等数学》教材第六版是同济大学出版社于2007年出版的版本,是第七版之前同济版高等数学教材的主要版本之一。
本教材在数学知识的体系结构、教学大纲的要求等方面与第七版基本保持一致,但内容和习题略有差异。
3. 同济版《高等数学》教材(第五版)同济版《高等数学》教材第五版是同济大学出版社于2002年出版的版本,是较早期的同济版高等数学教材。
该版本教材内容较全面,包括高等数学的各个方面内容,并对难点和疑难问题给予了重点讲解和解析。
4. 同济版《高等数学》教材(综合版)同济版《高等数学》教材(综合版)是同济大学出版社于2009年出版的一套高等数学教材,也是同济版高等数学教材的一个分支。
该版本教材内容与上述几个版本有所差异,以综合性的方式进行教学,涵盖了数学分析、微分方程、概率统计等多个方面的内容。
综上所述,同济版高等数学教材有不同版本,包括第七版、第六版、第五版以及综合版等,每个版本都有其独特的特点和亮点。
学生在选择教材时可以按照教学大纲和教师要求进行选择,根据自身学习情况和兴趣爱好来确定最适合自己的版本。
同济的高等数学教材好吗作为一所享誉国内外的知名高校,同济大学的教材一直备受关注。
高等数学作为大学生必修的一门课程,同济的高等数学教材也是备受瞩目的。
那么,同济的高等数学教材到底好不好呢?接下来,我将从教材内容、难度适应性以及实用性等方面进行分析,解答这一问题。
首先,同济的高等数学教材在内容方面具有优势。
教材内容丰富、翔实,涵盖了高等数学的各个重要知识点。
从微积分、数学分析到线性代数,同济的教材将这些内容进行系统化的组织和讲解,帮助学生全面、深入地理解数学的基本原理和方法。
此外,教材还配有大量的例题和习题,供学生练习和巩固知识。
这种内容有助于学生夯实基础,提升数学应用的能力。
其次,同济的高等数学教材在难度适应性方面经过了充分的考量。
教材难度从浅入深,层层递进,适合不同层次学生的学习需求。
对于初学者,教材通过讲解基本概念和定理,引导学生逐步理解基本思想和方法;对于有一定数学基础的学生,教材则深入展开,涉及更加复杂的数学应用和推导,挑战学生的思维和分析能力。
这种难度适应性使得同济的高等数学教材不仅适合高校学生使用,而且对于自学数学的人群也具有指导性的作用。
另外,同济的高等数学教材在实用性方面具有独特的特点。
教材内容与当前实际问题结合紧密,注重将高等数学的理论知识与实际应用相结合。
教材中给出了大量的实例,这些实例涉及到物理、化学、经济等领域,增加了学习的趣味性和实用性。
学生阅读教材,可以通过解决实例问题,将数学知识运用到实际中,培养数学建模和问题解决的能力,增强了学习的实效性。
然而,同济的高等数学教材也存在一些不足之处。
首先,教材的篇幅较长,内容较为繁杂,对于部分学生来说,可能会感到有些吃力。
其次,教材在讲解过程中可能存在一些复杂的推导和证明,对于一些数学基础较弱的学生来说,可能会增加学习的困难。
因此,学生在使用同济的高等数学教材时,可能需要有辅导书或者教师的帮助,以便更好地理解内容。
综上所述,同济的高等数学教材在内容丰富性、难度适应性和实用性方面表现出较强的优势。
国内数学分析主要参考书⽬_数学分析书籍花了半天时间,对国内部分⼤学所编数学分析(/⾼等数学/微积分)教材做了个汇总,发于此,肯定有很多遗漏,(期待有兴趣的⾍友帮我⼀起补充,补充格式:⼤学名,精确书名,编写作者....)。
国内部份⼤学常⽤数学分析(⾼数,微积分)教材总汇清华⼤学《数学分析教程》常庚哲.史济怀.《数学分析》(三册).何琛史济怀徐森林《数学分析》(三册).徐森林,.⾦亚东,.薛春华《数学分析讲义》(三册).陈天权《数学分析习题课讲义》谢惠民等北京⼤学《数学分析》沈燮昌著第⼀册,⽅企勤著第⼆册,廖可⼈、李正元著第三册《数学分析习题课教材》(第⼀版)《数学分析解题指南》(第⼆版)林源渠,⽅企勤《数学分析习题集》林源渠,⽅企勤等《数学分析新讲》张筑⽣(三册)《数学分析简明教程》邓东翱,尹⼩铃著《数学分析上、下册》彭⽴中、谭⼩江著复旦⼤学《数学分析》《数学分析》陈传璋,⾦福临,朱学炎,欧阳光中著第⼆版《数学分析》欧阳光中,朱学炎,⾦福临,陈传璋著第三版《数学分析》陈纪修等著《数学分析》欧阳光中,姚允龙著同济⼤学《⾼等数学》(同济⼤学数学系第六版,上、下册)《⾼等数学讲义》樊映川等编..华东师范⼤学《数学分析》华东师范⼤学数学系著《数学分析精读讲义》华东师范⼤学数学系著《数学分析习题精解》吴良森,⽑⽻辉等?中国科学技术⼤学《数学分析教程》常庚哲,史济怀著《简明微积分》龚昇《⾼等数学引论》华罗庚《数学分析》徐森林著《数学分析的⽅法及例题选讲》徐利治南开⼤学《数学分析上、下册》李成章,黄⽟民《在南开⼤学的演讲》陈省⾝南京⼤学《数学分析讲义》梅加强《数学分析教程》许绍浦等北京师范⼤学《简明数学分析(第⼀版)》王昆扬《简明数学分析(第⼆版)》郇中丹,刘永平,王昆扬《微积分学讲义(第⼆版)》邝荣⾬武汉⼤学《⾼等数学上、下册》(⾼等教育出版社,齐民友主编)《重温微积分》齐民友著吉林⼤学《数学分析》东北师范⼤学《数学分析讲义》刘⽟琏,傅沛仁著天津⼤学《⾼等数学上、下册》蔡⾼厅叶宗泽《⾼等数学试题精选与解答》(蔡⾼厅等编)内蒙古⼤学《微积分学简明教程》曹之江等著[ Last edited by hylpy on 2014-9-15 at 12:38 ]国内数学分析主要参考书⽬[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(下册)习题精解.合肥:中国科学技术⼤学出版社,2007. [112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007. [113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[ Last edited by hylpy on 2018-9-2 at 18:39 ][121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[ Last edited by hylpy on 2018-9-5 at 19:19 ][135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[ Last edited by hylpy on 2018-9-7 at 18:06 ][140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.国内数学分析主要参考书⽬本帖隐藏的内容[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(上册)习题精解.合肥:中国科学技术⼤学出版社,2007.[112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007.[113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.这⾥列的参考书,本论坛⼤部分都有电⼦版分享。
高等数学一是哪本教材高等数学一是大学数学课程中的一门必修课程,主要介绍了数学分析的基本理论和方法。
对于大部分大学来说,高等数学一是通过教材来进行教学的,下面将介绍几种常用的高等数学一教材:一、《高等数学(第七版)》(同济大学出版社)该教材由同济大学数学系编写,是广泛使用的教材之一。
此教材内容丰富全面,结构严谨,逻辑性强。
它以实例为基础,循序渐进地讲解数学的基本概念和定理,配有大量的习题和例题以巩固学生的理解与运用能力。
该教材语言通俗易懂,对于初学者来说较易接受。
二、《高等数学(第八版)》(人民教育出版社)这是一本经典的教材,深受学生和教师的喜爱。
该教材对数学的概念、原理和应用进行了详细的介绍和推导,形式上条理清晰,内容上丰富全面。
同时,该教材除了提供基本的教学内容外,还附有丰富的习题和例题,方便学生巩固知识和练习技能。
三、《高等数学(第三版)》(清华大学出版社)该教材是由清华大学数学系编写的,内容体系完整、严谨,优点是理论与实践相结合。
该教材着眼于培养学生的分析和解决问题的能力,注重数学的应用和发展,为学生提供了很好的思考框架和解决问题的方法。
可通过习题的练习来巩固学生的基本知识和技能。
四、《高等数学(第五版)》(高等教育出版社)该教材是一本经典的高等数学教材,广泛应用于中国的高校教育。
它以数学分析理论为基础,介绍了微积分、导数与微分、积分和微积分基本定理等主要内容。
该教材具有较好的阅读性,并提供了大量的例题和习题供学生练习和巩固知识。
综上所述,高等数学一教材有很多种选择,每种教材都有其独特的特点和优势。
选择适合自己的教材,关键在于学生对教材内容的理解和接受程度,以及教材编写人员的教学理念和风格。
无论选择哪种教材,在学习过程中,都需要注重理论与实践相结合、理解与应用并重,培养自己的数学思维能力和解决问题的能力,才能更好地掌握高等数学一的知识。
考研高等数学教材推荐考研是许多大学生所追求的学术目标之一,而高等数学作为考研数学科目的重中之重,选择一套适合的高等数学教材是非常关键的。
本文将为大家推荐几套经典的考研高等数学教材,帮助考生们在备考中更好地掌握高等数学知识。
一、《高等数学(上、下册)》《高等数学(上、下册)》是许多大学的高等数学教材,也是考研高等数学备考的重要参考书。
该教材由同济大学数学系编写,章节内容严谨、系统,对高等数学的各个知识点都有详细的讲解和例题练习。
同时,该教材的题目形式多样,覆盖了各种考研题型,能够帮助考生全面理解和掌握高等数学的相关知识。
二、《数学分析教程》《数学分析教程》是一套经典的高等数学教材,该教材由清华大学数学系编写。
这套教材从数学分析的基础知识出发,逐步引导考生深入理解和掌握高等数学的概念和方法。
该教材在讲解中注重逻辑性和严谨性,能够帮助考生建立起扎实的高等数学基础。
三、《高等数学辅导教程》《高等数学辅导教程》是一本专门为考研学生编写的辅导教材,该教材由经验丰富的教师团队编写。
该教材在内容上注重考研的重点和难点,对于一些常见的考试题型有详细的解析和分析。
同时,该教材还提供了大量的习题和模拟试题,帮助考生巩固所学知识,提高解题能力。
四、《高等数学精讲系列》《高等数学精讲系列》是一套系统全面介绍高等数学内容的教材,该教材由一线高校教师编写。
该教材注重理论与实践相结合,内容既具有学术性,又具有实用性。
同时,该教材的讲解通俗易懂,将抽象的数学知识具象化,帮助考生更好地理解和掌握高等数学的思想方法。
总结起来,以上推荐的几套高等数学教材都是考研备考的重要参考书,每一套教材都有其独特的特点和亮点。
考生可以根据自身的学习情况和学习风格选择适合自己的教材。
除了使用教材进行知识学习外,考生还应注重做题训练,提高解题技巧和应试水平。
希望本文的推荐能够对考研高等数学备考有所帮助,祝愿考生们取得好成绩!。
高等数学预科教材推荐高等数学是大学阶段必修的一门课程,对于学习数学以及相关专业的学生来说,选择一本合适的教材是非常重要的。
一本好的教材可以帮助学生建立扎实的数学基础,培养逻辑思维,并且提供清晰的知识框架和解题思路。
在市面上有很多种高等数学预科教材,下面我将介绍几本值得推荐的教材以供参考。
1.《高等数学》(同济大学主编)作为一本传统的教材,《高等数学》由同济大学编写,已经成为许多高校的教材。
这本教材详尽全面地介绍了高等数学的各个知识点,内容安排良好,逻辑清晰。
同时,每个章节都有大量的例题和习题,帮助学生巩固知识和训练解题能力。
这本教材在思维导图和图示方面也很出色,能够帮助学生更好地理解抽象的数学概念。
2.《工科数学分析》(洪岩主编)《工科数学分析》是一本重点突出实际应用的教材。
它将高等数学的理论与实践结合起来,注重数学的应用背景和解决实际问题的方法。
这本书的特点是引入了一些工程实例和案例分析,帮助学生将数学知识应用到实际生活中,并提供了更多的实践操作和数学建模的练习。
3.《高等数学全书》(辽宁教育出版社主编)《高等数学全书》是一本经典的高等数学教材,适合有较强数学基础的学生使用。
这本书的特点是理论推导详细,并对数学概念进行了深入的剖析。
每个章节都配有大量的习题,不仅考察基本知识的掌握,还注重培养学生的数学思维和解决实际问题的能力。
4.《高等数学预科必修课教程》(北京大学主编)该教材是为高中数学成绩较好的学生所编写的,内容难度适中,注重基础知识的讲解和扩展,对于希望提前学习高等数学的学生来说非常适用。
书中注重原理的引导,并提供大量的例题和实例分析,帮助学生更好地理解和掌握高等数学的概念和方法。
以上推荐的高等数学预科教材仅是其中的几本,选择教材还要根据个人学习情况和学校教学内容来决定。
在学习高等数学时,除了教材本身,还要注重理论联系实际,多做题目,参加讨论和辅导课程,不断拓宽自己的数学思维。
相信通过合适的教材和良好的学习方法,你将能够轻松理解和掌握高等数学知识,并在学业中取得好成绩。
高等数学有几张教材书啊高等数学是大学本科数学教育的一门基础课程,涵盖了微积分、线性代数、概率论等内容。
针对高等数学的教育教材也非常丰富,下面将介绍一些常见的高等数学教材。
1. 《高等数学(上、下册)》这是由同济大学数学系编写的一套教材。
分为上、下两册,详细讲解了微积分的概念、定理和应用等内容。
它以清晰简明的文字和丰富的例题,深受广大学生喜爱。
2. 《高等数学(全套共四册)》这套教材是由清华大学数学系编写的,分为上、下两册(上册是《数学分析》,下册是《线性代数与解析几何》),涵盖了高等数学的各个分支。
它以严谨的数学推导和深入的理论知识,适合对数学有较高要求的学生。
3. 《高等数学教程》这本教材是由北京大学数学系编写的一本综合教材,涵盖了微积分、线性代数、概率论等内容。
它突出了数学的应用意义,并融入了一些实际问题的求解方法,有助于学生将数学知识应用到实际生活中。
4. 《高等数学导学与习题解析》这本教材是为高等数学学习者准备的导学辅助材料,由上海交通大学数学系编写。
它在讲解高等数学的基础概念和定理的同时,提供了大量的习题和解析,有助于学生巩固所学内容和培养解题能力。
5. 《高等数学应用题解析》这本教材侧重于高等数学知识的应用,包含了大量实际问题的解析和求解方法。
它由多位数学专家合著,对于希望将高等数学应用到实际领域的学生具有很高的参考价值。
除了上述教材,还有很多其他的高等数学教材可供选择,如《高等数学习题指导与解答》、《高等数学理论与实践》等。
学生可以根据自身的学习风格和课程要求选择适合自己的教材。
需要注意的是,教材的选择应结合实际情况,同时参考教师的建议,因为不同学校、不同课程可能会有不同的教材要求。
同时,高等数学的学习不应仅仅依赖于教材,还需要有针对性的练习和理解,以加深对数学知识的理解和应用。
总之,高等数学教材众多,学生可以根据自己的需求和兴趣进行选择。
通过合适的教材,辅以适当的练习和理解,相信学生一定能够掌握高等数学的知识和方法,取得好的学习成绩。
一、计算 (1))]11ln([lim 2x x x x +-∞→ (3)dx e
x ⎰+∞-0)2
1,min(
(2)设变换方程⎩
⎨⎧+=-=ay x v y x u 2可把222226y z y x z x z ∂∂-∂∂∂+∂∂=0简化为02=∂∂∂v u z ,求常数a 。
二、将函数⎪⎪⎩
⎪⎪⎨
⎧≤≤≤≤+=ππππx x x x f 20202)(展开正弦级数,并指出该正弦级数的和函数。
三、求在椭球面),,(1222222+
∈=++R c b a c z b y a x
内嵌入的有最大体积的各棱平行于坐标轴的直角平行六面体的体积 四、证明曲线积分dy x y x y x y dx x y x y L )cos _(sin )cos 1(22+-
⎰在右半平面内与积分路径无
关,并当L 的起点为),1(π,终点为),2(π时计算此积分。
五、求积分
,)1(22d x d y z y z d z d x a z x d y d z ⎰⎰∑-+-其中∑为yoz 面上的曲线y e z =)0(a y ≤≤绕z 轴旋转所得的曲面的下侧。
六、设函数),(y x f 在2R 上有连续的偏导数,问函数⎪⎪⎩
⎪⎪⎨⎧>≤=≥⎰⎰∞+-0)sin (0)),(()(0sin x dt t t e dx d x dy y x f dx d x g xt x
x 在哪些间断点处连续?若有间断点,请指出其类型并说明理由。
七、设)(x f 为].0[∞+上恒
取正值的连续函数,且当
令时,1
)(22x x f x ≥≥)
0()()(0
0>=⎰
⎰∞++∞x dt t f dt t tf x )(ϕ,证明对任意),在()(方程∞+=+∞∈0),,0(c x c ϕ上有唯一解。
八、设函数)(x f 在区间],[h x x +上连续且二次可微,证明存在)1,0(∈θ,使得
)(4)2(2)()(2
h x f h h
x f x f h x f n θ+++=++。