圆周运动向心力与向心加速度
- 格式:ppt
- 大小:1.96 MB
- 文档页数:40
2. 匀速圆周运动的向心力和向心加速度-教科版必修2教案1. 前置知识在学习本节内容之前,需要掌握以下基本知识:•牛顿第一定律:物体静止或做匀速直线运动的状态不会改变,除非有外力作用于它。
•牛顿第二定律:物体受到的力等于它的质量与加速度之积。
•动量:描述物体运动状态的物理量,等于质量与速度之积。
•矢量:具有大小和方向的物理量。
2. 学习目标本节内容主要介绍了匀速圆周运动的向心力和向心加速度,学习完本节内容后,你将能够:•理解匀速圆周运动的基本概念;•理解向心力和向心加速度的含义及其计算方法;•掌握向心力与半径、速度、质量之间的关系。
3. 知识点介绍3.1 圆周运动的定义圆周运动是物体在做匀速的圆周运动时,它在周向上的运动速度大小保持不变,但是它的速度方向和位置不断变化的运动。
圆周运动分为匀速圆周运动和非匀速圆周运动两种。
3.2 向心力的概念向心力是使运动物体沿圆周方向运动的力,它的方向指向圆心。
在圆周运动中,向心力是保持物体做匀速圆周运动的必要条件。
3.3 向心力和圆周半径、速度、质量之间的关系向心力大小与圆周半径、速度和质量有关。
向心力与质量成正比,与圆周半径和速度的平方成反比。
3.4 向心加速度的概念向心加速度是使运动物体沿圆周方向加速运动的加速度,它的方向指向圆心。
在圆周运动中,向心加速度与向心力大小成正比,与物体质量成反比。
3.5 向心力和向心加速度的计算圆周运动的向心力和向心加速度的计算公式如下:•向心力:$F_c = \\frac{mv^2}{r}$。
•向心加速度:$a_c = \\frac{v^2}{r}$。
其中,F c为向心力,m为物体质量,v为线速度,r为圆周半径;a c为向心加速度,v和r的含义与前面相同。
4. 教学建议在教学过程中,可以采用以下方法:1.引入问题:给学生展示一个锤子绕着圆轨道旋转的视频,引导学生思考物体在圆周运动中是如何运动的,需要哪些力来维持这种运动状态。
05.06圆周运动—向心力和向心加速度(来源分析)Lex Li一、导航01、向心力的作用效果(1)只改变线速度的方向.由于向心力始终指向圆心,其方向与物体运动方向始终垂直,故向心力不改变速度的大小.(2)向心力不是一种特殊性质的力,在对物体进行受力分析时,不能说物体还受到向心力.02、向心力的来源分析二、再接再厉01、如图所示,细线的一端有一小球,另一端有光滑的固定轴O,现给小球一个初速度V0,使球和细线一起绕O轴在竖直面内转动,不计空气阻力,则:(1)求小球在A点处的向心力及细线的拉力;(2)若物体在B点处的速度变为V,求此时的向心力及细线的拉力;(3)求小球过最高点D的最小速度。
02、如图所示,细线的一端有一小球质量m=1 kg,另一端有光滑的固定轴O,现给小球一个初速度V0,使球和细线一起绕O轴在在光滑水平面上做匀速圆周运动,不计空气阻力,则:(1)若细线长L=1 m,V0=5 m/s,求细线的拉力;(2)若细线所能承受的最大力为100 N,求小球的最大速度。
03、如图所示,质量m=2 kg的物块在一半径R=0.1 m的圆柱形桶壁(桶壁粗糙)上,圆桶绕中心轴转动角速度ω=20 rad/s,则:(1)求物块所受的摩擦力;(2)求物块受到的向心力;(3)若物块与桶壁间的滑动摩擦因素μ=0.5,求物块不下滑的最小角速度。
04、如图所示,“飞椅”的游乐项目,长为L的钢绳一端系着座椅,另一端固定在半径为r的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动,当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求:(1)飞椅的转动半径R及向心力F;(2)钢绳的弹力T;(3)转盘转动的角速度ω与夹角θ的关系.05、如图所示,公路在通过小型水库泄洪闸的下游时常常要修建凹型桥(图甲),也叫“过水路面”.现有一“过水路面”的圆弧半径为50 m,一辆质量为800 kg的小汽车驶过“过水路面”.当小汽车通过“过水路面”的最低点时速度为5 m/s.g取10 m/s2,则:(1)问此时汽车的压力为?对路面的压力为多大?(2)若修建凸型桥(图甲)圆弧半径仍为50 m,一辆质量为800 kg的小汽车驶过最高点时速度为10m/s,此时汽车的向心力为多大,对路面的压力为又为多大?06、如图所示,质量为m的小物体A在水平转台上随转台以频率f作匀速圆周运动,物体到转轴的距离为d,物体与转台间的动摩擦因数为μ,求:(1)物体所需要的向心力;(2)物体所受到的转台对它的支持力和摩擦力.(3)为使物体保持距离d随转台一起转动,转台转动的角速度应满足什么条件?07、长L=0.5 m的细绳拴着小水桶绕固定轴在竖直平面内转动,桶中有质量m=0.5 kg的水(g取10 m/s2),求:(1)在最高点时,水不流出的最小速率是多少?(2)在最高点时,若速率v=3 m/s,水对桶底的压力为多大?08、长度为0.5 m的轻杆OA绕O点在竖直平面内做圆周运动,A端连着一个质量m=2 kg的小球.求在下述的两种情况下,通过最高点时小球对杆的作用力的大小和方向(提示:杆对球可提供支持力,也可提供拉力):(1)杆做匀速圆周运动的转速为2.0 r/s;(2)杆做匀速圆周运动的转速为0.5 r/s.09、原长为L的轻弹簧一端固定一小铁块,另一端连接在竖直轴OO′上,小铁块放在水平圆盘上,若圆盘静止,把弹簧拉长后将小铁块放在圆盘上,使小铁块能保持静止的弹簧的最大长度为5L/4,现将弹簧长度拉长到6L/5后,把小铁块放在圆盘上,在这种情况下,圆盘绕中心轴OO′以一定角速度匀速转动,如图教2-2-2所示.已知小铁块的质量为m,为使小铁块不在圆盘上滑动,圆盘转动的角速度ω最大不得超过多少?05.06圆周运动—向心力和向心加速度(来源分析)Lex Li04、解:依题意得:(2)设转盘角速度为ω,夹角为θ 座椅到中心的距离:R =r +L sin θ对座椅受力分析有:F =mg tan θ=mRω2 联立两式得ω=g tan θr +L sin θ.05、解:依题意得:汽车在“过水路面”的最低点时受力如图所示,由牛顿第二定律得:N -mg =mv 2r.解得:N =mg +m v 2r =(800×10+800×2550)N =8 400 N ,根据牛顿第三定律,汽车对路面的压力N ′=F N =8 400 N.06、解:依题意得:(1)物体随转台做圆周运动其向心加速度a =ω2r =(2πf )2d ,由牛顿第二定律得 F 向=m (2πf )2d =2m π2f 2d(2)物体在竖直方向上处于平衡状态,所以物体受到平台的支持力为G ,物体在水平面内只可能受到摩擦力,所以摩擦力提供物体做圆周运动的向心力,F f =F 向=2m π2f 2d .(3)物体受到的滑动摩擦力近似等于最大静摩擦力,当物体所受到的摩擦力不足以改变物体的速度的方向时,物体将相对平台发生滑动,所以μmg ≥m ω2d ,即ω≤μg /d . 07、解:依题意得:(1)若水恰不流出,则有:mg =m v 20L所求最小速率:v 0= gL = 10×0.5 m/s = 5 m/s =2.24 m/s.(2)设桶对水的压力为N ,则有:mg +N =m v 2LN =m v 2L -mg =0.5×90.5N -0.5×10 N=4 N由牛顿第三定律得知,水对桶底的压力:N ′=N =4 N.08、解:依题意得:(1)小球在最高点的受力如图所示: 杆的转速为2.0 r/s 时,ω=2πn =4π rad/s 由牛顿第二定律得:F +mg =mLω2故小球所受杆的作用力:F =mLω2-mg =2×(0.5×42×π2-10)N ≈138 N 即杆对小球提供了138 N 的拉力由牛顿第三定律知小球对杆的拉力大小为138 N,方向竖直向上.(2)杆的转速为0.5 r/s时,ω′=2π·n=π rad/s同理可得小球所受杆的作用力:F=mLω′2-mg=2×(0.5×π2-10)N≈-10 N.力F为负值表示它的方向与受力分析中所假设的方向相反,故小球对杆的压力大小为10 N,方向竖直向下.【审题指导】解答该题应把握以下两点:(1)最高点时,杆对球的弹力和球的重力的合力充当向心力.(2)杆对球可能提供支持力,也可能提供拉力.09、解:依题意得:以小铁块为研究对象,圆盘静止时:设铁块受到的最大静摩擦力为f max,由平衡条件得f max=kL/4.圆盘转动的角速度ω最大时,铁块受到的摩擦力f max与弹簧的拉力kx的合力提供向心力,由牛顿第二定律得kx+f max=m(6L/5)ω2max.又因为x=L/5.解以上三式得角速度的最大值ωmax=3k/(8m).。
向心力与向心加速度引言在物理学中,向心力和向心加速度是研究物体在圆周运动中的重要概念。
它们直接关系到物体在环绕着某一中心点旋转时所受的力和加速度的大小与方向。
本文将对向心力和向心加速度进行详细的介绍和解释,并探讨它们在实际生活中的应用。
向心力向心力是指物体在圆周运动过程中受到的指向圆心的力。
也就是说,向心力是使物体沿着圆周运动的力。
在这种运动中,物体会不断改变方向,而向心力则起到了引导物体方向的作用。
向心力的大小可以通过以下公式来计算:其中,Fc是向心力,m是物体的质量,v是物体的速度,r是物体离中心的距离。
从上面的公式可以看出,向心力的大小与物体的质量、速度和离中心距离的平方成正比。
当物体的速度增大或者离中心距离减小时,向心力也会增大。
向心加速度向心加速度是指物体在圆周运动中产生的与向心力相对应的加速度。
它表示了物体在圆周运动过程中改变速度方向所需要的加速度大小。
向心加速度可以通过以下公式计算:其中,ac是向心加速度,v是物体的速度,r是物体离中心的距离。
根据这个公式,我们可以看到向心加速度的大小只与物体的速度和离中心距离有关。
当物体的速度增大或者离中心距离减小时,向心加速度也会增大。
应用实例向心力和向心加速度在实际生活中有着广泛的应用。
下面我们将介绍一些常见的应用实例。
1. 汽车在拐弯时的向心力当汽车在转弯时,会产生一个向心力,使车辆沿着转弯弯道运动。
这个向心力的大小取决于车辆的速度和转弯的半径。
如果车辆速度过快或者转弯半径过小,向心力就会增大,容易导致车辆失控。
因此,在驾驶汽车时,司机需要根据道路情况和速度合理选择转弯半径,以保证安全行驶。
2. 旋转式摩天轮的向心力旋转式摩天轮是一个经典的游乐项目,乘客可以坐在摩天轮的车厢中,沿着一个巨大的轮盘旋转。
在旋转过程中,乘客会感受到一种向心力的作用,使他们始终保持在轮盘上。
这种向心力是通过车厢沿着圆周运动所产生的,为乘客提供了一种垂直向内的加速度体验。
高三物理圆周运动、向心加速度、向心力【本讲主要内容】圆周运动、向心加速度、向心力描述圆周运动的量间的关系,实际圆周运动问题中的向心力分析。
【知识掌握】 【知识点精析】1、匀速圆周运动的特点如果质点沿圆周运动,在相等的时间里通过的弧长相等,这种运动叫匀速圆周运动。
匀速圆周运动的轨迹为曲线,v 方向时刻在变,快慢程度不改变,是变速运动,做匀速圆周运动的物体状态是非平衡态,所受合外力不为零,是变加速运动(a 方向时刻在变)。
2、描述圆周运动的物理量(1)线速度:线速度大小又叫速率,用v 表示,tSv =,S 为弧长,t 为通过这段弧长的时间,速率越大则沿弧运动得越快。
线速度的方向为圆的切线方向。
线速度就是圆周运动的瞬时速度。
(2)角速度:连接质点和圆心的半径转过的角度ϕ,与所用时间的比叫角速度tϕω=。
ϕ的单位是弧度,时间t 单位是秒,ω的单位就是弧度/秒,用字母表示为s rad /,角速度的大小描述了做圆周运动绕圆心转动快慢程度。
角速度大则绕圆心转得快。
对一个不变形的物体转动中任何点转过的角度都相同,所以角速度都相同。
(3)周期:使圆周运动的物体运动一周的时间叫周期,用字母T 表示,单位为秒。
周期描述圆周运动重复的快慢,也反映了转动快慢。
周期越小,转动越快。
(4)频率:1秒内完成圆周运动的次数叫频率。
它是周期的倒数,单位是1/秒。
用符号f 表示,单位又叫赫兹(Hz ),f 越大,转动就越快。
(5)转速:工程技术中常用。
定义为每秒转过的圈数,数值与频率相同,单位也是1/秒。
(6)f T v 、、、ω的关系: T = 1/f = 2π/ω = 2π•r /v ω = 2π/T = 2π•f = v /r v = ω•r = 2π•r /T = 2π•f •r Tf n 1== 例1、地球自转的问题讨论1:比较在北京和在赤道两处物体随地球做自转的角速度。
地球表面上的物体随地球做匀速圆周运动的角速度都相同。
向心力与向心加速度公式1. 引言在物理学中,我们经常研究物体在圆周运动中所受的力,这个力称为向心力,它的大小与物体的质量和向心加速度有关。
向心力与向心加速度之间存在直接的关系,并且这种关系可以通过一个简单的公式来描述。
本文将介绍向心力的概念及其与向心加速度的关系。
2. 向心力的定义和原理向心力是指物体在做圆周运动时,指向圆心的力的方向。
它是保持物体在圆周运动中向圆心方向运动的力,没有向心力物体就会离开圆周运动,朝向外侧飞出。
向心力的大小与物体的质量、角速度和圆周半径有关。
3. 向心力的公式向心力的大小可以通过以下公式计算:F = m * a_c其中,F表示向心力的大小,m表示物体的质量,a_c表示向心加速度。
4. 向心加速度的定义和计算向心力与向心加速度之间存在直接的关系,向心加速度是指物体在圆周运动过程中向圆心方向的加速度。
向心加速度的大小可以通过以下公式计算:a_c = v^2 / r其中,a_c表示向心加速度,v表示物体的速度,r表示圆周半径。
5. 推导向心力与向心加速度的关系现在我们来推导向心力与向心加速度的关系。
根据牛顿第二定律,向心力可以表示为质量乘以向心加速度:F = m * a_c由上述向心加速度的公式可知a_c = v^2 / r将向心加速度的表达式代入向心力的公式中:F = m * (v^2 / r)化简上式可得:F = m * v^2 / r即为向心力与向心加速度之间的关系式。
6. 示例假设有一个半径为2米的圆周运动,其质量为3千克,速度为4米/秒,现在我们来计算向心力和向心加速度。
首先,根据向心力的公式,我们可以计算得到:F = m * a_c= 3 * (4^2 / 2)= 24 N接下来,根据向心加速度的公式,我们可以计算得到:a_c = v^2 / r= 4^2 / 2= 8 m/s^2所以该圆周运动下所受的向心力为24牛顿,向心加速度为8米/秒^2。
7. 总结本文介绍了向心力与向心加速度的概念和原理,并给出了它们之间的关系公式。
匀速圆周运动的力学原理匀速圆周运动是指物体在一个固定半径的圆周上以恒定的速度做运动。
在这种运动中,物体受到一个向心力的作用,使其保持在圆周上运动。
本文将探讨匀速圆周运动的力学原理,并深入分析其相关概念和公式。
一、向心力和向心加速度在匀速圆周运动中,物体受到一个向心力的作用,使其始终保持在圆周上运动。
这个向心力的大小与物体的质量和圆周运动的速度有关。
根据牛顿第二定律,向心力可以表示为:F = m * a_c其中,F为向心力,m为物体的质量,a_c为向心加速度。
向心加速度的大小可以用以下公式表示:a_c = v^2 / r其中,v为物体的速度,r为圆周的半径。
从公式可以看出,向心加速度与速度的平方成正比,与半径的倒数成反比。
这意味着,当速度增大或半径减小时,向心加速度将增大,物体将更容易脱离圆周运动。
二、离心力和离心加速度除了向心力外,物体在匀速圆周运动中还受到一个离心力的作用。
离心力的方向与向心力相反,它试图将物体从圆周上拉出。
离心力的大小可以用以下公式表示:F_e = m * a_e其中,F_e为离心力,m为物体的质量,a_e为离心加速度。
离心加速度的大小可以用以下公式表示:a_e = v^2 / r从公式可以看出,离心加速度与向心加速度相等,但方向相反。
这是因为向心加速度使物体保持在圆周上运动,而离心加速度试图将物体拉出圆周。
三、角速度和周期在匀速圆周运动中,物体的速度是恒定的,但方向不断改变。
为了描述物体在圆周上的运动,引入了一个概念——角速度。
角速度可以用以下公式表示:ω = 2π / T其中,ω为角速度,T为运动一周所需的时间,也称为周期。
从公式可以看出,角速度与周期成反比。
当周期增大时,角速度减小;当周期减小时,角速度增大。
四、力学原理和实际应用匀速圆周运动的力学原理是基于牛顿力学的基本定律得出的。
根据这些原理,我们可以推导出许多与匀速圆周运动相关的公式和定律,如圆周运动的位移公式、速度公式、圆周运动的动能公式等。
一、圆周运动中的动力学分析1.向心加速度:描述速度方向变化快慢的物理量。
公式:r Tv r v r a n 22224πωω====。
2.向心力:作用效果产生向心加速度,F n =ma n 。
3.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。
4.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置。
(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力。
解决圆周运动问题的主要步骤(1)审清题意,确定研究对象;(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等; (3)分析物体的受力情况,画出受力示意图,确定向心力的来源; (4)根据牛顿运动定律及向心力公式列方程。
二、竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”。
2.绳、杆模型涉及的临界问题3.竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同。
(2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点。
(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况。
(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向。
(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程。
(2018·四川省攀枝花市第十二中学)甲、乙两质点做匀速圆周运动,甲的质量与转动半径都分别是乙的一半,当甲转动60圈时,乙正好转45圈,则甲与乙的向心力之比为A.4:9 B.4:3 C.3:4 D.9:4【参考答案】A1.如图所示,一个圆盘在水平面内匀速转动,盘面上有一个小物体在随圆盘一起做匀速圆周运动。
向心力、向心加速度1. 引言在物理学中,向心力与向心加速度是描述物体在圆周运动中受到的力和加速度。
向心力是指沿着半径方向向圆心指向的力,而向心加速度是物体在圆周运动中的加速度,指向圆心。
在本文中,我们将详细讨论向心力和向心加速度的概念、计算方法以及在实际生活和科学研究中的应用。
2. 向心力的概念和计算方法2.1 向心力的概念向心力是指物体在圆周运动中受到的沿着半径方向的力,它的作用方向始终指向圆心。
向心力的存在使得物体保持在圆周运动中,而不会沿半径方向飞出或飞入圆心。
2.2 向心力的计算方法根据牛顿第二定律(F=ma),向心力的计算可以通过以下公式得到:F = m * a_c其中,F表示向心力,m表示物体的质量,a_c表示物体在圆周运动中的向心加速度。
3. 向心加速度的概念和计算方法3.1 向心加速度的概念向心加速度是指物体在圆周运动中的加速度,它的方向始终指向圆心。
向心加速度的存在使得物体在圆周运动中加速,因此也被称为“圆周加速度”。
3.2 向心加速度的计算方法向心加速度可以用以下公式来计算:a_c = v^2 / r其中,a_c表示向心加速度,v表示物体的速度,r表示物体运动的半径。
4. 向心力和向心加速度的应用向心力和向心加速度在物理学和工程学中有许多应用。
以下是其中的几个例子:4.1 离心机离心机是一种利用向心力原理进行分离或加工的设备。
通过快速旋转容器,使得物质在向心力的作用下分离,常用于化学、生物等领域的实验和工业生产中。
4.2 路边栅栏的设计在道路旁设置栅栏时,需要考虑到车辆可能发生失控状况。
为了将失控的车辆引导到安全区域,栅栏的设计需要考虑向心力。
合理设置栅栏的形状和倾斜角度可以使失控的车辆受到向心力的作用,使其保持在道路边缘,减少事故发生的风险。
4.3 环形轨道上的列车运行在一些特定的交通工具,如环形轨道上的列车或过山车,向心力是保证乘客安全和行驶稳定的重要因素。
合理计算列车运行速度和曲线半径,确保乘客在运动过程中不会受到过大的向心力,是保证乘客舒适度的关键。
圆周运动物体在圆轨道上的运动圆周运动是指物体在一个固定半径的圆轨道上运动的过程。
在这种运动中,物体会沿着圆轨道旋转,保持一定的速度和向心加速度。
本文将详细探讨圆周运动物体在圆轨道上的运动特点及其相关公式和应用。
一、圆周运动基本概念圆周运动是一种二维平面运动,物体绕着一个固定半径的圆轨道进行旋转。
在这种运动中,物体始终朝向圆心,并保持一定的速度。
圆周运动物体受到向心力的作用,导致向心加速度存在。
二、向心力和向心加速度向心力是使物体朝向圆心的力,它是圆周运动的基本力之一。
向心力的大小与物体的质量和向心加速度相关。
向心力的大小可以由以下公式计算得出:F = mv²/r其中,F为向心力,m为物体的质量,v为物体的速度,r为圆周运动的半径。
向心加速度是指圆周运动物体沿着圆轨道向圆心加速度的大小。
向心加速度与向心力有着直接的关系。
向心加速度的大小可以由以下公式计算得出:a = v²/r其中,a为向心加速度,v为物体的速度,r为圆周运动的半径。
三、圆周运动的周期和频率圆周运动的周期是指物体完成一次完整旋转所需的时间。
圆周运动的频率是指物体在一秒钟内完成的旋转次数。
周期和频率之间存在以下关系:T = 1/f其中,T为周期,f为频率。
四、圆周运动物体的角速度和角位移角速度是指物体在圆周运动过程中,角度的变化率。
角速度的大小可以由以下公式计算得出:ω = Δθ/Δt其中,ω为角速度,Δθ为角位移的改变量,Δt为时间的改变量。
角位移是指物体在圆周运动过程中,角度的变化量。
角位移的大小可以由以下公式计算得出:Δθ = ωt其中,Δθ为角位移,ω为角速度,t为时间。
五、应用实例圆周运动的概念和相关公式广泛应用于现实生活和科学研究中。
以下是一些实际应用实例:1. 赛车在椭圆形跑道上进行圆周运动,驾驶员需要根据向心力调整赛车的速度和转向角度,以保持在合适的轨道上行驶。
2. 行星绕着太阳进行圆周运动,向心力保持行星沿着椭圆轨道运动,决定了行星的轨道形状和星球运动的周期。
向心力、向心加速度知识梳理向心力、向心加速度是涉及受力分析、牛顿运动定律的两个物理量,向心力的来源、大小及方向的确定一直是圆周运动经常考查的知识点,是本单元的重点内容。
1.向心加速度(1)物理意义:描述线速度改变的快慢。
向心加速度只改变线速度的方向,不改变线速度的大小。
所以向心加速度是描述线速度方向变化快慢的物理量。
(2)大小:PQ图(1)(3)方向:总是指向圆心。
如图(1),所以不论a的大小是否变化,它都是个变化的量,即圆周运动是变加速运动。
2.向心力(1)大小:(2)方向:总是沿半径指向圆心。
向心力F的方向不断变化,所以向心力是个变力。
(3)作用效果:产生向心加速度。
因为向心力沿半径指向圆心,而线速度总是沿着切线方向,所以向心力总是与速度相垂直,因此,向心力不做功。
图(2)例1 链球是田径运动项目之一,运动员两手握着链球的把手,人和球同时旋转,最后加力使球脱手而出,如图(2)。
某同学在练习链球时,站在某点转动后将链摆至水平状态后脱手,将链球以18m/s的速度抛出。
已知他的手臂长55cm,链球的把手到链球中心的距离为125cm,链球质量为7.26公斤。
根据以上数据请求出:①这位同学转动的角速度大小;②链球出手前的向心加速度;③不计链的质量,球脱手前瞬间该同学手上的拉力是多大?解析:由题中数据得,链球旋转的轨道半径为r=55+125(cm)=1.8m,根据线速度与角速度的关系v=rω可得角速度ω=10rad/s;根据向心加速度的公式得;根据向心力表达式得。
说明:解题过程中,灵活选用表达式非常关键,确定表达式中各已知物理量的大小则更为重要。
例2 如图(3),被称为“北京眼”的北京朝天轮项目,是座高度达208米、直径达193米的摩天轮,是全球最高的摩天轮,运转一周需要30分钟时间。
当游客乘坐朝天轮游玩时,向心加速度是多大?如果游客的质量是60kg,则需要的向心力是多大?图(3)解析:要利用公式求解向心加速度,需要两个物理量,轨道半径与线速度(或角速度、周期),代入题干中给出的已知量可得向心加速度的大小为a=1.17×10-3m/s2,利用向心力公式F=ma得F=0.07N。