圆周运动和向心加速度知识点总结
- 格式:doc
- 大小:213.50 KB
- 文档页数:17
圆周运动 向心加速度考点一 圆周运动(1)线速度:v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v =Δs Δt =2πr T .; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度:ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为ω=ΔθΔt =2πT .; 在国际单位制中单位符号是rad /s ;(3)周期T :是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f :是质点在单位时间内完成一个完整圆运动的次数(5)转速n :是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .(6)速度、角速度、周期和频率之间的关系:v =r ω.T=1/f ,v=2∏/T ,ω=2∏f 。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.例1:手表的时针和分针转动时( )A.分针的角速度是时针的12倍B.时针的周期是12 h ,分针的周期是60 sC.若分针的长度是时针的1.5倍,针端点的线速度分针是时针的150倍D.若分针的长度是时针的1.5倍,针端点的线速度分针是时针的18倍【例2】某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮的角速度为( )A.ωr 1r 3B.ωr 3r 1C.ωr 3r 2D.ωr 1r 2考点二 向心加速度1.向心加速度的方向:质点做匀速圆周运动时,它在任一点的加速度都是沿着半径指向圆心。
既然向心加速度的方向是沿着半径指向圆心,所以任一时刻,向心加速度与线速度的方向总是相互垂直的,因而质点做匀速圆周运动的过程中,速率保持不变。
2.向心加速度的大小r a 2ω= r v a 2=【例3】如图所示,一个球绕中心轴线OO ′以角速度ω做匀速圆周运动,则( ).A .a 、b 两点线速度相同B .a 、b 两点角速度相同C .若θ=30°,则a 、b 两点的线速度大小之比v a ∶v b =3∶2D .若θ=30°,则a 、b 两点的向心加速度大小之比a a ∶a b =2∶ 3水平测试1.关于匀速圆周运动,下列说法不.正确的是( ) A .匀速圆周运动是变速运动B .匀速圆周运动的速率不变C .任意相等时间内通过的位移相等D .任意相等时间内通过的路程相等2.关于甲、乙两个做匀速圆周运动的物体下列说法正确的是( )A .甲、乙两物体线速度相等,角速度一定也相等B .甲、乙两物体角速度相等,线速度一定也相等C .甲、乙两物体周期相等,角速度一定也相等D .甲、乙两物体周期相等,线速度一定也相等3.一个物体以一定的角速度ω做匀速圆周运动时,下列说法中正确的是( )A .轨道半径越大线速度越大B .轨道半径越大线速度越小C .轨道半径越大周期越大D .轨道半径越大周期越小4.机械手表中的分针与秒针的运动可视为匀速转动,分针与秒针从重合到第二次重合,中间经历的时间为( )A .1 min B.5960 min C.6059 min D.6160min5.做匀速圆周运动的物体( )A .因相等时间内通过的弧长相等,所以线速度恒定B .如果物体在0.1 s 内转过30°,则角速度为300 rad/sC .若半径r 一定,则线速度与角速度成正比D .若半径为r ,周期为T ,则线速度v =2πr /T6.处于北京和广州的物体,都随地球自转而做匀速圆周运动,关于它们的向心加速度的比较,下列说法中正确的是( )A .它们的方向都沿半径指向地心B .它们的方向都在平行赤道的平面内指向地轴C .北京的向心加速度比广州的向心加速度大D .北京的向心加速度比广州的向心加速度小7.图示为某一皮带传动装置.主动轮的半径为r 1,从转动的半径为r 2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑,下列说法正确的是 ( )A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为r 1n/r 2D.从动轮的转速为r 2n/r 18.如图所示,半径为R 的半球形碗内,有一个具有一定质量的物体A ,A 与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO ′匀速转动时,物体A 刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.例1:ABD例:2:解析:选A.各轮边缘各点的线速度大小相等,则有ωr 1=ω′r 3,所以ω′=ωr 1r 3,故A 正确.例3:解析 a 、b 两点绕同轴转动,角速度相同,由于半径不同,线速度不同,v =ωr ,v a ∶v b =r a ∶r b =32R ∶R =3∶2,a =ω2r ,a a ∶a b =r a ∶r b =3∶2,所以A 、D 错误,B 、C 正确.答案 BC1.选C2解析:由v =rω知,若r 不相等,v 相等则ω不相同,ω相同则v 不相等,故A 、B 错;由ω=2πT 及v =2πr T知C 对,D 错. 答案:C3解析:角速度一定,线速度与半径成正比,选项A 正确,选项B 错误;角速度一定,周期也一定,选项C 、D 错误.答案:A4解析:.分针的角速度ω1=2π60rad/min ,秒针的角速度为ω2=2π rad/min.第二次重合秒针比分针多转一周,对应的角度为2π.因此(ω2-ω1)t =2π,得t =6059min. 答案:C5解析:线速度v =l /t ,反映质点沿圆弧运动的快慢程度,是矢量,大小恒定,方向沿圆弧的切线方向,在不断地改变,故不能说v 恒定,A 错误;角速度ω=φ/t ,反映质点所在半径转动的快慢,国际单位为rad/s ,B 中ω=π/60.1 rad/s =5π3rad/s ,B 错误;线速度与角速度的关系为v =ωr ,由该式可知,r 一定时,v ∝ω,C 正确;物体运动一周的时间为T ,由线速度的定义可知,v =2πr /T ,D 正确.答案:CD6.解析:如图所示,地球表面各点的向心加速度(同向心力的方向)都在平行赤道的平面内指向地轴,选项B 正确,选项A 错误.在地面上纬度为φ的P 点,做圆周运动的轨道半径r =R 0cos φ,其向心加速度a =rω2=R 0ω2cos φ.由于北京的地理纬度比广州的地理纬度高,北京的物体随地球自转的半径小,两地的物体随地球自转的角速度相同,因此北京的物体随地球自转的向心加速度比广州的物体小,选项D 正确,选项C 错误.答案:BD7.解析:因为皮带不打滑,两轮缘上各点的线速度等大,各点做圆周运动的速度方向为切线方向,则皮带上的M 、N 点均沿MN 方向运动,从动轮沿逆时针方向转动,B 对A 错. 根据线速度与角速度的关系式:v=r ω,ω=2πn 所以n ∶n 2=r 2∶r 1,n 2= r 1n/r 2,C 对D 错. 答案: BC8解析:物体A 随碗一起转动而不发生相对滑动,则物体A 做匀速圆周运动的角速度就等于碗转动的角速度ω.因为物体A 在碗口附近,则物体A 做匀速圆周运动所需的向心力由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.物体A 做匀速圆周运动,向心力:N =mω2R而摩擦力与重力平衡,则有:μN =mg由以上两式可得:mω2R =mg μ即碗匀速转动的角速度为:ω=g μR.。
高考圆周运动知识点在物理学中,我们学习了许多与运动相关的知识,而圆周运动是其中一个重要的概念。
圆周运动是指物体围绕固定点以匀速运动,形成一个圆形轨迹的运动。
在高考中,圆周运动也是一个常见的考点。
本文将介绍高考圆周运动的一些重要知识点和相关应用。
1. 圆周运动的基本概念圆周运动由物体的半径和角速度决定。
半径是指物体到固定点的距离,而角速度则是指物体单位时间内绕固定点转过的角度。
在圆周运动中,物体的速度大小是恒定的,但方向却不断改变。
这是因为物体在不断改变方向的同时,它的速度向心向外的分量也在不断改变。
2. 圆周运动的速度和加速度在圆周运动中,物体沿圆周方向的速度称为切向速度,而向心加速度则是指物体向圆心方向加速的大小。
这两者之间存在着一种关系,即向心加速度等于切向速度平方除以半径。
这也是为什么当我们在转弯时,速度越快,半径越小,感觉向心加速度越大的原因。
3. 圆周运动的力学原理圆周运动的力学原理可以由牛顿第二定律推导得出。
根据牛顿第二定律,物体的向心加速度等于合外力点对物体的向心力除以物体的质量。
在圆周运动中,合外力通常指向圆心方向的力,如重力或绳索的拉力。
根据这个原理,我们可以推导出与圆周运动相关的各种物理公式。
4. 圆周运动的应用圆周运动在现实生活中有着广泛的应用。
一个常见的例子是地球绕太阳的公转运动,这是地球四季变化的原因之一。
此外,圆周运动在机械工程、航天工程等领域也有重要的应用。
例如,卫星绕地球运动的轨道就是一个圆周运动。
5. 圆周运动的衍生知识点除了基本的圆周运动概念之外,还有一些与之相关的衍生知识点也是高考的考点之一。
例如,转动惯量和角动量等概念与圆周运动密切相关。
转动惯量是指物体对角加速度产生抵抗的能力,而角动量是物体绕固定轴旋转时的物理量。
这些概念在解题中会经常出现。
总结起来,高考圆周运动是一个重要的物理知识点,掌握其基本概念和相关公式对于解题和理解其他物理现象都有重要帮助。
理解圆周运动的力学原理、应用以及衍生知识点,可以帮助我们更好地应对考试,同时也能扩展我们对物理学的认识。
高一物理圆周运动的相关知识点圆周运动是物理学中的重要内容之一,它有着广泛的应用领域。
本文将介绍高一物理学习中与圆周运动相关的知识点,包括圆周运动的基本概念、运动规律以及一些实际应用。
一、圆周运动的基本概念圆周运动是指物体沿着固定半径的圆周轨道运动的一种形式。
在圆周运动中,物体所受到的合力始终指向轴心,使得物体保持在圆周上匀速运动。
这种运动可以用一些特殊的物理量来描述。
1. 角度角度是描述圆周运动位置关系的一个重要概念。
我们常用角度来衡量物体在圆周上所处的位置。
一圈对应的角度是360度,当物体运动一半圆周时,所对应的角度是180度。
2. 弧长弧长是圆周上两个位置之间的路径距离。
弧长与角度之间存在一定的关系,公式为:弧长 = 半径 ×弧度。
其中弧度是指圆周上的一个角度对应的弧长与半径的比值。
3. 角速度和角加速度角速度是指单位时间内物体运动的角度,通常用符号ω表示,公式为:ω = Δθ / Δt。
角加速度是指单位时间内的角速度变化率,通常用符号α表示,公式为:α = Δω / Δt。
二、圆周运动的运动规律圆周运动遵循一些基本的运动规律,这些规律对于解析和计算圆周运动的物理量十分重要。
1. 向心加速度在圆周运动中,物体所受到的合力指向轴心,这个合力会产生向心加速度。
向心加速度的大小可以用公式 ac = v² / R 来计算,其中v为物体的速度,R为圆周半径。
2. 牛顿第二定律在圆周运动中的应用牛顿第二定律 F = ma 在圆周运动中也适用。
对于处于圆周运动的物体,需要将合力分解为径向力和切向力两个分量来计算。
3. 圆周运动的力学能量在圆周运动中,存在着势能和动能的转换。
当物体沿圆周运动时,可能会发生重力势能转化为动能的情况。
三、圆周运动的实际应用圆周运动在日常生活和工程领域都有着广泛的应用。
1. 离心力与离心机离心力是圆周运动中的一种力,我们常见的离心机就是利用离心力分离混合物中不同密度成分的设备。
【知识点】高中物理圆周运动及向心力知识点总结一、匀速圆周运动1.定义:物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即为匀速圆周运动。
2.特点:①轨迹是圆;②线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;③匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;④匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性。
3.描述圆周运动的物理量:(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量;其方向沿轨迹切线,国际单位制中单位符号是m/s,匀速圆周运动中,v的大小不变,方向却一直在变;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量;国际单位符号是rad/s;(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符号是Hz;(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.4.各运动参量之间的转换关系:模型一:共轴传动模型二:皮带传动模型三:齿轮传动二、向心加速度1.定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。
注:并不是任何情况下,向心加速度的方向都是指向圆心。
当物体做变速圆周运动时,向心加速度的一个分加速度指向圆心。
2.方向:在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。
向心加速度只改变线速度的方向而非大小。
3.意义:描述圆周运动速度方向方向改变快慢的物理量。
4.公式:5.两个函数图像:三、向心力1.定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
2.方向:总是指向圆心。
3.公式:4.注意:①向心力的方向总是指向圆心,它的方向时刻在变化,虽然它的大小不变,但是向心力也是变力。
②在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是,不要加上向心力。
圆周运动和向心加速度【要点梳理】要点一、圆周运动的线速度 要点诠释:1、线速度的定义:圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。
公式:tlv ∆∆=(比值越大,说明线速度越大) 方向:沿着圆周上各点的切线方向 单位:m/s 2、 说明1)线速度是指物体做圆周运动时的瞬时速度。
2)线速度的方向就是圆周上某点的切线方向线速度的大小是tl∆∆的比值。
所以v 是矢量。
3)匀速圆周运动是一个线速度大小不变的圆周运动。
4)线速度的定义式tlv ∆∆=,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要t ∆取得足够小,公式计算的结果就是瞬时线速度注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。
【典型例题】类型一、描述匀速圆周运动的各个物理量例1、一个直径为1.4m 的圆盘以中心为轴匀速转动,转速为2转/秒,求圆盘边缘一点的线速度、角速度、周期和向心加速度。
例2、 (2015 海南会考模拟)如图所示,钟表的秒针、分针、时针转动周期、角速度都不同,下列说法中正确的是( )A .秒针的周期最大,角速度最大B .秒针的周期最小,角速度最大C .时针的周期最大,角速度最大D .时针的周期最小,角速度最大 【解析】时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,秒针的周期最小,根据2Tπω=可知秒针的角速度最大,故A 错误B 正确;时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,时针的周期最大,根据2Tπω=可知时针的角速度最小,故CD 错误。
【变式】电风扇叶片边缘一点的线速度为56.7m/s ,若它转动半径为18cm ,求电扇转动的角速度和周期。
【解析】根据线速度与角速度的关系r v ω=得)s (02.022)rad/s (315=====v rT T rv rv ππω所以又因为要点二、描写圆周运动的角速度 要点诠释:1、角速度的定义:圆周运动物体与圆心的连线扫过的角度θ∆与所用时间t ∆的比值叫做角速度。
物理圆周运动总结归纳物理学中,圆周运动是一个重要的概念。
它涉及到物体在一个固定半径的圆形轨道上运动的问题。
在本文中,我们将对物理圆周运动进行总结归纳,探讨其相关理论和应用。
一、基本概念圆周运动是指物体在固定半径的圆形轨道上运动,维持在此轨道上的力称为向心力。
向心力的大小与物体质量成正比,与物体的速度的平方成正比,与物体运动半径的倒数成正比。
圆周运动的速度大小恒定,而速度的方向则始终朝向圆心。
同时,圆周运动还存在一个与速度大小相对的概念,即角速度。
二、角速度与角加速度角速度是描述物体在圆周运动中旋转快慢的物理量。
它的大小等于物体绕圆心转动的角度的变化率。
使用符号ω表示,单位为弧度/秒。
公式为:ω = Δθ / Δt其中,Δθ是物体绕圆心转动的角度变化量,Δt是时间的变化量。
角加速度则是描述物体在圆周运动中转速变化的物理量。
它的大小等于角速度随时间的变化率。
使用符号α表示,单位为弧度/二次方秒。
公式为:α = Δω / Δt三、牛顿第二定律在圆周运动中的应用牛顿第二定律是物理学中最基本的定律之一,它在圆周运动中也有重要的应用。
当物体受到向心力作用时,可以利用牛顿第二定律来推导物体的运动方程。
假设质量为m的物体在半径为r的圆形轨道上运动,并受到向心力F_c的作用。
根据牛顿第二定律,物体的向心加速度a_c与向心力的关系为:F_c = m * a_c由于向心加速度与角加速度之间存在关联,可以推导出物体在圆周运动中的运动方程为:a_c = r * α将上述两个等式结合,可以得到:F_c = m * r * α四、应用领域1. 行星公转行星公转是天体运动中的一种圆周运动。
行星沿着围绕恒星的轨道运动,即围绕一个公共圆心进行圆周运动。
该应用领域研究行星的轨道、速度以及力学规律,对于了解天体运动和星际空间探索具有重要的意义。
2. 粒子加速器粒子加速器是一种利用电磁场加速高能粒子的装置,广泛应用于粒子物理学和核物理学领域。
高三物理圆周运动、向心加速度、向心力【本讲主要内容】圆周运动、向心加速度、向心力描述圆周运动的量间的关系,实际圆周运动问题中的向心力分析。
【知识掌握】 【知识点精析】1、匀速圆周运动的特点如果质点沿圆周运动,在相等的时间里通过的弧长相等,这种运动叫匀速圆周运动。
匀速圆周运动的轨迹为曲线,v 方向时刻在变,快慢程度不改变,是变速运动,做匀速圆周运动的物体状态是非平衡态,所受合外力不为零,是变加速运动(a 方向时刻在变)。
2、描述圆周运动的物理量(1)线速度:线速度大小又叫速率,用v 表示,tSv =,S 为弧长,t 为通过这段弧长的时间,速率越大则沿弧运动得越快。
线速度的方向为圆的切线方向。
线速度就是圆周运动的瞬时速度。
(2)角速度:连接质点和圆心的半径转过的角度ϕ,与所用时间的比叫角速度tϕω=。
ϕ的单位是弧度,时间t 单位是秒,ω的单位就是弧度/秒,用字母表示为s rad /,角速度的大小描述了做圆周运动绕圆心转动快慢程度。
角速度大则绕圆心转得快。
对一个不变形的物体转动中任何点转过的角度都相同,所以角速度都相同。
(3)周期:使圆周运动的物体运动一周的时间叫周期,用字母T 表示,单位为秒。
周期描述圆周运动重复的快慢,也反映了转动快慢。
周期越小,转动越快。
(4)频率:1秒内完成圆周运动的次数叫频率。
它是周期的倒数,单位是1/秒。
用符号f 表示,单位又叫赫兹(Hz ),f 越大,转动就越快。
(5)转速:工程技术中常用。
定义为每秒转过的圈数,数值与频率相同,单位也是1/秒。
(6)f T v 、、、ω的关系: T = 1/f = 2π/ω = 2π•r /v ω = 2π/T = 2π•f = v /r v = ω•r = 2π•r /T = 2π•f •r Tf n 1== 例1、地球自转的问题讨论1:比较在北京和在赤道两处物体随地球做自转的角速度。
地球表面上的物体随地球做匀速圆周运动的角速度都相同。
向心加速度的物理知识点目录1.向心加速度定义2.向心加速度公式3.向心力与向心加速度1.向心加速度定义质点作曲线运动时,指向瞬时曲率中心的加速度就是向心加速度。
向心加速度是反映圆周运动速度方向变化快慢的物理量。
向心加速度只改变速度的方向,不改变速度的大小。
由牛顿第二定律,力的作用会使物体产生一个加速度。
合外力提供向心力,向心力产生的加速度就是向心加速度。
可能是实际加速度,也可能是物体实际加速度的一个分加速度。
向心加速度是反映圆周运动速度方向变化快慢的物理量。
向心加速度只改变速度的方向,不改变速度的大小。
2.向心加速度公式上式中,an表示向心加速度,Fn表示向心力,m表示物体质量,v表示物体圆周运动的线速度(切向速度),w表示物体圆周运动的角速度,T表示物体圆周运动的周期,f表示物体圆周运动的频率,R表示物体圆周运动的半径。
3.向心力与向心加速度一、概述本节课是高一鲁科版物理必修2第四章的内容,课时是二节课,本教案是关于第一课时向心力的内容。
学生在前面学习了物体做曲线运动的条件,学习了对圆周运动的描述,而且在必修1中也学习了牛顿运动定律。
这节课作为这些知识的综合应用的具体例子,通过分析理解向心力的概念,掌握向心力的来源,通过实验得出向心力大小的公式。
二、教学目标分析(一)知识与技能1、知道什么是向心力,理解匀速圆周运动的向心力大小不变,方向总是指向圆心;2、知道向心力的来源;3、知道匀速圆周运动的向心力的公式,会解答有关问题;4、养成探究物理问题的习惯,养成观察实验的能力和分析综合能力。
(二)过程与方法1、要通过对物体做圆周运动的实例进行分析入手,从而认识到:做圆周运动的物体都必须受到指向圆心的力的作用,由此理解向心力的概念;2、通过充分讨论向心力来源、向心力大小可能与哪些因素有关,并设计实验进行探究活动;3、能通过思考交流,体验探究与合作学习。
(三)情感态度与价值观1、领略到物理就在自己的身边,体验自然界的奇妙与和谐,发展好奇心与求知欲;2、在探究合作过程中,增强探究意识与合作意识,增强与人交流的意识;3、养成敢于发表自己观点,既坚持原则又尊重他人的良好习惯;4、意识到物理规律在现实生活中的重要作用,增强对物理学习的兴趣;5、在用实验得出结论的过程中,逐步树立严谨科学的实验态度和正确的认识观。
圆周运动的知识点总结1. 圆周运动的基本概念圆周运动是指物体在固定半径的圆周轨道上运动的物理现象。
在圆周运动中,物体绕着某一点或轴以恒定的速度运动,运动轨迹为圆形或圆周。
2. 圆周运动的基本参数在圆周运动中,有一些基本的物理量和参数需要了解:1)角速度:角速度是指物体绕圆周轨道旋转的速度。
它的单位是弧度/秒或者转/秒。
2)线速度:线速度是物体在圆周运动中沿着轨道运动的速度。
它是物体每单位时间在圆周轨道上所走过的长度。
3)周期和频率:物体绕圆周轨道运动一周所需要的时间称为周期,而单位时间内完成的周期数称为频率。
4)向心加速度:向心加速度是指物体在圆周运动中指向轴心的加速度。
3. 圆周运动的运动规律在圆周运动中,物体遵循一些基本的运动规律:1)圆周运动的速度是恒定的,但是速度方向会不断变化,因此会产生向心加速度。
2)向心加速度的大小与角速度的平方成正比,与运动半径的倒数成反比。
3)圆周运动的线速度与角速度和运动半径成正比。
4)根据牛顿运动定律,物体在做圆周运动时会受到向心力的作用,从而产生向心加速度。
4. 圆周运动的应用圆周运动在自然界和日常生活中都有着广泛的应用:1)行星绕太阳的运动:行星在天体引力的作用下,绕太阳做圆周运动。
其运动规律和速度大小可以通过圆周运动的物理规律进行描述。
2)地球自转和公转:地球的自转和公转运动也是圆周运动的一种,它们决定了地球的昼夜交替和季节变化。
3)机械设备的转动运动:例如汽车的轮子和发动机的转动、电风扇的叶片转动等都是圆周运动的应用。
4)摩擦力和离心力的应用:圆周运动的物体会产生向心加速度,从而在运动过程中会受到摩擦力和离心力的作用。
这些力在机械设备和工程设计中有着重要的应用。
5. 圆周运动的相关问题在圆周运动中,会涉及到一些常见的问题和挑战:1)离心力与向心力的平衡:当物体在做圆周运动时,会受到向心力和离心力的相互作用,需要通过合适的设计来平衡这两种力。
2)材料的强度和耐久性:在圆周运动的机械设备中,材料的强度和耐久性对于长期运行和安全性有着重要的影响。
圆周运动问题是高考考查的热点,物体在竖直面内的圆周运动中临界条件的考查在高考中多有出现圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。
另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。
(一)匀速圆周运动1. 定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2. 运动学特征:v 大小不变,T 不变,ω不变,向a 大小不变;v 和向a 的方向时刻在变,匀速圆周运动是加速度不断改变的变速运动。
3. 动力学特征:合外力大小恒定,方向始终指向圆心。
(二)描述圆周运动的物理量 1. 线速度(1)物理意义:描述质点沿圆周运动的快慢。
(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。
(3)大小:(s 是t 时间内通过的弧长)。
2. 角速度 (1)物理意义:描述质点绕圆心转动的快慢。
(s /rad ),ϕ是连接质点(2)大小:和圆心的半径在t 时间内转过的角度。
3. 周期T ,频率f 做匀速圆周运动的物体运动一周所用的时间叫做周期。
做匀速圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。
4. v 、ω、T 、f 的关系f 1T =f 2T 2π=π=ωω=π=r r T 2v5. 向心加速度(1)物理意义:描述线速度方向改变的快慢。
(2)大小:=a 0222222v r T 4r f 4r r v ω=π=π=ω=(3)方向:总是指向圆心(三)向心力向F1. 作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,但不改变速度的大小。
2. 大小:rm r mv F 22ω==向3. 来源:向心力是按效果命名的力,可以由某个力提供,也可以由几个力的合力提供或由某个力的分力提供,如同步卫星的向心力由万有引力提供,圆锥摆摆球所受向心力由重力和绳上的拉力的合力提供4. 匀速圆周运动中向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的一个分力,合外力的另一个分力沿切线方向,用来改变线速度的大小。
高一物理《圆周运动》知识点总结一、线速度1.定义:物体做圆周运动,在一段很短的时间Δt 内,通过的弧长为Δs ,则Δs 与Δt 的比值叫作线速度的大小,公式:v =Δs Δt. 2.意义:描述做圆周运动的物体运动的快慢.3.方向:物体做圆周运动时该点的切线方向.4.匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)性质:匀速圆周运动的线速度方向是在时刻变化的,所以它是一种变速运动,这里的“匀速”是指速率不变.二、角速度1.定义:连接物体与圆心的半径转过的角Δθ与所用时间Δt 之比叫作角速度,公式:ω=ΔθΔt. 2.意义:描述做圆周运动的物体绕圆心转动的快慢.3.单位:弧度每秒,符号是rad/s ,在运算中角速度的单位可以写为s -1.4.匀速圆周运动是角速度不变的圆周运动.三、周期1.周期T :做匀速圆周运动的物体,运动一周所用的时间.单位:秒(s).2.转速n :物体转动的圈数与所用时间之比.单位:转每秒(r/s)或转每分(r/min).3.周期和转速的关系:T =1n(n 的单位为r/s 时). 四、线速度与角速度的关系1.在圆周运动中,线速度的大小等于角速度的大小与半径的乘积.2.公式:v =ωr .五、向心力的大小向心力的大小可以表示为F n =mω2r 或F n =m v 2r . 六、匀速圆周运动的加速度大小1.向心加速度公式a n =v 2r或a n =ω2r . 2.向心加速度的公式既适用于匀速圆周运动,也适用于非匀速圆周运动.七、变速圆周运动和一般曲线运动的受力特点1.变速圆周运动的合力:变速圆周运动的合力产生两个方向的效果,如图所示.(1)跟圆周相切的分力F t:改变线速度的大小.(2)指向圆心的分力F n:改变线速度的方向.2.一般的曲线运动的处理方法(1)一般的曲线运动:运动轨迹既不是直线也不是圆周的曲线运动.(2)处理方法:可以把曲线分割为许多很短的小段,质点在每小段的运动都可以看作圆周运动的一部分,分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理.。
圆周运动知识点总结圆周运动知识点总结圆周运动是物体在一个固定点周围进行的运动,也被称为旋转运动。
在圆周运动中,物体的运动轨迹是一个圆,而固定点被称为圆心。
以下是关于圆周运动的一些重要知识点:1. 角度和弧度:圆周运动可以用角度或弧度来描述。
角度是常用的单位,圆周有360度。
弧度是国际单位制中用于描述角度的单位,一个圆周有2π弧度。
2. 角速度和角加速度:角速度用来描述物体在圆周运动中的旋转速度,通常用符号ω表示,单位是弧度/秒(rad/s)。
角加速度表示角速度的变化率,用符号α表示,单位是弧度/秒²(rad/s²)。
3. 周期和频率:周期是物体完成一次完整圆周运动所需的时间,用符号T 表示,单位是秒(s)。
频率是指单位时间内发生的圆周运动次数,用符号f表示,单位是赫兹(Hz)。
它们之间的关系是T=1/f 。
4. 向心加速度:向心加速度是指物体在圆周运动中沿圆的方向所受的加速度。
它是由于向心力产生的,向心力的大小等于物体的质量乘以向心加速度,用符号ac表示。
向心加速度的计算公式是ac = ω²r ,其中r表示物体与圆心的距离。
5. 引力和圆周运动:圆周运动中的物体也可能受到引力的作用。
在这种情况下,通过向心力与引力的平衡,可以计算出物体的圆周运动半径。
6. 衡量圆周运动的力量:物体在圆周运动中的力量可以用角动量来衡量。
角动量是由物体的质量、角速度和距离组成,计算公式为L = Iω,其中I为物体的转动惯量。
7. 平均速度和瞬时速度:平均速度是物体在圆周运动中在某段时间内移动的平均速度。
瞬时速度是物体在某一时刻的瞬时速度。
在圆周运动中,瞬时速度的大小等于物体在圆周上移动的弧长与时间的比值。
8. 离心力和切向速度:离心力是物体在圆周运动中由于惯性而产生的力,它的方向指向远离圆心的方向。
切向速度指的是物体在圆周运动中沿着圆的切线方向的速度。
这些是关于圆周运动的一些重要知识点,它们帮助我们理解和描述物体在圆周运动中的特性和规律。
圆周运动和向心加速度知识点总结知识点一:圆周运动的线速度要点诠释:1、线速度的定义:圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。
公式:(比值越大,说明线速度越大)方向:沿着圆周上各点的切线方向单位:m/s2、说明1)线速度是指物体做圆周运动时的瞬时速度。
2)线速度的方向就是圆周上某点的切线方向。
线速度的大小是的比值。
所以是矢量。
3)匀速圆周运动是一个线速度大小不变的圆周运动。
4)线速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。
注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。
知识点二:描写圆周运动的角速度要点诠释:1、角速度的定义:圆周运动物体与圆心的连线扫过的角度与所用时间的比值叫做角速度。
公式:单位:(弧度每秒)2、说明:1)这里的必须是弧度制的角。
2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。
3)角速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。
4)关于的方向:中学阶段不研究。
5)同一个转动的物体上,各点的角速度相等。
例如. 木棒OA以它上面的一点O为轴匀速转动时,它上面的各点与圆心O的连线在相等时间内扫过的角度相等。
即:3、关于弧度制的介绍(1)角有两种度量单位:角度制和弧度制(2)角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。
因此一个周角是360°,平角和直角分别是180°和90°。
(3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为rad。
一段长为的圆弧对应的圆心角是 rad,(4)特殊角的弧度值:在此定义下,一个周角对应的弧度数是:;平角和直角分别是(rad)。
(5)同一个角的角度和用弧度制度量的之间的关系是:rad ,说明:在物理学中弧度并没有量纲,因为它是两个长度之比,弧度(rad)只是我们为了表达的方便而“给”的。
圆周运动和向心加速度知识点总结知识点一:圆周运动的线速度要点诠释:1、线速度的定义:圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。
公式:(比值越大,说明线速度越大)方向:沿着圆周上各点的切线方向单位:m/s2、说明1)线速度是指物体做圆周运动时的瞬时速度。
2)线速度的方向就是圆周上某点的切线方向。
线速度的大小是的比值。
所以是矢量。
3)匀速圆周运动是一个线速度大小不变的圆周运动。
4)线速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。
注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。
知识点二:描写圆周运动的角速度要点诠释:1、角速度的定义:圆周运动物体与圆心的连线扫过的角度与所用时间的比值叫做角速度。
公式:单位:(弧度每秒)2、说明:1)这里的必须是弧度制的角。
2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。
3)角速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。
4)关于的方向:中学阶段不研究。
5)同一个转动的物体上,各点的角速度相等。
例如. 木棒OA以它上面的一点O为轴匀速转动时,它上面的各点与圆心O的连线在相等时间内扫过的角度相等。
即:3、关于弧度制的介绍(1)角有两种度量单位:角度制和弧度制(2)角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。
因此一个周角是360°,平角和直角分别是180°和90°。
(3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为rad。
一段长为的圆弧对应的圆心角是 rad,(4)特殊角的弧度值:在此定义下,一个周角对应的弧度数是:;平角和直角分别是(rad)。
(5)同一个角的角度和用弧度制度量的之间的关系是:rad ,说明:在物理学中弧度并没有量纲,因为它是两个长度之比,弧度(rad)只是我们为了表达的方便而“给”的。
知识点三:匀速圆周运动的周期与转速要点诠释:1、周期的定义:做匀速圆周运动的物体运动一周所用的时间叫做周期,单位:s。
它描写了圆周运动的重复性。
2、周期T的意义:不难看到,周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动得快。
观察与思考:同学们看一看你所戴的手表或者墙上钟表上的时、分、秒针,它们的周期分别是多少?想一想角速度和周期的关系如何?(秒针的周期最小,其针尖的最大,也最大。
)3、匀速圆周运动的转速转速n:指转动物体单位时间内转过的圈数。
单位: r/s(转每秒),常用的单位还有(转每分)关系式:s(n单位为r/s)或s(n单位为r/min)注意:转速与角速度单位的区别:知识点四:描述圆周运动快慢的几个物理量的相互关系要点诠释:因为这几个都是描述圆周运动快慢,所以它们之间必然有内在联系1、线速度、角速度和周期的关系匀速圆周运动的线速度和周期的关系匀速圆周运动的角速度和周期的关系匀速圆周运动的角速度和周期有确定的对应关系:角速度与周期成反比。
2、线速度、角速度与转速的关系:匀速圆周运动的线速度与转速的关系:(n的单位是r/s)匀速圆周运动的角速度与转速的关系:(n的单位是r/s)3、线速度和角速度的关系:(1)线速度和角速度关系的推导:特例推导:设物体沿半径为r的圆周做匀速圆周运动,在一个T时间内转过的弧长2πr及2π角度,则:一般意义上的推导:由线速度的定义:而,所以又因为,所以(2) 线速度和角速度的关系:可知:,同理:一定时,一定时(3)对于线速度与角速度关系的理解:是一种瞬时对应关系,即某一时刻的线速度与这一时刻的角速度的关系,适应于匀速圆周运动和变速圆周运动。
知识点五:向心加速度要点诠释:1、向心加速度产生的原因:向心加速度由物体所受到的向心力产生,根据牛顿第二定律知道,其大小由向心力的大小和物体的质量决定。
2、向心加速度大小的计算方法:(1)由牛顿第二定律计算:;(2)由运动学公式计算:如果是匀速圆周运动则有:3、向心加速度的方向:沿着半径指向圆心,时刻在发生变化,是一个变量。
4、向心加速度的意义:在一个半径一定的圆周运动中,向心加速度描述的是线速度方向改变的快慢。
5、关于向心加速度的说明(1)从运动学上看:速度方向时刻在发生变化,总是有必然有向心加速度;(2)从动力学上看:沿着半径方向上指向圆心的合外力必然产生指向圆心的向心加速度。
思考回答:为什么匀速圆周运动不是匀变速运动?加速度是个矢量,既有大小又有方向,匀速圆周运动中加速度大小不变,而方向却不断变化。
因此,匀速圆周运动不是匀变速运动。
规律方法总结1、注意圆周运动的速度和加速度的方向是变化的。
(1)圆周运动的线速度的方向时刻在发生变化,但是总是与半径垂直;(2)无论是匀速圆周运动还是变速圆周运动,都是加速度变化的曲线运动,都不是匀变速运动。
2、熟练掌握线速度、角速度、周期和转速的关系能给解题带来方便。
(1)尽管线速度、角速度、周期和转速都能描写圆周运动的快慢,但是它们是有区别的;(2)线速度与角速度的关系和是瞬时对应关系,匀速圆周运动和变速圆周运动都适应;(3)在具体计算中,要注意角的单位和转速的单位。
3、同一个转动的物体上不同的点,其角速度是相同的,其线速度与半径成正比;皮带传动时或者齿轮传动时,两个轮子边缘上的点线速度是相同的,其角速度或转速与轮子的半径成反比。
4、向心加速度的计算公式适用于圆周运动任何瞬时的向心加速度的计算,其中的线速度和角速度都是瞬时值,无论是匀速圆周运动还是变速圆周运动都可以用来计算某时刻的向心加速度。
典型例题透析类型一——角速度和线速度的计算1、闹钟的秒针长4cm,求秒针针尖运动的线速度和角速度。
思路点拨:秒针的周期是60s,是一个不言而喻的条件,应自觉的运用。
解析:秒针转动的周期T=60s,又因为,故针尖转动一周走过的弧长是2πr,所以针尖上一点的线速度也可以用线速度和角速度的关系求解线速度2、(2010 全国Ⅰ卷)图1是利用激光测转速的原理示意图,图中圆盘可绕固定轴转动,盘边缘侧面上有一小段涂有很薄的反光材料。
当盘转到某一位置时,接收器可以接收到反光涂层所反射的激光束,并将所收到的光信号转变成电信号,在示波器显示屏上显示出来(如图2所示)。
(1)若图2中示波器显示屏横向的每大格(5小格)对应的时间为,则圆盘的转速为__转/秒。
(保留3位有效数字)(2)若测得圆盘直径为10.20cm,则可求得圆盘侧面反光涂层的长度为__cm。
(保留3位有效数字)思路点拨:从题目中提炼出相关条件,是解题的关键:小的矩形虚线的宽度表示反光涂层的运动时间,两个矩形虚线框之间的宽度表示圆盘运动一周的时间。
解析:(1)从图2可知圆盘转一圈的时间在横坐标上显示22格,由题意知图2中横坐标上每格表示,所以圆盘转动的周期是0.22s,则转速为4.55转/秒。
(2)反光涂层的长度为。
答案:(1)4.55(2)1.46总结升华:如何从题目中挖掘条件是解题的首要任务,也是一种阅读能力,从本题来看,紧密结合图1和图2,对两图中的对应量进行迁移,才会正确解题。
同时一定要在平时训练这方面的能力。
举一反三【变式1】:电风扇叶片边缘一点的线速度为56.7m/s,若它转动半径为18cm,求电扇转动的角速度和周期。
解析:根据线速度与角速度的关系得【变式2】(2011 山东聊城模拟)如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链联结形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,绕过两个滑轮后挂上重物M. C点与O点距离为L,现在杆的另一端用力使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90°角),此过程中下列说法正确的是( )A.重物M做匀速直线运动B.重物M做匀变速直线运动C.重物M的最大速度是ωLD.重物M的速度先减小后增大解析:由题知,C点的速度大小为v C=ωL,设v C与绳之间的夹角为θ,把v C沿绳和垂直绳方向分解可得,v绳=v C cosθ,在转动过程中θ先减小到零再增大,故v绳先增大后减小,重物M做变加速运动,其最大速度为ωL,C正确.类型二——向心加速度的计算3、在长20cm的细绳的一端系一个小球,绳的另一端固定在水平桌面上,使小球以5m/s的速度在桌面上做匀速圆周运动,求小球运动的向心加速度和转动的角速度。
解析:由题意可知根据向心加速度的计算公式4、如图所示,定滑轮的半径r=2cm,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a=2m/s2做匀加速运动。
在重物由静止下落距离为1m的瞬间,滑轮边缘上的点的角速度多大?向心加速度a多大?思路点拨:这是一个关于变速圆周运动向心加速度计算的问题。
物体的速度时刻等于轮缘上一点的线速度,求出物体下落1m时的瞬时速度,然后利用角速度、向心加速度和线速度的关系可以求解。
解析:(1)重物下落1m时,瞬时速度为显然,滑轮边缘上每一点的线速度也都是2m/s,故滑轮转动的角速度,即滑轮边缘上每一点的转动角速度为:(2)向心加速度为:总结升华:此题讨论的是变速运动问题,重物落下的过程中滑轮转动的角速度,轮上各点的线速度都在不断增加,但在任何时刻角速度与线速度的关系,向心加速度与角速度、线速度的关系仍然成立。
类型三——皮带传动问题5、如图,主动轮匀速转动,通过皮带不打滑地带动从动轮O2转动,已知分别为r1、r2上的中点,A为O2轮边缘上一点,B为O1轮边缘上一点,C为皮带上一点。
试比较:(1)A、B、C点线速度的大小?(2)A、B、E、F各点角速度的大小?(3)E、F点线速度的大小?思路点拨:分析比较各个点运动情况的异同,建立相互关系是解题的切入点。
解析:(1)因为皮带传动过程与轮子不打滑,所以A、B、C三个点可以看成是皮带上的三个点,相同时间必定通过相同的路程,因此,A、B、C点的线速度相等,这也是两个轮子的联系。
即(2)比较各点角速度:比较应通过入手分析因为A、F是同一物体上的点,角速度必然相等即,同理所以(3)由总结升华:(1)同一转动物体上的各点,角速度必然相等;(2)皮带传动时,与皮带接触的点线速度相等。
举一反三变式1、如图所示,一皮带不打滑的皮带传动装置,A、B两点是轮缘上的点,C是O2B连线中点上的一点。
大轮与小轮的半径之比为2:1,试分析A、B、C三点线速度、角速度、周期、向心加速度的关系。
解析:A、B、C三者中,A、B都是轮边缘上的点,所以具有相同的线速度。