高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063150
- 格式:doc
- 大小:1.27 MB
- 文档页数:26
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.【热点题型】题型一二次函数模型【例1】A,B两城相距100 km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?【提分秘籍】实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定注意函数的定义域.【举一反三】某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x -0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元 B.11万元C.43万元 D.43.025万元题型二指数函数、对数函数模型【例2】世界人口在过去40年翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)()A.1.5% B.1.6% C.1.7% D.1.8%【提分秘籍】在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N(1+p)x(其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【举一反三】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况题型三 分段函数模型【例3】 某旅游景点预计1月份起前x 个月的旅游人数的和p(x)(单位:万人)与x 的关系近似地满足p(x)=12x(x +1)(39-2x)(x ∈N*,且x≤12).已知第x 个月的人均消费额q(x)(单位:元)与x 的近似关系是q(x)=⎩⎪⎨⎪⎧35-2x (x ∈N*,且1≤x≤6),160x(x ∈N*,且7≤x≤12).(1)写出第x 个月的旅游人数f(x)(单位:人)与x 的函数关系式; (2)试问第几个月旅游消费总额最大?最大月旅游消费总额为多少元?【提分秘籍】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【举一反三】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额折扣率不超过500元的部分 5% 超过500元的部分10%某人在此商场购物总金额为x 元,可以获得的折扣金额为y 元,则y 关于x 的解析式为 y =⎩⎪⎨⎪⎧0,0<x≤800,5%(x -800),800<x≤1 300,10%(x -1 300)+25,x >1 300.若y =30元,则他购物实际所付金额为________元.【高考风向标】【高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时(·北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t(单位:分钟)满足函数关系p =at2+bt +c(a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟(·陕西卷)如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x3-12x2-x B .y =12x3+12x2-3x C .y =14x3-x D .y =14x3+12x2-2x【高考押题】1.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是 ( )x 4 5 6 7 8 9 10 y15171921232527A .一次函数模型B .幂函数模型C .指数函数模型D .对数函数模型2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t(年)的函数关系图象正确的是( )3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 ( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-14.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( )A .10B .11C .13D .215.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 ( )A .10元B .20元C .30元 D.403元6. A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 kmh ,经过________小时,AB 间的距离最短.7.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =ae -bt(cm3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.8.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.9.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?10.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t+21-t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.13.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤ 20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).14.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m,CE=5 m,CF=6 m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,CB为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( ) A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( )A.23B.43C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ;(3)求M 、N 的坐标及向量MN →的坐标.【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________.题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________.(2)(·陕西)设0<θ<π2,向量a =(sin2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________.【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( )(A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92B .0C .3 D.1522.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e1=(0,0),e2=(1,2)B .e1=(-1,2),e2=(5,-2)C .e1=(3,5),e2=(6,10)D .e1=(2,-3),e2=(-2,3)3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 37.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+28.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-39.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB的长为________.11.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-913.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( )A.14B.12C .1D .24.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .55.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =146.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.8.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.9.已知A(1,1)、B(3,-1)、C(a ,b).(1)若A 、B 、C 三点共线,求a 、b 的关系式;(2)若AC →=2AB →,求点C 的坐标.10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问:(1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题.【重点知识梳理】1.实际问题中的常用角(1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.(4)坡度:坡面与水平面所成的二面角的正切值.【高频考点突破】考点一考查测量距离例1、如图所示,有两座建筑物AB和CD都在河的对岸(不知道它们的高度,且不能到达对岸),某人想测量两座建筑物尖顶A、C之间的距离,但只有卷尺和测量仪两种工具.若此人在地面上选一条基线EF,用卷尺测得EF的长度为a,并用测角仪测量了一些角度:∠AEF=α,∠AFE=β,∠CEF=θ,∠CFE=φ,∠AEC=γ.请你用文字和公式写出计算A、C之间距离的步骤和结果.【方法技巧】求距离问题时要注意(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解;(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.【变式探究】隔河看两目标A与B,但不能到达,在岸边选取相距 3 km的C,D两点,同时,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.考点二考查高度问题例2、如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)()A.2.7 mB.17.3 mC.37.3 m D.373 m【方法技巧】求解高度问题首先应分清(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.【变式探究】如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.考点三考查方位角例3、如图,我国的海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其东北方向与它相距16海里的B处里一外国船只,且D岛位于海监船正东142海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方向航行.为了将该船拦截在离D岛12海里处,不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:sin 36°52′≈0.6,sin 53°08′≈0.8)【方法技巧】解决方位角问题其关键是弄清方位角概念.结合图形恰当选择正、余弦定理解三角形,同时注意平面图形的几何性质的应用.【变式探究】如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东α角,前进m km后在B处测量该岛的方位角为北偏东β角,已知该岛周围n km范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件________时,该船没有触礁危险.考点四考查函数思想在解三角形中的应用例4、如图所示,一辆汽车从O点出发沿一条直线公路以50公里/小时的速度匀速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车出发点O点的距离为5公里、距离公路线的垂直距离为3公里的M点的地方有一个人骑摩托车出发想把一件东西送给汽车司机.问骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此时他驾驶摩托车行驶了多少公里?【方法技巧】函数思想在解三角形中常与余弦定理应用及函数最值求法相综合,此类问题综合性较强,能力要求较高,要求考生要有一定的分析问题解决问题的能力.解答本题利用了函数思想,求解时把速度表示为时间的函数,利用函数最值求法完成解答,注意函数中以1t 为整体构造二次函数,求最值.【变式探究】如图所示,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C处看此树,则该人离此树________米时,看A ,B 的视角最大.【真题感悟】【高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.【高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. (I )证明:sin cos B A =;(II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C .【高考陕西,文17】ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =与(cos ,sin )n A B =平行.(I)求A ;(II)若7,2a b ==求ABC ∆的面积.【高考浙江,文16】(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=. (1)求2sin 2sin 2cos A A A的值; (2)若B ,34a π==,求ABC ∆的面积.【押题专练】1.有一长为10 m 的斜坡,倾斜角为75°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长()A .5 mB .10 mC .10 2 mD .10 3 m 2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度为()[来源:学*科*网Z*X*X*K]A.1722海里/小时 B .346海里/小时C.1762海里/小时 D .342海里/小时3.甲船在岛A 的正南B 处,以每小时4千米的速度向正北航行,AB =10千米,同时乙船自岛A 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为()A.1507分钟B.157小时 C .21.5分钟 D .2.15小时4.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为()A .50 2 mB .50 3 mC .25 2 m D.2522 m5.地上画了一个角∠BDA =60°,某人从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点N ,则N 与D 之间的距离为()A .14米B .15米C .16米D .17米6.已知等腰三角形的面积为32,顶角的正弦值是底角的正弦值的3倍,则该三角形的一腰长为()A. 2B. 3 C .2 D.67.如图,在某灾区的搜救现场,一条搜救犬从A 点出发沿正北方向行进x m 到达B 处发现生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°回到出发点,那么x =________.8.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.9.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是________ m.10.如图,在某平原地区一条河的彼岸有一建筑物,现在需要测量其高度AB.由于雨季河宽水急不能涉水,只能在此岸测量.现有的测量器材只有测角仪和皮尺.现在选定了一条水平基线HG ,使得H ,G ,B 三点在同一条直线上.请你设计一种测量方法测出建筑物的高度,并说明理由.(测角仪的高为h)11.如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C 处的乙船.[来源:学*科*网](1)求处于C 处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB 方向前往B 处救援,其方向向CA →成θ角,求f(x)=sin2θsin x +34cos2θcosx(x ∈R)的值域.12.A ,B ,C 是一条直线上的三个点,AB =BC =1 km ,从这三点分别遥望一座电视塔P ,A 处看塔,塔在东北方向,B 处看塔,塔在正东方向,C 处看塔,塔在南偏东60°方向.求塔到直线AC 的距离.13.某单位设计一个展览沙盘,现欲在沙盘平面内,设计一个对角线在l 上的四边形电气线路,如图所示.为充分利用现有材料,边BC ,CD 用一根长为5米的材料弯折而成,边BA ,AD 用一根长为9米的材料弯折而成,要求∠A 和∠C 互补,且AB =BC.(1)设AB =x 米,cos A =f(x),求f(x)的解析式,并指出x 的取值范围;(2)求四边形ABCD 面积的最大值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案(1)B(2)6 16a2解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D 为OA 的中点),∴S △O′A′B′=12×22S △OAB =24×34a2=616a2.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm ,O′C′=2cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形答案 (1)B (2)C解析 (1)如图,几何体为三棱柱.题型二 空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.答案 (1)C (2)A (3)1∶2∶3解析 (1)由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4cm ,底面半径为2cm ,右面圆柱的高为2cm ,底面半径为3cm ,则组合体的体积V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯体积V2=π×32×6=54π(cm3),则所求比值为54π-34π54π=1027.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.(3)设正方体的棱长为a ,①正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图①所示,有2r1=a ,∴r1=a 2,S1=4πr 21=πa2.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22 C.14 D.24答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)因为C 在平面ABD 上的射影为BD 的中点O ,在边长为1的正方形ABCD 中,AO =CO =12AC =22,所以侧视图的面积等于S △AOC =12CO·AO =12×22×22=14,故选C.题型三 空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A图1 图2【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B【解析】由题意知,该等腰直角三角形的斜边长为22,斜边上的高为2,所得旋转体为同底等高的全等圆锥,所以,其体积为2142(2)223ππ⨯⨯=,故选B.7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知: 2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中, 1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C. 8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π3 【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= . 9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.【答案】12410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2 A.233 B.476 C .6 D .7【答案】A 【解析】如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4【答案】B【解析】由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2. 12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π【答案】C【解析】由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π.13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π4【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形. 【解析】解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH∩平面BDC =FG ,平面EFGH∩ 平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH.同理EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线答案 D解析 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10答案 D解析 如图,在五棱柱ABCDE -A1B1C1D1E1中,从顶点A 出发的对角线有两条:AC1,AD1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π3答案 D解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =222+222=1,球的体积V =4π3r3=4π3.故选D.4.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .72cm3B .90cm3C .108cm3D .138cm3答案 B解析 该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示.V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm3).5.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()答案B解析由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故A不正确.6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.答案2π2π+17.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.答案 8π解析 由三视图知该几何体是半径为2的球被截去四分之一后剩下的几何体,则该几何体的体积V =43×π×23×34=8π.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A1B1C1中,O 、O1分别为两底面中心,D 、D1分别为BC 和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB =30,则OD =53,O1D1=1033,由S 侧=S 上+S 下,得 12×(20+30)×3DD1=34×(202+302),解得DD1=1333,在直角梯形O1ODD1中,O1O =DD21-OD -O1D12=43, 所以棱台的高为43cm.高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解双曲线的定义、几何图形和标准方程及简单性质.2.了解双曲线的实际背景及双曲线的简单应用.3.理解数形结合的思想. 【重点知识梳理】 1.双曲线的定义平面内动点与两个定点F1,F2(|F1F2|=2c >0)的距离差的绝对值等于常数(小于|F1F2|大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P ={M|||MF1|-|MF2||=2a},|F1F2|=2c ,其中a ,c 为常数且a>0,c>0:(1)若a<c 时,则集合P 为双曲线; (2)若a =c 时,则集合P 为两条射线; (3)若a>c 时,则集合P 为空集. 2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1 (a>0,b>0)y2a2-x2b2=1 (a>0,b>0)图 形性 质范围 x≥a 或x≤-a ,y ∈Rx ∈R ,y≤-a 或y≥a对称性 对称轴:坐标轴;对称中心:原点 顶点 A1(-a ,0),A2(a ,0) A1(0,-a),A2(0,a) 渐近线 y =±b a xy =±a b x 离心率e =ca ,e ∈(1,+∞)实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a ;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b ;a 叫做双曲线的半实轴长,b 叫做双曲线的半虚轴长a ,b ,c 的关系c2=a2+b2(c >a >0,c >b >0)【高频考点突破】考点一 双曲线的定义及应用【例1】 (1)已知圆C1:(x +3)2+y2=1和圆C2:(x -3)2+y2=9,动圆M 同时与圆C1及圆C2相外切,则动圆圆心M 的轨迹方程为________.(2)已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P 为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为________.【变式探究】(1)设P 是双曲线x216-y220=1上一点,F1,F2分别是双曲线左、右焦点,若|PF1|=9,则|PF2|=( ) A .1 B .17C .1或17D .以上答案均不对(2)已知F 是双曲线x24-y212=1的左焦点,A(1,4),P 是双曲线右支上的动点,则|PF|+|PA|的最小值为( )A .5B .5+4 3C .7D .9 考点二 双曲线的标准方程【例2】 (1)(·天津卷)已知双曲线x2a2-y2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x25-y220=1B.x220-y25=1C.3x225-3y2100=1D.3x2100-3y225=1(2)设双曲线与椭圆x227+y236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________.【变式探究】 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54; (2)焦距为26,且经过点M(0,12);(3)经过两点P(-3,27)和Q(-62,-7). 考点三 双曲线的几何性质【例3】 (1)设F1,F2分别为双曲线x2a2-y2b2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A .3x±4y =0B .3x±5y =0C .4x±3y =0D .5x +4y =0(2)(·浙江卷)设直线x -3y +m =0(m≠0)与双曲线x2a2-y2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B.若点P(m ,0)满足|PA|=|PB|,则该双曲线的离心率是________.【变式探究】 已知双曲线x2a2-y2b2=1(a >b >0)的左、右焦点分别为F1(-c ,0),F2(c ,0),若双曲线存在一点P 使sin ∠PF1F2sin ∠PF2F1=ac ,则该双曲线的离心率的取值范围是________.考点四 直线与双曲线的位置关系【例4】 已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3. (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 左支交于A ,B 两点,求k 的取值范围.【变式探究】 (·湖北卷)设a ,b 是关于t 的方程t2cos θ+tsin θ=0的两个不等实根,则过A(a ,a2),B(b ,b2)两点的直线与双曲线x2cos2θ-y2sin2θ=1的公共点的个数为( )A .0B .1C .2D .3【真题感悟】1.【高考重庆,文9】设双曲线22221(a 0,b 0)x y a b 的右焦点是F ,左、右顶点分别是12A ,A ,过F 做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为()(A)12 (B) 22(C) 1 (D) 22.【高考四川,文7】过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB|=( )(A)433333.【高考新课标1,文16】已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(0,66A ,当APF ∆周长最小时,该三角形的面积为.4.【高考天津,文5】已知双曲线22221(0,0)x y a b ab 的一个焦点为(2,0)F ,且双曲线的渐近线与圆222y 3x 相切,则双曲线的方程为()(A)221913x y (B) 221139x y (C)2213x y(D) 2213y x5.【高考湖南,文6】若双曲线22221x y a b-=的一条渐近线经过点(3,4),则此双曲线的离心率为( )A 、73 B 、54 C 、43 D 、536.【高考安徽,文6】下列双曲线中,渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2212y x -= (D )2212x y -= 7.【高考湖北,文9】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >8.【高考北京,文12】已知()2,0是双曲线2221y x b-=(0b >)的一个焦点,则b =.39.【高考上海,文12】已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为.10.【高考山东,文15】过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .23 1.(·湖北卷)已知F1,F2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233 C .3 D .22.(·北京卷)设双曲线C 经过点(2,2),且与y24-x2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.3.(·全国卷)已知双曲线C 的离心率为2,焦点为F1,F2,点A 在C 上.若|F1A|=2|F2A|,则cos ∠AF2F1=( )A.14B.13C.24D.234.(·福建卷)已知双曲线E :x2a2-y2b2=1(a>0,b>0)的两条渐近线分别为l1:y =2x ,l2:y =-2x. (1)求双曲线E 的离心率.(2)如图1-6,O 为坐标原点,动直线l 分别交直线l1,l2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.图1-65.(·广东卷)若实数k 满足0<k<9,则曲线x225-y29-k =1与曲线x225-k -y29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等6.(·湖南卷)如图1-7,O 为坐标原点,椭圆C1:x2a2+y2b2=1(a >b >0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:x2a2-y2b2=1的左、右焦点分别为F3,F4,离心率为e2.已知e1e2=32,且|F2F4|=3-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C2交于P ,Q 两点时,求四边形APBQ 面积的最小值.图1-77.(·江西卷)如图1-7所示,已知双曲线C :x2a2-y2=1(a>0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA(O 为坐标原点).图1-7(1)求双曲线C 的方程;(2)过C 上一点P(x0,y0)(y0≠0)的直线l :x0x a2-y0y =1与直线AF 相交于点M ,与直线x =32相交于点N.证明:当点P 在C 上移动时,|MF||NF|恒为定值,并求此定值.8.(·新课标全国卷Ⅰ] 已知F 为双曲线C :x2-my2=3m(m>0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3 B .3 C.3m D .3m9.(·山东卷)已知a >b >0,椭圆C1的方程为x2a2+y2b2=1,双曲线C2的方程为x2a2-y2b2=1,C1与C2的离心率之积为32,则C2的渐近线方程为( )A. x±2y =0B. 2x±y =0C. x±2y =0D. 2x±y =010.(·天津卷)已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x25-y220=1B.x220-y25=1C.3x225-3y2100=1D.3x2100-3y225=111.(·浙江卷)设直线x -3y +m =0(m≠0)与双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于点A ,B.若点P(m ,0)满足|PA|=|PB|,则该双曲线的离心率是________.12.(·重庆卷)设F1,F2分别为双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,双曲线上存在一点P 使得|PF1|+|PF2|=3b ,|PF1|·|PF2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94 D .3【押题专练】1.设双曲线x2a2-y2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( ) A .y =±12x B .y =±22x C .y =±2x D .y =±2x2.设F1,F2是双曲线x2-y224=1的两个焦点,P 是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于( )A .4 2B .8 3C .24D .483.过双曲线C :x2a2-y2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A.若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x24-y212=1 B.x27-y29=1 C.x28-y28=1D.x212-y24=14.已知点F 是双曲线x2a2-y2b2=1(a>0,b>0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是 ( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,1+2)5.已知F1,F2分别是双曲线x2a2-y2b2=1(a >0,b >0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是________.6.已知双曲线x2m -y23m =1的一个焦点是(0,2),椭圆y2n -x2m =1的焦距等于4,则n =________. 7.已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ 上,则△PQF 的周长为________.8.已知椭圆D :x250+y225=1与圆M :x2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程.9.已知双曲线y2a2-x2b2=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的距离为255. (1)求此双曲线的方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,若AP →=PB →,求△AOB 的面积.10.如图,O 为坐标原点,双曲线C1:x2a21-y2b21=1(a1>0,b1>0)和椭圆C2:y2a22+x2b22=1(a2>b2>0)均过点P ⎝ ⎛⎭⎪⎫233,1,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C1,C2的方程;(2)是否存在直线l ,使得l 与C1交于A ,B 两点,与C2只有一个公共点,且|OA →+OB →|=|AB →|?证明你的结论.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.【热点题型】题型一二次函数模型【例1】A,B两城相距100 km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?【提分秘籍】实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定注意函数的定义域.【举一反三】某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x -0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元 B.11万元C.43万元 D.43.025万元题型二指数函数、对数函数模型【例2】世界人口在过去40年翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)()A.1.5% B.1.6% C.1.7% D.1.8%【提分秘籍】在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N(1+p)x(其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【举一反三】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况题型三 分段函数模型【例3】 某旅游景点预计1月份起前x 个月的旅游人数的和p(x)(单位:万人)与x 的关系近似地满足p(x)=12x(x +1)(39-2x)(x ∈N*,且x≤12).已知第x 个月的人均消费额q(x)(单位:元)与x 的近似关系是q(x)=⎩⎪⎨⎪⎧35-2x (x ∈N*,且1≤x≤6),160x(x ∈N*,且7≤x≤12).(1)写出第x 个月的旅游人数f(x)(单位:人)与x 的函数关系式; (2)试问第几个月旅游消费总额最大?最大月旅游消费总额为多少元?【提分秘籍】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【举一反三】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额折扣率不超过500元的部分 5% 超过500元的部分10%某人在此商场购物总金额为x 元,可以获得的折扣金额为y 元,则y 关于x 的解析式为 y =⎩⎪⎨⎪⎧0,0<x≤800,5%(x -800),800<x≤1 300,10%(x -1 300)+25,x >1 300.若y =30元,则他购物实际所付金额为________元.【高考风向标】【高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时(·北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t(单位:分钟)满足函数关系p =at2+bt +c(a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟(·陕西卷)如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x3-12x2-x B .y =12x3+12x2-3x C .y =14x3-x D .y =14x3+12x2-2x【高考押题】1.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是 ( )x 4 5 6 7 8 9 10 y15171921232527A .一次函数模型B .幂函数模型C .指数函数模型D .对数函数模型2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t(年)的函数关系图象正确的是( )3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 ( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-14.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( )A .10B .11C .13D .215.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 ( )A .10元B .20元C .30元 D.403元6. A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 kmh ,经过________小时,AB 间的距离最短.7.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =ae -bt(cm3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.8.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.9.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?10.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t+21-t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.13.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤ 20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).14.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m,CE=5 m,CF=6 m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,CB为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h的取值范围.高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解指数函数模型的实际背景.2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数;了解对数在简化运算中的作用.6.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.7.知道对数函数是一类重要的函数模型.8.了解指数函数y =ax 与对数函数y =logax 互为反函数(a>0,且a≠1).【热点题型】题型一指数式与根式的计算(例1、计算 (1)733-3324-6319+4333=________.(2)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23-3π0+3748=________.【提分秘籍】化简指数幂的一般步骤是:有括号先算括号里的,无括号先进行指数运算(即先乘方、开方),再乘除,最后加减,负指数幂化为正指数幂的倒数;底数是负数,先确定符号;底数是小数,先要化成分数;底数是带分数的,先要化成假分数;若是根式,应化为分数指数幂,然后再尽可能用幂的形式表示,便于运用指数幂的运算性质.【举一反三】若x>0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.题型二指数函数的图象问题(例2、若方程|ax -1|=2a(a>0,且a≠1)有两解,则a 的取值范围是________.【提分秘籍】y =ax ,y =|ax|,y =a|x|(a>0且a≠1)三者之间的关系:y =ax 与y =|ax|是同一函数的不同表现形式.函数y =a|x|与y =ax 不同,前者是一个偶函数,其图象关于y 轴对称,当x≥0时两函数图象相同.【举一反三】已知c<0,下列不等式中成立的一个是()A .c>2cB .c>⎝⎛⎭⎫12cC .2c<⎝⎛⎭⎫12c D .2c>⎝⎛⎭⎫12c题型三指数函数性质的应用 例3、设a =40.8,b =80.46,c =⎝⎛⎭⎫12-1.2,则a ,b ,c 的大小关系为() A .a>b>c B .b>a>cC .c>a>bD .c>b>a【提分秘籍】(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)指数型函数中参数的取值范围问题.在解决涉及指数函数的单调性或最值问题时,应注意对底数a 的分类讨论.【举一反三】若函数f(x)=⎩⎨⎧ 1x ,x<0,⎝⎛⎭⎫13x ,x≥0,则不等式-13≤f(x)≤13的解集为()A .[-1,2)∪[3,+∞)B .(-∞,-3]∪[1,+∞)C.⎣⎡⎭⎫32,+∞ D .(1, 3 ]∪[3,+∞)题型四对数运算例4、(1)(3+2)2log(3-2)5=( )A .1B.12C.14D.15(2)=________.(3)若log147=a,14b =5,则a ,b 表示log3528=________.【提分秘籍】对数式的化简与求值的常用思路: (1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数的运算,然后逆用对数的运算法则,转化为同底数真数的积、商、幂再运算.【举一反三】lg 25+lg 2·lg 50+(lg 2)2=()A .1B .2C .3D .4题型五对数函数的图象及应用例5、(1)函数f(x)=lg(|x|-1)的大致图象是()(2)设方程10x =|lg(-x)|的两个根分别为x1,x2,则()A .x1x2<0B .x1x2=0C .x1x2>1D .0<x1x2<1【提分秘籍】在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.在研究方程的根时,可把方程的根看作两个函数图象交点的横坐标,通过研究两个函数图象得出方程根的关系.【举一反三】若函数y =logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()题型六对数函数的性质及应用例6、对于函数f(x)=log 12(x2-2ax +3),解答下列问题:(1)若f(x)的定义域为R ,求实数a 的取值范围;(2)若f(x)的值域为R ,求实数a 的取值范围;(3)若函数f(x)在(-∞,1]内为增函数,求实数a 的取值范围.【提分秘籍】对数函数性质的考查多与复合函数联系在一起.要注意两点:(1)要认清复合函数的构成,判断出单调性.(2)不要忽略定义域.【举一反三】已知函数f(x)=log4(ax2+2x +3).(1)若f(1)=1,求f(x)的单调区间.(2)是否存在实数a ,使f(x)的最小值为0?若存在,求出a 的值;若不存在,说明理由.【高考风向标】1.【高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=( )(A )74-(B )54-(C )34-(D )14- 2.【高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( ) (A )() (B)() (C )0,1()(D )1,+∞()3.【高考山东,文2】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( )(A )a b c <<(B )a cb <<(C )b ac <<(D )b c a <<4.【高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A )1-(B )1(C )2(D )45.【高考浙江,文9】计算:22log 2=,24log 3log 32+=.6.【高考四川,文12】lg0.01+log216=_____________.7.【高考湖北,文17】a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.8.【高考上海,文8】方程2)23(log )59(log 1212+-=---x x 的解为.9.(·天津卷)设a =log2π,b =log 12π,c =π-2,则()A .a >b >cB .b >a >cC .a >c >bD .c >b >a10.(·四川卷)已知b >0,log5b =a ,lg b =c ,5d =10,则下列等式一定成立的是()A .d =acB .a =cdC .c =adD .d =a +c11.(·安徽卷)设a =log37,b =21.1,c =0.83.1,则()A .b<a<cB .c<a<bC .c<b<aD .a<c<b12.(·福建卷)若函数y =logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是()ABCD13.(·辽宁卷)已知a =2-13,b =log213,c =log 1213,则()A .a >b >cB .a >c >bC .c >b >aD .c >a >b14.(·全国新课标卷Ⅰ] 设函数f(x)=⎩⎪⎨⎪⎧ex -1,x <1,x 13,x≥1,则使得f(x)≤2成立的x 的取值范围是________.15.(·山东卷)已知实数x ,y 满足ax<ay(0<a<1),则下列关系式恒成立的是()A .x3>y3B .sin x>sin yC .ln(x2+1)>ln(y2+1)D.1x2+1>1y2+116.(·陕西卷)下列函数中,满足“f(x +y)=f(x)f(y)”的单调递增函数是()A .f(x)=x3B .f(x)=3xC .f(x)=x 12D .f(x)=⎝⎛⎭⎫12x18.(·陕西卷)已知4a =2,lg x =a ,则x =________.19.(·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P(x ,y),则|PA|+|PB|的取值范围是()A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]20.(·天津卷) 函数f(x)=lg x2的单调递减区间是________.21.(·安徽卷) ⎝⎛⎭⎫1681-34+log354+log345=________.22.(·浙江卷) 在同一直角坐标系中,函数f(x)=xa(x >0),g(x)=logax 的图像可能是( )A BC D23.(·福建卷) 若函数y =logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是( )A BC D24.(·广东卷) 等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.25.(·辽宁卷) 已知a =2-13,b =log213,c =log 1213,则()A.a>b>cB.a>c>bC.c>b>a D.c>a>b26.(·山东卷)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图像如图1-1所示,则下列结论成立的是()图1-1A.a>1,x>1 B.a>1,0<c<1C.0<a<1,c>1 D.0<a<1,0<c<127.(·四川卷)已知b>0,log5b=a,lg b=c,5d=10,则下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c28.(·重庆卷)若log4(3a+4b)=log2ab,则a+b的最小值是()A.6+23B.7+23C.6+4 3 D.7+43【高考押题】1.函数y=a|x|(a>1)的图像是()2.已知函数f(x)=⎩⎪⎨⎪⎧log3x ,x>02x x≤0,则f(9)+f(0)=()A .0B .1C .2D .33.不论a 为何值时,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是 (). A.⎝⎛⎭⎫1,-12 B.⎝⎛⎭⎫1,12 C.⎝⎛⎭⎫-1,-12D.⎝⎛⎭⎫-1,124.定义运算:a*b =⎩⎪⎨⎪⎧a ,a≤b ,b ,a>b ,如1*2=1,则函数f(x)=2x*2x 的值域为().A .RB .(0,+∞)C .(0,1]D .[1,+∞)5.若a>1,b>0,且ab +a -b =22,则ab -a -b 的值为() A. 6 B .2或-2C .-2D .26.若函数f(x)=(k -1)ax -a -x(a>0且a≠1)在R 上既是奇函数,又是减函数,则g(x)=loga(x +k)的图象是下图中的().7.已知实数a =log45,b =⎝⎛⎭⎫120,c =log30.4,则a ,b ,c 的大小关系为()A .b<c<aB .b<a<cC .c<a<bD .c<b<a8.设f(x)=lg(21-x +a)是奇函数,则使f(x)<0的x 的取值范围是().A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)9.若函数y =loga(x2-ax +1)有最小值,则a 的取值范围是(). A .0<a<1 B .0<a<2,a≠1 C .1<a<2 D .a≥210.若函数f(x)=loga(x2-ax +3)(a>0且a≠1)满足对任意的x1,x2,当x1<x2≤a2时,f(x1)-f(x2)>0,则实数a 的取值范围为().A .(0,1)∪(1,3)B .(1,3)C .(0,1)∪(1,23)D .(1,23)11.已知函数f(x)=2x -12x +1.(1)判断函数f(x)的奇偶性; (2)求证f(x)在R 上为增函数.12.已知函数f(x)=b·ax(其中a ,b 为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24). (1)求f(x);(2)若不等式(1a )x +(1b )x -m≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.13.已知函数f(x)=⎝⎛⎭⎫13ax2-4x +3. (1)若a =-1,求f(x)的单调区间; (2)若f(x)有最大值3,求a 的值.14.已知定义在R 上的函数f(x)=2x -12|x|.(1)若f(x)=32,求x 的值;(2)若2tf(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.15.若函数y =lg(3-4x +x2)的定义域为M.当x ∈M 时,求f(x)=2x +2-3×4x 的最值及相应的x 的值.16.已知函数f(x)=loga x +bx -b (a >0,b >0,a≠1).(1)求f(x)的定义域; (2)讨论f(x)的奇偶性; (3)讨论f(x)的单调性;17.已知函数f(x)=loga x +1x -1,(a>0,且a≠1).(1)求函数的定义域,并证明:f(x)=loga x +1x -1在定义域上是奇函数;(2)对于x ∈[2,4],f(x)=loga x +1x -1>loga mx -127-x 恒成立,求m 的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简与给角求值 【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______. 【提分秘籍】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【举一反三】(1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)(·临沂模拟)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________. 题型二三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值. 【提分秘籍】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. 【举一反三】已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.题型三三角变换的简单应用【例3】已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.【提分秘籍】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【举一反三】已知函数f(x)=sin ⎝⎛⎭⎫3x +π4.(1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 【高考风向标】 【高考重庆,文6】若11tan,tan()32,则tan =()(A)17 (B) 16 (C) 57 (D) 56【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-44.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △AB C 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B. 6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________.7.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.8.(·四川卷) 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求co s α-sin α的值.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 【高考押题】1.若tan θ=3,则sin 2θ1+cos 2θ=( )A. 3 B .-3 C.33D .-332.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α=( )A.118 B.1718 C.89D.293.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( )A .7B.17C .-17D .-74.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π65.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则 ( )A .3α-β=π2 B .2α-β=π2 C .3α+β=π2D .2α+β=π26.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________.7.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.8.已知co s4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________. 9.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值;(2)求cos ⎝⎛⎭⎫5π6-2α的值. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【重点知识梳理】 1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a2+b2≥2ab(a ,b ∈R). (2)b a +ab ≥2(a ,b 同号). (3)ab≤⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). (4)a2+b22≥⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). 3.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x>0,y>0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p.(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p24.(简记:和定积最大) 【高频考点突破】考点一 利用基本不等式证明简单不等式 【例1】 已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8. 【规律方法】利用基本不等式证明新的不等式的基本思路是:利用基本不等式对所证明的不等式中的某些部分放大或者缩小,在含有三个字母的不等式证明中要注意利用对称性.【变式探究】 已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c ≥9.考点二 利用基本不等式求最值 【例2】 解答下列问题:(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值; (3)已知x <54,求f(x)=4x -2+14x -5的最大值;(4)已知函数f(x)=4x +ax (x >0,a >0)在x =3时取得最小值,求a 的值. 【规律方法】(1)利用基本不等式解决条件最值的关键是构造和为定值或乘积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.【变式探究】(1)设a >0,若关于x 的不等式x +ax ≥4在x ∈(0,+∞)上恒成立,则a 的最小值为( ) A .4 B .2 C .16 D .1(2)设0<x <52,则函数y =4x(5-2x)的最大值为______.(3)设x >-1,则函数y =(x +5)(x +2)x +1的最小值为________.考点三 基本不等式的实际应用【例3】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 【规律方法】有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,一定要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】 首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y =12x2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【真题感悟】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、42b a =ab 2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.3.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .54.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.5.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.8.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.109.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.9410.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【押题专练】1.设非零实数a ,b ,则“a2+b2≥2ab”是“a b +ba ≥2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 2.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A.72B .4C.92D .5 3.若正数x ,y 满足4x2+9y2+3xy =30,则xy 的最大值是( )A.43B.53C .2D.544.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是 ( ) A .3B .4C .5D .65.设x ,y ∈R ,a >1,b >1,若ax =by =3,a +b =23,则1x +1y 的最大值为( )A .2B.32C .1D.126.设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为 ( ) A .0B .1C.94D .37.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 8.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.9.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)10.函数f(x)=lgx2-x,若f(a)+f(b)=0,则3a+1b的最小值为________.11.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34D .1 2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.783.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .1-π4B.π4C .1-π8D.与a 的取值有关4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A.2-12B.1-22C.2-1D.2- 25.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形AB CD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为( ) A .1718 B .79C .29D .1183.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y =+≤和集合{}(,)|20,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为.4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .27645. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π- D .16π 2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)3. (济南市高三3月考模拟考试)如图,长方体ABCD —A1B1C 1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A —A1BD 内的概率为.4. 【北京市丰台区高三一模】设不等式组22100x y y ⎧+-≤⎨≥⎩,表示的平面区域为M ,不等式组201t x t y t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M 内随机取一个点,这个点在N 内的概率的最大值是_________. 5. 若k ∈[-3,3],则k 的值使得过A(1,1)可以作两条直线与圆(x -k)2+y2=2相切的概率等于( )A .12 B .13 C .23D .34。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34D .1 2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.783.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .1-π4B.π4C .1-π8D.与a 的取值有关4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A.2-12B.1-22C.2-1D.2- 25.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形AB CD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为( ) A .1718 B .79C .29D .1183.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y =+≤和集合{}(,)|20,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为.4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .27645. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π- D .16π 2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)3. (济南市高三3月考模拟考试)如图,长方体ABCD —A1B1C 1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A —A1BD 内的概率为.4. 【北京市丰台区高三一模】设不等式组22100x y y ⎧+-≤⎨≥⎩,表示的平面区域为M ,不等式组201t x t y t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M 内随机取一个点,这个点在N 内的概率的最大值是_________. 5. 若k ∈[-3,3],则k 的值使得过A(1,1)可以作两条直线与圆(x -k)2+y2=2相切的概率等于( )A .12 B .13 C .23D .34高考模拟复习试卷试题模拟卷【高频考点解读】1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.3.掌握不等式的性质及应用. 【热点题型】题型一 用不等式(组)表示不等关系例1、某商人如果将进货单价为8元的商品按每件10元销售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品的单价每提高1元,销售量就相应减少10件.若把提价后商品的单价设为x 元,怎样用不等式表示每天的利润不低于300元?【提分秘籍】对于不等式的表示问题,关键是理解题意,分清变化前后的各种量,得出相应的代数式,然后,用不等式表示.而对于涉及条件较多的实际问题,则往往需列不等式组解决.【举一反三】已知甲、乙两种食物的维生素A ,B 含量如下表:甲 乙 维生素A(单位/kg) 600 700 维生素B(单位/k g)800400设用甲、乙两种食物各xkg ,ykg 配成至多100kg 的混合食物,并使混合食物内至少含有56000单位维生素A 和62000单位维生素B ,则x ,y 应满足的所有不等关系为________.题型二比较大小例2、(1)已知a1,a2∈(0,1),记M =a1a2,N =a1+a2-1,则M 与N 的大小关系是( ) A .M<NB .M>N C .M =ND .不确定(2)若a =ln33,b =ln44,c =ln55,则( ) A .a<b<cB .c<b<a C .c<a<bD .b<a<c 【提分秘籍】 比较大小的常用方法(1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.【举一反三】(1)如果a<b<0,那么下列不等式成立的是( ) A.1a <1b B .ab<b2C .-ab<-a2D .-1a <-1b(2)设a =log32,b =log52,c =log23,则( ) A .a>c>bB .b>c>a C .c>b>a D .c>a>b 题型三 不等式性质的应用例3、已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b -1;③a -b>a -b ;④a3+b3>2a2b. 其中一定成立的不等式为( ) A .①②③B .①②④ C .①③④D .②③④ 【提分秘籍】(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等.【举一反三】(1)设a ,b 是非零实数,若a<b ,则下列不等式成立的是( )A .a2<b2B .ab2<a2b C.1ab2<1a2b D.b a <a b(2)已知a ,b ,c ∈R ,有以下命题:①若a>b ,则ac2>bc2;②若ac2>bc2,则a>b ;③若a>b ,则a·2c>b·2c. 其中正确的是________.(填上所有正确命题的序号) 【高考风向标】1.【高考浙江,文6】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是()A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++ 2.(·山东卷)已知实数x ,y 满足ax <ay(0<a <1),则下列关系式恒成立的是( ) A. 1x2+1>1y2+1 B. ln(x2+1)>ln(y2+1) C. sin x >sin y D. x3>y33.(·四川卷)若a>b>0,c<d<0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c4.(·安徽卷)若函数f(x)=|x +1|+|2x +a|的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或85.(·新课标全国卷Ⅱ)已知点A(-1,0),B(1,0),C(0,1),直线y =ax +b(a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝⎛⎦⎥⎤1-22,13 D.⎣⎡⎭⎫13,126.(·新课标全国卷Ⅱ)设a =log 36,b =log510,c =log714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c【高考押题】1.“a +c>b +d”是“a>b 且c>d”的( ) A .必要不充分条件B .充分不必要条件 C .充要条件D .既不充分也不必要条件 2.若1a <1b <0,则下列结论不正确的是( ) A .a2<b2B .ab<b2C .a +b<0D .|a|+|b|>|a +b|3.已知x>y>z ,x +y +z =0,则下列不等式中成立的是( ) A .xy>yzB .xz>yz C .xy>xzD .x|y|>z|y|4.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( ) A .(0,5π6) B .(-π6,5π6) C .(0,π) D .(-π6,π)5.设a>1,且m =loga(a2+1),n =loga(a -1),p =loga(2a),则m ,n ,p 的大小关系为( ) A .n>m>pB .m>p>n C .m>n>pD .p>m>n6.已知a<0,-1<b<0,那么a ,ab ,ab2的大小关系是__________.(用“>”连接)7.设a>b>c>0,x =a2+b +c 2,y =b2+c +a 2,z =c2+a +b 2,则x ,y ,z 的大小关系是________.(用“>”连接)8.已知a ,b ,c ,d 均为实数,有下列命题 ①若ab>0,bc -ad>0,则c a -db >0; ②若ab>0,c a -db >0,则bc -ad>0; ③若bc -ad>0,c a -db >0,则ab>0. 其中正确的命题是________.9.若实数a≠1,比较a +2与31-a的大小.10.甲乙两人同时从宿舍到教室,甲一半路程步行,一半路程跑步;乙一半时间步行,一半时间跑步;如果两人步行、跑步速度均相同,则谁先到教室?高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.【重点知识梳理】1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b2考点一椭圆的定义及其应用【例1】 (1)(如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A .椭圆B .双曲线C .抛物线D .圆(2)已知F1,F2是椭圆C :x2a2+y2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF →1⊥PF →2.若△PF1F2的面积为9,则b =________.【变式探究】 (1)已知F1,F2是椭圆x216+y29=1的两焦点,过点F2的直线交椭圆于A ,B 两点,在△AF1B 中,若有两边之和是10,则第三边的长度为( )A .6B .5C .4D .3(2)与圆C1:(x +3)2+y2=1外切,且与圆C2:(x -3)2+y2=81内切的动圆圆心P 的轨迹方程为________.即P在以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆上,得点P的轨迹方程为x225+y216=1.答案(1)A(2)x225+y216=1考点二求椭圆的标准方程【例2】 (1)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为2 2.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为________.(2)设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.(3)已知椭圆的长轴长是短轴长的3倍,且过点A(3,0),并且以坐标轴为对称轴,则椭圆的标准方程为________.【变式探究】 求满足下列条件的椭圆的标准方程: (1)与椭圆x24+y23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点;(3)经过两点⎝⎛⎭⎫-32,52,()3,5.由⎩⎪⎨⎪⎧⎝⎛⎭⎫-322m +⎝⎛⎭⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆方程为y210+x26=1. 考点三 椭圆的几何性质【例3】 (1)(·江西卷)过点M(1,1)作斜率为-12的直线与椭圆C :x2a2+y2b2=1(a>b>0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.(2)(·包头测试与评估)已知椭圆x2a2+y2b2=1的左顶点为A ,左焦点为F ,点P 为该椭圆上任意一点;若该椭圆的上顶点到焦点的距离为2,离心率e =12,则AP →·FP →的取值范围是________.不等式.例如,-a≤x≤a ,-b≤y≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系.【变式探究】 已知椭圆C1:x2a2+y2b2=1(a >b >0)的右焦点为F ,上顶点为A ,P 为C1上任一点,MN 是圆C2:x2+(y -3)2=1的一条直径,与AF 平行且在y 轴上的截距为3-2的直线l 恰好与圆C2相切.(1)求椭圆C1的离心率;(2)若PM →·PN →的最大值为49,求椭圆C1的方程.考点四 直线与椭圆的位置关系【例4】 (·四川卷)已知椭圆C :x2a2+y2b2=1(a >b >0)的左焦点为F(-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.规律方法(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2] =⎝⎛⎭⎫1+1k2[(y1+y2)2-4y1y2](k 为直线斜率). 提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零. 【变式探究】 (·陕西卷)已知椭圆x2a2+y2b2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F1(-c ,0),F2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F1F2为直径的圆交于C ,D 两点,且满足|AB||CD|=534,求直线l 的方程.由|AB||CD|=534,得4-m25-4m2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33. 考点五 圆锥曲线上点的对称问题圆锥曲线上两点关于直线的对称问题是高考命题的热点,该问题集中点弦、直线与圆锥曲线的位置关系、点与圆锥曲线的位置关系、方程、函数、不等式、点差法等重要数学知识和方法于一体,符合在知识网络交汇处、思想方法的交织线上和能力层次的交叉区内设置问题的命题特点,此类试题综合性强,难度大,对数学知识和能力的考查具有一定的深度,具有很好的选拔功能,是高考命题的热点.圆锥曲线上两点关于直线的对称问题主要有联立方程法和点差法两种解法.【例5】 椭圆E 经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x 轴上,离心率e =12,其中∠F1AF2的平分线所在的直线l 的方程为y =2x -1.(1)求椭圆E 的方程;(2)在椭圆上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.【真题感悟】1.【高考广东,文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9B .4C .3D .22.【高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A . 3B .3(0,]4C .3D .3[,1)43.【高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是.4.【高考安徽,文20】设椭圆E 的方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510. (Ⅰ)求E 的离心率e;(Ⅱ)设点C 的坐标为(0,b ),N 为线段AC 的中点,证明:MN ⊥AB. 【答案】(Ⅰ)55(Ⅱ)详见解析. 【解析】(Ⅰ)解:由题设条件知,点)31,32(b a M ,又105=OM k 从而1052=a b .进而b b a c b a 2,522=-==,故552==a c e . (Ⅱ)证:由N 是AC 的中点知,点N 的坐标为⎪⎭⎫ ⎝⎛-2,2b a ,可得⎪⎭⎫⎝⎛=65,6b a NM . 又()b a AB ,-=,从而有()22225616561a b b a NM AB -=+-=⋅ 由(Ⅰ)得计算结果可知,522b a =所以0=⋅NM AB ,故AB MN ⊥.5.【高考北京,文20】(本小题满分14分)已知椭圆C:2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(I )求椭圆C 的离心率;(II )若AB 垂直于x 轴,求直线BM 的斜率;(III )试判断直线BM 与直线D E 的位置关系,并说明理由.6.【高考湖南,文20】(本小题满分13分)已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为26,过点F 的直线l 与1C 相交于,A B 两点,C相交于,C D两点,且AC与BD同向.与2C的方程;(I)求2,求直线l的斜率.(II)若AC BD7.【高考山东,文21】平面直角坐标系xOy 中,已知椭圆C :2222+=1(>>0)x y b bαα的离心率为32312)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222+=144x y a b,P 为椭圆C 上任意一点,过点P 的直线=+y kx m 交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值; (ii)求ABQ ∆面积的最大值.【答案】(I )2214x y +=;(II )(i )||2||OQ OP =;(ii ) 3. 【解析】(I )由题意知22311,4a b+=223a b -=,解得224,1a b ==, 所以椭圆C 的方程为22 1.4x y += (II )由(I )知椭圆E 的方程为221164x y +=.8.【高考陕西,文20】如图,椭圆2222:1(0)x yE a ba b+=>>经过点(0,1)A-2.(I)求椭圆E的方程;(II)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点,P Q(均异于点A),证明:直线AP与AQ的斜率之和为2.9.【高考四川,文20】如图,椭圆E:22221x ya b+=(a>b>0)的离心率是22,点P(0,1)在短轴CD上,且PC PD⋅=-1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.此时,OA OB PA PB λ⋅+⋅=-3为定值A DBC O x y P当直线AB 斜率不存在时,直线AB 即为直线CD此时OA OB PA PB OC OD PC PD λ⋅+⋅=⋅+⋅=-2-1=-3 故存在常数λ=-1,使得OA OB PA PB λ⋅+⋅为定值-3.10.【高考天津,文19】(本小题满分14分)已知椭圆22221(a b 0)x y ab 的上顶点为B,左焦点为F ,离心率为55, (I )求直线BF 的斜率;(II )设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M,||=||PM MQ .(i )求的值;(ii )若75||sin =9PM BQP ,求椭圆的方程.0M x =得7.8M P PQ MQ x x x x x x λ-===-1.(·四川卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程.(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当|TF||PQ|最小时,求点T的坐标.2.(·安徽卷)设F1,F2分别是椭圆E :x2+y2b2=1(0<b <1)的左、右焦点,过点F1的直线交椭圆E 于A ,B 两点.若|AF1|=3|F1B|,AF2⊥x 轴,则椭圆E 的方程为________.【答案】x2+32y2=1 【解析】3.(·北京卷)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.d=|2x0-ty0|(y0-2)2+(x0-t)2.又x20+2y20=4,t=-2y0x0,故d=⎪⎪⎪⎪2x0+2y20x0x20+y20+4y20x20+4=⎪⎪⎪⎪4+x20x0x40+8x20+162x20= 2.此时直线AB与圆x2+y2=2相切.4.(·福建卷)设P,Q分别为圆x2+(y-6)2=2和椭圆x210+y2=1上的点,则P,Q两点间的最大距离是()A.5 2 B.46+2C.7+2 D.625.(·湖北卷)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433 B.233 C.3 D.26.(·湖南卷)如图1-7,O为坐标原点,椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:x2a2-y2b2=1的左、右焦点分别为F3,F4,离心率为e2.已知e1e2=32,且|F2F4|=3-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点.当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.图1-77.(·江西卷)过点M(1,1)作斜率为-12的直线与椭圆C :x2a2+y2b2=1(a>b>0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.8.(·辽宁卷)已知椭圆C :x29+y24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN|+|BN|=______.【答案】12 【解析】取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点F1的对称点为A ,点M 关于C 的焦点F2的对称点为B ,则有|GF1|=12|AN|,|GF2|=12|BN|,所以|AN|+|BN|=2(|GF1|+|GF2|)=4a =12.9.(·辽宁卷)圆x2+y2=4的切线与x 轴正半轴,y 轴正半轴围成—个三角形,当该三角形面积最小时,切点为P(如图1-6所示).双曲线C1:x2a2-y2b2=1过点P 且离心率为 3.图1-6(1)求C1的方程;(2)椭圆C2过点P 且与C1有相同的焦点,直线l 过C2的右焦点且与C2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.10.(·全国卷)已知椭圆C :x2a2+y2b2=1(a>b>0)的左、右焦点为F1,F2,离心率为33,过F2的直线l 交C 于A ,B 两点.若△AF1B 的周长为43,则C 的方程为()A.x23+y22=1B.x23+y2=1 C.x212+y28=1 D.x212+y24=1【答案】A 【解析】根据题意,因为△AF1B 的周长为43,所以|AF1|+|AB|+|BF1|=|AF1|+|AF2|+|BF1|+|BF2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b2=a2-c2=3-1=2,所以椭圆C 的方程为x23+y22=1.11.(·新课标全国卷Ⅰ] 已知点A(0,-2),椭圆E :x2a2+y2b2=1(a>b>0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.12.(·新课标全国卷Ⅱ] 设F1,F2分别是椭圆C :x2a2+y2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF2与x 轴垂直,直线MF1与C 的另一个交点为N.(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN|= 5|F1N|,求a ,b.13.(·山东卷)已知a >b >0,椭圆C1的方程为x2a2+y2b2=1,双曲线C2的方程为x2a2-y2b2=1,C1与C2的离心率之积为32,则C2的渐近线方程为()A. x±2y =0B. 2x±y =0C. x±2y =0D. 2x±y =014.(·陕西卷)如图1-5所示,曲线C由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为3 2.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.图1-5∵k≠0,∴k -4(k +2)=0,解得k =-83. 经检验,k =-83符合题意, 故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m≠0),比照方法一给分.15.(·陕西卷)如图1-5所示,曲线C 由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y =-x2+1(y≤0)连接而成,C1与C2的公共点为A ,B ,其中C1的离心率为32.(1)求a ,b 的值;(2)过点B 的直线l 与C1,C2分别交于点P ,Q(均异于点A ,B),若AP ⊥AQ ,求直线l 的方程.图1-516.(·天津卷)设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=32|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.17.(·浙江卷)如图1-6,设椭圆C:x2a2+y2b2=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.图1-618.(·重庆卷)如图1-4所示,设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点D 在椭圆上,DF1⊥F1F2,|F1F2||DF1|=22,△DF1F2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.图1-419.(高考四川卷)从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.24B.12C.22D.3220.(高考浙江卷)如图,点P(0,-1)是椭圆C1:x2a2+y2b2=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程.≤3224k2+3·134k2+3=161313,当且仅当k=±102时取等号.所以所求直线l1的方程为y=±102x-1.【押题专练】1.设F1,F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为()A.4 B.3C.2 D.52.已知椭圆x210-m+y2m-2=1的焦距为4,则m等于()A.4 B.8C.4或8 D.以上均不对3.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是() A.x23+y24=1 B.x24+y23=1C.x24+y23=1 D.x24+y2=1解析依题意,所求椭圆的焦点位于x轴上,且c=1,e=ca=12⇒a=2,b2=a2-c2=3,因此其方程是x24+y23=1,故选C.答案C4.已知椭圆x24+y22=1上有一点P ,F1,F2是椭圆的左、右焦点,若△F1PF2为直角三角形,则这样的点P 有( )A .3个B .4个C .6个D .8个5.已知椭圆C :x2a2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|BF|=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.676.设F1,F2分别是椭圆E :x24+y23=1的左、右焦点,过F1的直线l 与E 相交于A ,B 两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|=( )A.103 B .3 C.83 D .27.设F1,F2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM|+|PF1|的最大值为( )A .10B .12C .15D .18解析 |PF1|+|PF2|=10,|PF1|=10-|PF2|,|PM|+|PF1|=10+|PM|-|PF2|,易知M 点在椭圆外,连接MF2并延长交椭圆于P 点, 此时|PM|-|PF2|取最大值|MF2|, 故|PM|+|PF1|的最大值为10+|MF2|=10+(6-3)2+42=15. 答案 C8.已知P 为椭圆x225+y216=1上的一点,M ,N 分别为圆(x +3)2+y2=1和圆(x -3)2+y2=4上的点,则|PM|+|PN|的最小值为________.9.已知椭圆x2a2+y2b2=1(a>b>0)的离心率等于13,其焦点分别为A ,B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C 的值等于________.10.已知F1(-c ,0),F2(c ,0)为椭圆x2a2+y2b2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF1→·PF2→=c2,则此椭圆离心率的取值范围是________.11.椭圆x2a2+y25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A ,B.若△FAB 的周长的最大值是12,则该椭圆的离心率是________.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.理解同角三角函数的基本关系式:s in2α+cos2α=1,sin αcos α=tanα;2.能利用单位圆中的三角函数线推导出π2±α,π±α,-α的正弦、余弦、正切的诱导公式. 【热点题型】题型一 同角三角函数基本关系式及应用【例1】 (1)已知tan α=2,则2sin α-3cos α4sin α-9cos α=_______________.(2)已知tan θ=2,则sin2θ+sin θcos θ-2cos2θ=( ) A .-43 B.54C .-34 D.45【提分秘籍】若已知正切值,求一个关于正弦和余弦的齐次分式的值,则可以通过分子、分母同时除以一个余弦的齐次幂将其转化为一个关于正切的分式,代入正切值就可以求出这个分式的值,这是同角三角函数关系中的一类基本题型.【举一反三】若3sin α+cos α=0,则1cos2α+2sin αcos α的值为( )A.103B.53C.23 D .-2解析 3sin α+cos α=0⇒cos α≠0⇒tan α=-13, 1cos2α+2sin αcos α=cos2α+sin2αcos2α+2sin αcos α=1+tan2α1+2tan α=1+⎝⎛⎭⎫-1321-23=103.答案 A题型二 利用诱导公式化简三角函数式【例2】 (1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°) =________.(2)设f(α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin2α+cos ⎝⎛⎭⎫3π2+α-sin2⎝⎛⎭⎫π2+α(1+2sin α≠0),则 f⎝⎛⎭⎫-23π6=________.解析 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°sin 1 050° =-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°) sin(2×360°+330°)=-sin 120°cos 210°-cos 300°sin 330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°)=sin 60°cos 30°+cos 60°sin 30°=32×32+12×12=1.(2)∵f(α)=(-2sin α)(-cos α)+cos α1+sin2α+sin α-cos2α=2sin αcos α+cos α2sin2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案 (1)1 (2)3 【提分秘籍】利用诱导公式化简三角函数的基本思路和化简要求:(1)基本思路:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【举一反三】(1)s in(-1 071°)sin 99°+sin(-171°)sin(-261°)+ tan(-1 089°)tan(-540°)=________.(2)化简:tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)sin (-π-α)=________.题型三利用诱导公式求值【例3】 (1)已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α=______. (2)已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫56π+α=________.解析 (1)∵⎝⎛⎭⎫π3-α+⎝⎛⎭⎫π6+α=π2,∴cos ⎝⎛⎭⎫π6+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin ⎝⎛⎭⎫π3-α=12.(2)∵⎝⎛⎭⎫π6-α+⎝⎛⎭⎫5π6+α=π,∴tan ⎝⎛⎭⎫56π+α= -tan ⎣⎡⎦⎤π-⎝⎛⎭⎫56π+α=-tan ⎝⎛⎭⎫π6-α=-33. 答案 (1)12 (2)-33 【提分秘籍】巧用相关角的关系会简化解题过程.常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,常见的互补关系有π3+θ与2π3-θ;π4+θ与3π4-θ等.【举一反三】(1)已知sin ⎝⎛⎭⎫7π12+α=23,则cos ⎝⎛⎭⎫α-11π12=________.(2)若tan(π+α)=-12,则tan(3π-α)=________.【高考风向标】【高考福建,文6】若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D【解析】由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα= 512=-,故选D . 【高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++ (Ⅰ)求()f x 最小正周期; (Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.【答案】(Ⅰ)π ;(Ⅱ)最大值为120 【解析】(Ⅰ)因为x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.【高考四川,文19】已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x2+3px -p +1=0(p ∈R)两个实根.(Ⅰ)求C 的大小(Ⅱ)若AB =1,AC =6,求p 的值【解析】(Ⅰ)由已知,方程x2+3px -p +1=0的判别式 △=(3p)2-4(-p +1)=3p2+4p -4≥0 所以p≤-2或p≥23由韦达定理,有tanA +tanB =-3p ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p)=p≠0 从而tan(A +B)=tan tan 331tan tan A B pA B +-==--所以tanC =-tan(A +B)3 所以C =60° (Ⅱ)由正弦定理,得sinB =0sin 6sin 602AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tanA=tan75°=tan(45°+30°)=000031tan45tan303231tan45tan30313++==+--所以p=-3(tanA+tanB)=-3(2+3+1)=-1-3(·福建卷) 已知函数f(x)=2cos x(sin x+cos x).(1)求f⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.方法二:f(x)=2sin xcos x+2cos2x=sin 2x+cos 2x+1=2sin⎝⎛⎭⎫2x+π4+1.(1)f⎝⎛⎭⎫5π4=2sin11π4+1=2sinπ4+1=2.(2)因为T =2π2=π,所以函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2kπ+π2,k ∈Z , 得kπ-3π8≤x≤kπ+π8,k ∈Z.所以f(x)的单调递增区间为⎣⎡⎦⎤kπ-3π8,kπ+π8,k ∈Z.(·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0 【答案】C 【解析】因为sin 2α=2sin αcos αsin2α+cos2α=2tan α1+tan2α>0,所以选C.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B), 所以sin C =sin[π-(A +B)] =sin(A +B)=sin Acos B +cos Asin B =33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13=322.(·全国卷) 已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513 D.1213 【答案】A【解析】c os α=-1-sin2 α=-1213.(·四川卷) 设sin 2α=-sin α,α∈π2,π,则tan 2α的值是________. 【答案】3【高考押题】1.1-2sin (π+2)cos (π-2)=( ) A .sin 2-cos 2B .sin 2+cos 2C .±(sin 2-cos 2)D .cos 2-sin 2解析1-2sin (π+2)cos (π-2)=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|=sin 2-cos 2. 答案 A2.已知sin α=55,则sin4α-cos4α的值为( ) A .-15 B .-35 C.15D.35解析 sin4α-cos4α=sin2α-cos2α=2sin2α-1=25-1=-35. 答案 B。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形 B.矩形C.菱形D.一般的平行四边形题型二空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为()A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80(2)把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22C.14D.24题型三空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A .0B .1C .2D .3【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()123π+ (B) 136π (C) 73π (D) 52π 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )85.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A .822+B .1122+C .1422+D .156.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13(B )122+(C )23 (D )228.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.10.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .711.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .412.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π414.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形. 【高考押题】1.下列结论中正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A .20B .15C .12D .103.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为()A.32π3B .4πC .2πD.4π34.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A .72cm3B .90cm3C .108cm3D .138cm35.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.7.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm,且其侧面积等于两底面面积之和,求棱台的高.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.理解复数的基本概念. 2.理解复数相等的充要条件.3.了解复数的代数表示形式及其几何意义.4.会进行复数代数形式的四则运算.5.了解复数的代数形式的加、减运算的几何意义. 【重点知识梳理】 1.复数的有关概念内容 意义备注复数的概念 形如a +bi(a ∈R ,b ∈R)的数叫复数,其中实部为a ,虚部为b若b =0,则a +bi 为实数;若a =0且b≠0,则a +bi 为纯虚数复数相等 a +bi =c +di ⇔a =c 且b =d 共轭复数a +bi 与c +di 共轭⇔a =c 且b =-d(a ,b ,c ,d ∈R)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数复数的模设OZ →对应的复数为z =a +bi ,则向量OZ →的长度叫做复数z =a +bi 的模|z|=|a +bi|=a2+b2 2.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +bi复平面内的点Z(a ,b)(a ,b ∈R).(2)复数z =a +bi(a ,b ∈R)平面向量OZ →.3.复数的运算(1)复数的加、减、乘、除运算法则设z1=a +bi ,z2=c +di(a ,b ,c ,d ∈R),则 ①加法:z1+z2=(a +bi)+(c +di)=(a +c)+(b +d)i ;②减法:z1-z2=(a +bi)-(c +di)=(a -c)+(b -d)i ; ③乘法:z1·z2=(a +bi)·(c +di)=(ac -bd)+(ad +bc)i ; ④除法:z1z2=a +bi c +di =(a +bi )(c -di )(c +di )(c -di )=ac +bd +(bc -ad )ic2+d2(c +di≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C ,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).(3)复数加、减法的几何意义①复数加法的几何意义:若复数z1,z2对应的向量OZ1→,OZ2→不共线,则复数z1+z2是以OZ1→,OZ2→为两邻边的平行四边形的对角线OZ →所对应的复数.②复数减法的几何意义:复数z1-z2是OZ1→-OZ2→=Z2Z1→所对应的复数. 【高频考点突破】 考点一 复数的概念【例1】 (1)设i 是虚数单位.若复数a -103-i (a ∈R)是纯虚数,则a 的值为()A .-3B .-1C .1D .3(2)若3+bi 1-i=a +bi(a ,b ∈R),则a +b =________.【答案】(1)D(2)3规律方法 处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从定义出发,把复数问题转化成实数问题来处理.【变式探究】 (1)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z -为() A .2+i B .2-i C .5+i D .5-i(2)复数z =12+i(其中i 为虚数单位)的虚部为________.【答案】(1)D(2)-15 考点二 复数的运算【例2】 (1)(·安徽卷)设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i +i·z -=() A .-2 B .-2i C .2 D .2i(2)-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 014=________.【答案】(1)C(2)0规律方法 (1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式.(2)记住以下结论,可提高运算速度:①(1±i)2=±2i ;②1+i1-i =i ;③1-i 1+i=-i ;④a +bi i =b -ai ;⑤i4n =1,i4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N).【变式探究】 (1)(·天津卷)i 是虚数单位,复数7+i3+4i =()A .1-iB .-1+i C.1725+3125i D .-177+257i(2)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________.【答案】(1)A(2)-1+i 考点三 复数的几何意义【例3】 (1)(·重庆卷)复平面内表示复数i(1-2i)的点位于() A .第一象限 B .第二象限 C .第三象限 D .第四象限 (2)复数z =(2-i )2i (i 为虚数单位),则|z|=() A .25 B.41 C .5 D.5【答案】(1)A(2)C规律方法 要掌握复数的几何意义就要搞清楚复数、复平面内的点以及向量三者之间的一一对应关系,从而准确理解复数的“数”与“形”的特征. 【变式探究】(1)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是()A .AB .BC .CD .D(2)i 为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i ,则z2=________.【答案】(1)B(2)-2+3i 【真题感悟】1.【高考新课标1,文3】已知复数z 满足(1)1z i i -=+,则z =() (A )2i --(B )2i -+(C )2i -(D )2i + 【答案】C2.【高考山东,文2】若复数Z 满足1zi-i =,其中i 为虚数单位,则Z=( ) (A )1i -(B )1i +(C )1i --(D )1i -+ 【答案】A3.【高考湖南,文1】已知2(1)i z-=1i +(i 为虚数单位),则复数z = ( )A 、1i +B 、1i -C 、 1i -+D 、1i -- 【答案】D4.【高考湖北,文1】i 为虚数单位,607i =( ) A .i - B .i C .1-D .1【答案】A .5.【高考广东,文2】已知i 是虚数单位,则复数()21i +=( ) A .2-B .2C .2i -D .2i【答案】D6.【高考福建,文1】若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( )A .3,2-B .3,2C .3,3-D .1,4- 【答案】A7.【高考安徽,文1】设i 是虚数单位,则复数()()112i i -+=( ) (A )3+3i (B )1+3i (3)3+i (D )1+i 【答案】C8.【高考北京,文9】复数()1i i +的实部为. 【答案】1-9.【高考重庆,文11】复数(12i)i 的实部为________. 【答案】210.【高考四川,文11】设i 是虚数单位,则复数1i i-=_________. 【答案】2i11.【高考天津,文9】i 是虚数单位,计算12i2i-+的结果为. 【答案】i12.【高考上海,文3】若复数z 满足i z z +=+13,其中i 是虚数单位,则=z . 【答案】i 2141+(·浙江卷)已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +bi)2=2i”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A(·全国卷)设z =10i 3+i ,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i 【答案】D(·北京卷)复数⎝ ⎛⎭⎪⎫1+i 1-i 2=________.【答案】-1(·福建卷)复数z =(3-2i)i 的共轭复数z 等于( ) A .-2-3i B .-2+3iC .2-3iD .2+3i 【答案】C(·广东卷)已知复数z 满足(3+4i)z =25,则z =( ) A .-3+4i B .-3-4i C .3+4i D .3-4i 【答案】D(·湖北卷)i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( )A .-1B .1C .-iD .i 【答案】A(·湖南卷)满足z +iz =i(i 为虚数单位)的复数z =( ) A.12+12i B.12-12i C .-12+12i D .-12-12i 【答案】B10.(·江西卷)z -是z 的共轭复数,若z +z -=2,(z -z -)i =2(i 为虚数单位),则z =( ) A .1+i B .-1-i C .-1+i D .1-i 【答案】D11.(·辽宁卷)设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i 【答案】A12.(·新课标全国卷Ⅰ] (1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D13.(·新课标全国卷Ⅱ] 设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i ,则z1z2=( ) A .-5 B .5 C .-4+i D .-4-i 【答案】A14.(·山东卷)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+bi 互为共轭复数,则(a +bi)2=( ) A .5-4i B .5+4i C .3-4i D .3+4i 【答案】D15.(·四川卷)复数2-2i 1+i =________.【答案】-2i16.(·天津卷)i 是虚数单位,复数7+i3+4i =( )A .1-iB .-1+iC.1725+3125i D .-177+257i 【答案】A17.(·新课标全国卷Ⅰ] 若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D.45 【答案】D18.(·安徽卷)设i 是虚数单位,z 是复数z 的共轭复数,若z·zi +2=2z ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i 【答案】A19.(·北京卷)在复平面内,复数(2-i)2对应的点位于( ) A .第一象限B .第二象限 C .第三象限 D .第四象限 【答案】D20.(·福建卷)已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D21.(·广东卷)若复数iz =2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,-4) C .(4,-2) D .(4,2)【答案】C22.(·湖北卷)在复平面内,复数z =2i1+i (i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D23.(·湖南卷)复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 【答案】B24.(·江苏卷)设z =(2-i)2(i 为虚数单位),则复数z 的模为________. 【答案】525.(·江西卷)已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M∩N ={4},则复数z =( ) A .-2i B .2i C .-4i D .4i 【答案】C26.(·辽宁卷)复数z =1i -1的模为( )A.12B.22 C. 2 D .2 【答案】B27.(·全国卷)(1+3i)3=()A.-8 B.8C.-8i D.8i【答案】A28.(·山东卷)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数z为()A.2+i B.2-i C.5+i D.5-i【答案】D29.(·陕西卷)设z1,z2是复数,则下列命题中的假命题是()A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1·z1=z2·z2D.若|z1|=|z2|,则z21=z22【答案】D30.(·四川卷)如图1-1所示,在复平面内,点A表示复数z,则图1-1中表示z的共轭复数的点是()图1-1A.A B.B C.C D.D【答案】B31.(·天津卷)已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,则a+bi=________.【答案】1+2i32.(·新课标全国卷Ⅱ] 设复数z满足(1-i)z=2i,则z=()A.-1+i B.-1-iC.1+i D.1-i【答案】A33.(·浙江卷] 已知i是虚数单位,则(-1+i)(2-i)=()A.-3+i B.-1+3iC.-3+3i D.-1+i【答案】B34.(·重庆卷)已知复数z=5i1+2i(i是虚数单位),则|z|=________.【答案】5【押题专练】1.若复数z满足z(1+i)=2i(i为虚数单位),则|z|=() A.1 B.2 C. 2D.3【答案】C2.已知复数z=-2i,则1z+1的虚部为()A.25iB.25C.255iD.255【答案】B3.设z 是复数,则下列命题中的假命题是()A .若z2≥0,则z 是实数B .若z2<0,则z 是虚数C .若z 是虚数,则z2≥0D .若z 是纯虚数,则z2<0【答案】C4.设z =11+i +i ,则|z|=()A.12B.22C.32 D .2【答案】B5.已知a ,b ∈R ,i 是虚数单位.若a +i =2-bi ,则(a +bi)2=() A .3-4i B .3+4i C .4-3i D .4+3i【答案】A6.设复数z =3+i(i 为虚数单位)在复平面中对应点A ,将OA 绕原点O 逆时针旋转90°得到OB ,则点B 在() A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B7.下面是关于复数z =2-1+i 的四个命题:p1:|z|=2; p2:z2=2i ;p3:z 的共轭复数为1+i; p4:z 的虚部为-1. 其中的真命题为() A .p2,p3B .p1,p2C .p2,p4D .p3,p4【答案】C8.设f(n)=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n(n ∈N*),则集合{f(n)}中元素的个数为() A .1B .2C .3D .无数个【答案】C9.复数3+ii2(i 为虚数单位)的实部等于______.【答案】-310.若复数(m2-5m +6)+(m2-3m)i(m 为实数,i 为虚数单位)是纯虚数,则m =________.【答案】211.已知复数z1=-2+i ,z2=a +2i(i 为虚数单位,a ∈R).若z1z2为实数,则a 的值为________.【答案】412.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________.【答案】⎝⎛⎭⎫-∞,2313.已知复数z =i +i2+i3+…+i2 0141+i,则复数z 在复平面内对应的点为________.【答案】(0,1) 14.定义运算|abcd|=ad -bc.若复数x =1-i1+i ,y =|4ixi2x +i|,则y =________.高考模拟复习试卷试题模拟卷【答案】-2。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷【考情解读】1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.【重点知识梳理】1.合情推理类型定义特点归纳推理根据一类事物的部分对象具有某种性质,推出这类事物的全部对象都具有这种性质的推理由部分到整体、由个别到一般类比推理根据两类事物之间具有某些类似(一致)性,推测一类事物具有另一类事物类似(或相同)的性质的推理由特殊到特殊2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.【高频考点突破】考点一归纳推理例1设f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.【特别提醒】归纳推理的一般步骤: (1)通过观察个别情况发现某些相同特征;(2)从已知的相同性质中推出一个明确表述的一般性命题. 【变式探究】(1)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 …照此规律,第五个等式应为_______________________________________________. (2)已知f(n)=1+12+13+…+1n (n ∈N*),经计算得f(4)>2,f(8)>52,f(16)>3,f(32)>72,则有__________________________.【答案】(1)5+6+7+8+9+10+11+12+13=81 (2)f(2n)>n +22(n≥2,n ∈N*)考点二 类比推理例2、已知数列{an}为等差数列,若am =a ,an =b(n -m≥1,m ,n ∈N*),则am +n =nb -man -m .类比等差数列{an}的上述结论,对于等比数列{bn}(bn>0,n ∈N*),若bm =c ,bn =d(n -m≥2,m ,n ∈N*),则可以得到bm +n =________.【答案】n -m dncm【特别提醒】(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【变式探究】在平面上,设ha ,hb ,hc 是三角形ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为Pa ,Pb ,Pc ,我们可以得到结论:Pa ha +Pb hb +Pchc =1.把它类比到空间,则三棱锥中的类似结论为______________________.【答案】Pa ha +Pb hb +Pc hc +Pdhd =1考点三 演绎推理例3、已知函数f(x)=-aax +a (a>0,且a≠1).(1)证明:函数y =f(x)的图象关于点(12,-12)对称; (2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.【特别提醒】演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.【变式探究】已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.【真题感悟】1.【高考陕西,文16】观察下列等式:1-11 22 =1-11111 23434 +-=+1-11111111 23456456 +-+-=++…………据此规律,第n个等式可为______________________.【答案】11111111 1234212122n n n n n -+-+⋅⋅⋅+-=++⋅⋅⋅+-++2.(·北京卷)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人【答案】B3.(·北京卷)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk-1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk-1(P),a1+a2+…+ak}表示Tk-1(P)和a1+a2+…+ak两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)4.(·福建卷)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.【答案】65.(·新课标全国卷Ⅰ] 甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.【答案】A6.(·陕西卷)观察分析下表中的数据:多面体 面数(F) 顶点数(V) 棱数(E) 三棱柱 5 6 9 五棱锥 6 6 10 立方体6812猜想一般凸多面体中F ,V ,E 所满足的等式是________. 【答案】F +V -E =27.(高考湖北卷)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n n +12=12n2+12n.记第n 个k 边形数为N(n ,k)(k≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N(n,3)=12n2+12n. 正方形数 N(n,4)=n2, 五边形数 N(n,5)=32n2-12n , 六边形数 N(n,6)=2n2-n , ……可以推测N(n ,k)的表达式,由此计算N(10,24)=________.答案:1 0008.(·福建卷)当x ∈R ,|x|<1时,有如下表达式: 1+x +x2+…+xn +…=11-x.两边同时积分得:∫1201dx +∫120xdx +∫120x2dx +…+∫120xndx +…=∫12011-x dx ,从而得到如下等式:1×12+12×⎝⎛⎭⎫122+13×⎝⎛⎭⎫123+…+1n +1×⎝⎛⎭⎫12n +1+…=ln 2.请根据以上材料所蕴含的数学思想方法,计算:C0n ×12+12C1n ×122+13C2n ×123+…+1n +1Cn n ×⎝⎛⎭⎫12n +1=__________.【答案】1n +1⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫32n +1-19.(·山东卷)定义“正对数”:ln + x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x≥1.现有四个命题:①若a>0,b>0,则ln +(ab)=bln +a ; ②若a>0,b>0,则ln +(ab)=ln +a +ln +b ;③若a>0,b>0,则ln +⎝⎛⎭⎫a b ≥ln +a -ln +b ;④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2.[来源:学*科*网Z*X*X*K] 其中的真命题有________.(写出所有真命题的编号) 【答案】①③④10.(·陕西卷)观察下列等式: 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为________.【答案】12-22+32-42+…+(-1)n +1n2=(-1)n +1n (n +1)2【押题专练】1.如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( ).【答案】A2.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是() A.①B.②C.③D.①和②【答案】B3.给出下面类比推理命题(其中Q为有理数,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“a,c∈C,则a-c=0⇒a=c”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数有().A.1 B.2 C.3 D.4【答案】B4.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为().A.3 125 B.5 625 C.0 625 D.8 125【答案】D5.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.例如原信息为111,则传输信息为01111,信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是().A.11010 B.01100 C.10111 D.00011【答案】C6.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ().A.289 B.1 024C.1 225 D.1 378【答案】C7.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=________.【答案】a2+b2+c228.用黑白两种颜色的正方形地砖依照下图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.【答案】503 5036039.对一个边长为1的正方形进行如下操作;第一步,将它分割成3×3方格,接着用中心和四个角的5个小正方形,构成如图1所示的几何图形,其面积S1=59;第二步,将图1的5个小正方形中的每个小正方形都进行与第一步相同的操作,得到图2;依此类推,到第n 步,所得图形的面积Sn =⎝⎛⎭⎫59n.若将以上操作类比推广到棱长为1的正方体中,则到第n 步,所得几何体的体积Vn =________.【答案】⎝⎛⎭⎫13n 10.设N =2n(n ∈N*,n≥2),将N 个数x1,x2,…,xN 依次放入编号为1,2,…,N 的N 个位置,得到排列P0=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前N2和后N 2个位置,得到排列P1=x1x3…xN -1x2x4…xN ,将此操作称为C 变换.将P1分成两段,每段N 2个数,并对每段作C变换,得到P2;当2≤i≤n-2时,将Pi分成2i段,每段N2i个数,并对每段作C变换,得到Pi+1.例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第________个位置;(2)当N=2n(n≥8)时,x173位于P4中的第________个位置.【答案】63×2n-4+1111.给出下面的数表序列:表1表2表31131354 4812…其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).12.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.13.观察下表: 1, 2,3 4,5,6,7,8,9,10,11,12,13,14,15, …问:(1)此表第n 行的最后一个数是多少? (2)此表第n 行的各个数之和是多少? (3)2 013是第几行的第几个数?14.将各项均为正数的数列{an}中的所有项按每一行比上一行多一项的规则排成数表,如图所示.记表中各行的第一个数a1,a2,a4,a7,…,构成数列{bn},各行的最后一个数a1,a3,a6,a10,…,构成数列{cn},第n 行所有数的和为Sn(n =1,2,3,4,…).已知数列{bn}是公差为d 的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数q ,且a1=a13=1,a31=53.(1)求数列{cn},{Sn}的通项公式;(2)求数列{cn}的前n项和Tn的表达式.高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值. 【重点知识梳理】1.几类函数模型及其增长差异 (1)几类函数模型函数模型 函数解析式一次函数模型 f(x)=ax +b (a 、b 为常数,a≠0) 反比例函数模型f(x)=kx +b (k ,b 为常数且k≠0) 二次函数模型f(x)=ax2+bx +c(a ,b ,c 为常数,a≠0)指数函数模型f(x)=bax +c(a ,b ,c 为常数,b≠0,a>0且a≠1) 对数函数模型 f(x)=blogax +c(a ,b ,c 为常数,b≠0,a>0且a≠1) 幂函数模型f(x)=axn +b (a ,b 为常数,a≠0)(2) 函数性质 y =ax(a>1) y =logax(a>1)y =xn(n>0)在(0,+∞) 上的增减性 单调递增 单调递增单调递增增长速度越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较 存在一个x0,当x>x0时,有logax<xn<ax2.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:[难点正本 疑点清源]1.要注意实际问题的自变量的取值范围,合理确定函数的定义域. 2.解决实际应用问题的一般步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质. (2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题. (3)解模:用数学知识和方法解决转化出的数学问题. (4)还原:回到题目本身,检验结果的实际意义,给出结论. 【高频考点突破】 考点一 二次函数模型例1、某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y =x25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?【探究提高】二次函数是常用的函数模型,建立二次函数模型可以求出函数的值域或最值.解决实际中的优化问题时,一定要分析自变量的取值范围.利用配方法求最值时,一定要注意对称轴与给定区间的关系:若对称轴在给定的区间内,可在对称轴处取最值,在离对称轴较远的端点处取另一最值;若对称轴不在给定的区间内,最值都在区间的端点处取得.【变式探究】 某产品的总成本y(万元)与产量x(台)之间的函数关系是y =3 000+20x -0.1x2 (0<x<240,x ∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是 ( )A .100台B .120台C .150台D .180台 考点二 指数函数模型例2、诺贝尔奖发放方式为每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r =6.24%.资料显示:1999年诺贝尔奖金发放后基金总额约为19 800万美元.设f(x)表示第x(x ∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推).(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29=1.32)【探究提高】此类增长率问题,在实际问题中常可以用指数函数模型y =N(1+p)x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a(1+x)n(其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【变式探究】 已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t +21-t(t≥0,并且m>0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. .考点三 分段函数模型例3、为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y =⎩⎨⎧13x3-80x2+5 040x ,x ∈[120,144,12x2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?【探究提高】本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.【变式探究】根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=⎩⎪⎨⎪⎧cx ,x<A ,cA ,x≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 【真题感悟】【高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时(·北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t(单位:分钟)满足函数关系p =at2+bt +c(a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟(·陕西卷)如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x3-12x2-x B .y =12x3+12x2-3x C .y =14x3-x D .y =14x3+12x2-2x【押题专练】1.有一批材料可以围成200 m 长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为 ( )A .1 000 m2B .2 000 m2C .2 500 m2D .3 000 m22.里氏震级M 的计算公式:M =lg A -lg A0,其中A 是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.( )A .6 1 000B .4 1 000C .6 10 000D .4 10 0003.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元 D.403元4.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x ∈N*)为二次函数关系(如右图所示),则每辆客车营运多少年时,其营运的平均利润最大 ( )A .3B .4C .5D .65.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x -0.15x2和L2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为 ( )A .45.606万元B .45.6万元C .45.56万元D .45.51万元6.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为 ( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =147.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )8.如图,书的一页的面积为600 cm2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为____________.9.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.10.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=ekt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.11.某商人购货,进价已按原价a扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式为______________.12.某医院为了提高服务质量,对挂号处的排队人数进行了调查,发现:当还未开始挂号时,有N个人已经在排队等候挂号;开始挂号后排队的人数平均每分钟增加M人.假定挂号的速度是每个窗口每分钟K个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有________个.13.某种出口产品的关税税率为t,市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:p=2(1-kt)(x-b)2,其中k,b均为常数.当关税税率t=75%时,若市场价格为5千元,则市场供应量为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定k,b的值;(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:q=2-x,当p=q时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.14.如图所示,在矩形ABCD中,已知AB=a,BC=b (a>b).在AB、AD、CD、CB上分别截取AE、AH、CG、CF都等于x,当x为何值时,四边形EFGH的面积最大?求出这个最大面积.15.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时) 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案(1)B(2)6 16a2解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D 为OA 的中点),∴S △O′A′B′=12×22S △OAB =24×34a2=616a2.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm ,O′C′=2cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形答案 (1)B (2)C解析 (1)如图,几何体为三棱柱.题型二 空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.答案 (1)C (2)A (3)1∶2∶3解析 (1)由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4cm ,底面半径为2cm ,右面圆柱的高为2cm ,底面半径为3cm ,则组合体的体积V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯体积V2=π×32×6=54π(cm3),则所求比值为54π-34π54π=1027.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.(3)设正方体的棱长为a ,①正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图①所示,有2r1=a ,∴r1=a 2,S1=4πr 21=πa2.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22 C.14 D.24答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)因为C 在平面ABD 上的射影为BD 的中点O ,在边长为1的正方形ABCD 中,AO =CO =12AC =22,所以侧视图的面积等于S △AOC =12CO·AO =12×22×22=14,故选C.题型三 空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A图1 图2【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B【解析】由题意知,该等腰直角三角形的斜边长为22,斜边上的高为2,所得旋转体为同底等高的全等圆锥,所以,其体积为2142(2)223ππ⨯⨯=,故选B.7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知: 2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中, 1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C. 8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π3 【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= . 9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.【答案】12410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2 A.233 B.476 C .6 D .7【答案】A 【解析】如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4【答案】B【解析】由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2. 12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π【答案】C【解析】由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π.13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π4【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形. 【解析】解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH∩平面BDC =FG ,平面EFGH∩ 平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH.同理EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线答案 D解析 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10答案 D解析 如图,在五棱柱ABCDE -A1B1C1D1E1中,从顶点A 出发的对角线有两条:AC1,AD1,同理从。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解逻辑联结词“或”、“且”、“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.【热点题型】题型一含有逻辑联结词的命题的真假判断例1、(1)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(p)∨(q)B.p∨(q)C.(p)∧(q) D.p∨q(2)如果命题“非p或非q”是假命题,给出下列四个结论:①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.其中正确的结论是()A.①③ B.②④C.②③ D.①④解析(1)由题意可知,“至少有一位学员没有降落在指定范围”意味着“甲没有或乙没有降落在指定范围”,使用“非”和“或”联结词即可表示该复合命题为(p)∨(q).(2)由“非p或非q”是假命题知,非p与非q均是假命题,从而p、q均是真命题,故正确的结果是①③.答案(1)A(2)A【提分秘籍】(1)“p∨q”、“p∧q”、“p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:①明确其构成形式;②判断其中命题p、q的真假;③确定“p∨q”、“p∧q”、“p”形式命题的真假.(2)p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p则是“与p的真假相反”.【举一反三】已知命题p :∃x0∈R ,使sin x0=52;命题q :∀x ∈R ,都有x2+x +1>0.给出下列结论:①命题“p ∧q”是真命题;②命题“p ∨q”是真命题;③命题“p ∨q”是假命题;④命题“p ∧q”是假命题.其中正确的是( )A .②③B .②④C .③④D .①②③答案:B题型二全称命题、特称命题的真假判断 例2 下列命题中,真命题是()A .∃m0∈R ,使函数f(x)=x2+m0x(x ∈R)是偶函数B .∃m0∈R ,使函数f(x)=x2+m0x(x ∈R)是奇函数C .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是偶函数D .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是奇函数解析 由于当m =0时,函数f(x)=x2+mx =x2为偶函数,故“∃m0∈R ,使函数f(x)=x2+m0x(x ∈R)为偶函数”是真命题.答案 A 【提分秘籍】(1)①要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p(x)成立.②要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x0,使p(x0)不成立即可.(2)要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x0,使p(x0)成立即可,否则这一特称命题就是假命题.【举一反三】下列命题中是假命题的是( ) A .∀x ∈⎝⎛⎭⎫0,π2,x>sin x B .∃x0∈R ,sin x0+cos x0=2 C .∀x ∈R,3x>0 D .∃x0∈R ,lg x0=0题型三含有一个量词的命题否定例3、命题“对任意x ∈R ,都有x2≥0”的否定为( ) A .对任意x ∈R ,都有x2<0 B .不存在x ∈R ,使得x2<0 C .存在x0∈R ,使得x20≥0 D .存在x0∈R ,使得x20<0解析 因为“∀x ∈M ,p(x)”的否定是“∃x0∈M ,q(x0)”,故“对任意x ∈R ,都有x2≥0”的否定是“存在x0∈R ,使得x20<0”.答案 D 【提分秘籍】全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.【举一反三】设x ∈Z ,集合A 是奇数集,集合B 是偶数集,若命题p :∀x ∈A,2x ∈B ,则() A .p :∀x ∈A,2x ∉B B .p :∀x ∉A,2x ∉B C .p :∃x ∉A,2x ∈B D .p :∃x ∈A,2x ∉B解析:因为任意都满足的否定是存在不满足的,所以选D. 答案:D 【高考风向标】1.【高考山东,文5】设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( )(A )若方程20x x m +-=有实根,则0m >(B) 若方程20x x m +-=有实根,则0m ≤(C) 若方程20x x m +-=没有实根,则0m > (D) 若方程20x x m +-=没有实根,则0m ≤ 【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D. 2.【高考湖北,文3】命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠- D .(0,)x ∀∉+∞,ln 1x x =-【答案】C.【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C. 1.(·安徽卷) 命题“∀x ∈R ,|x|+x2≥0”的否定是( ) A .∀x ∈R ,|x|+x2<0 B .∀x ∈R ,|x|+x2≤0 C .∃x0∈R ,|x0|+x20<0 D .∃x0∈R ,|x0|+x20≥0 【答案】C【解析】易知该命题的否定为“∃x0∈R ,|x0|+x20<0”. 2.(·福建卷) 命题“∀x ∈[0,+∞),x3+x≥0”的否定是( ) A .∀x ∈(-∞,0),x3+x<0 B .∀x ∈(-∞,0),x3+x≥0 C .∃x0∈[0,+∞),x30+x0<0 D .∃x0∈[0,+∞),x30+x0≥0 【答案】C【解析】“∀x ∈[0,+∞),x3+x≥0”是含有全称量词的命题,其否定是“∃x0∈[0,+∞),x30+x0<0”,故选C.3.(·湖北卷) 命题“∀x ∈R ,x2≠x”的否定是( ) A .∀x ∈/R ,x2≠x B .∀x ∈R ,x2=x C .∃x0∈/R ,x20≠x0 D .∃x0∈R ,x20=x0 【答案】D【解析】特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x ∈R ,x2≠x”的否定是“∃x0∈R ,x20=x0”. 故选D.4.(·湖南卷) 设命题p :∀x ∈R ,x2+1>0,则p 为( ) A .∃x0∈R ,x20+1>0 B .∃x0∈R ,x20+1≤0 C .∃x0∈R ,x20+1<0 D .∀x ∈R ,x2+1≤0 【答案】B【解析】由全称命题的否定形式可得p :∃x0∈R ,x20+1≤0. 5.(·天津卷) 已知命题p :∀x>0,总有(x +1)ex>1,则p 为( ) A .∃x0≤0,使得(x0+1)ex0≤1 B. ∃x0>0,使得(x0+1)ex0≤1 C. ∀x >0,总有(x +1)ex≤1 D. ∀x≤0,总有(x +1)ex≤1 【答案】B【解析】含量词的命题的否定,先改变量词的形式,再对命题的结论进行否定.6.(·新课标全国卷Ⅰ] 已知命题p :x ∈,2x <3x ;命题q :x ∈,x3=1-x2,则下列命题中为真命题的是( )A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【解析】命题p 假、命题q 真,所以⌝p ∧q 为真命题. 7.(·重庆卷) 命题“对任意x ∈R ,都有x2≥0”的否定为( ) A .存在x0∈R ,使得x20<0 B .对任意x ∈R ,都有x2<0 C .存在x0∈R ,使得x20≥0 D .不存在x ∈R ,使得x2<0 【答案】A【解析】根据定义可知命题的否定为:存在x0∈R ,使得x20<0,故选A. 【高考押题】1.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cosx 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .q 为假C .p ∧q 为假D .p ∨q 为真 答案 C解析 p 是假命题,q 是假命题,因此只有C 正确.2.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .p ∨qB .p ∧qC .p ∧qD .p ∨q 答案 D解析 不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有p ∨q 为真命题. 3.下列命题中的假命题是( ) A .∃x ∈R ,sinx =52B .∃x ∈R ,log2x =1 C .∀x ∈R ,(12)x>0D .∀x ∈R ,x2≥0 答案 A4.已知命题p :所有指数函数都是单调函数,则p 为( ) A .所有的指数函数都不是单调函数 B .所有的单调函数都不是指数函数 C .存在一个指数函数,它不是单调函数 D .存在一个单调函数,它不是指数函数 答案 C解析 命题p :所有指数函数都是单调函数,则p 为:存在一个指数函数,它不是单调函数,故选C. 5.已知集合M ={x|0<x<1},集合N ={x|-2<x<1},那么“a ∈N”是“a ∈M”的( ) A .充分而不必要条件B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N”是“a ∈M”的必要而不充分条件.故选B.6.下列结论正确的个数是( )①已知复数z =i(1-i),z 在复平面内对应的点位于第四象限; ②若x ,y 是实数,则“x2≠y2”的充要条件是“x≠y 或x≠-y”;③命题p :“∃x0∈R ,x20-x0-1>0”的否定p :“∀x ∈R ,x2-x -1≤0”;A .3B .2C .1D .0 答案 C解析 ①已知复数z =i(1-i),z 在复平面内对应的点位于第四象限是错误的,因为z =1+i ,对应点在第一象限;②若x ,y 是实数,则“x2≠y2”的充要条件是“x≠y 或x≠-y”是错误的,因为“x2≠y2”的充要条件是“x≠y 且x≠-y”;③命题p :“∃x0∈R ,x20-x0-1>0”的否定p :“∀x ∈R ,x2-x -1≤0”是正确的,特称命题的否定是全称命题.7.已知命题p :∃x ∈R ,x -2>lgx ,命题q :∀x ∈R ,x2>0,则( ) A .p ∨q 是假命题B .p ∧q 是真命题 C .p ∧(q)是真命题D .p ∨(q)是假命题 答案 C解析 ∵x =10时,x -2=8,lg10=1,x -2>lgx 成立,∴命题p 为真命题,又x2≥0,命题q 为假命题,所以p ∧(q)是真命题. 8.下列结论正确的是( )A .若p :∃x ∈R ,x2+x +1<0,则p :∀x ∈R ,x2+x +1<0B .若p ∨q 为真命题,则p ∧q 也为真命题C .“函数f(x)为奇函数”是“f(0)=0”的充分不必要条件D .命题“若x2-3x +2=0,则x =1”的否命题为真命题 答案 D9.已知命题p :x2+2x -3>0;命题q :13-x>1,若“q 且p”为真,则x 的取值范围是____________________.答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“q 且p”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,得2<x<3,所以q 假时有x≥3或x≤2;p 为真命题时,由x2+2x -3>0,解得x>1或x<-3,由⎩⎪⎨⎪⎧x>1或x<-3,x≥3或x≤2,解得x<-3或1<x≤2或x≥3, 所以x 的取值范围是x<-3或1<x≤2或x≥3. 10.下列结论:①若命题p :∃x ∈R ,tanx =1;命题q :∀x ∈R ,x2-x +1>0.则命题“p ∧(q)”是假命题; ②已知直线l1:ax +3y -1=0,l2:x +by +1=0,则l1⊥l2的充要条件是ab =-3;③命题“若x2-3x +2=0,则x =1”的逆否命题:“若x≠1,则x2-3x +2≠0”.其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题, 所以p ∧(q)为假命题,故①正确;②当b =a =0时,有l1⊥l2,故②不正确; ③正确.所以正确结论的序号为①③.11.给定两个命题,命题p :对任意实数x 都有ax2>-ax -1恒成立,命题q :关于x 的方程x2-x +a =0有实数根.若“p ∨q”为真命题,“p ∧q”为假命题,则实数a 的取值范围是________.答案 (-∞,0)∪(14,4)12.已知c>0,且c≠1,设p :函数y =cx 在R 上单调递减;q :函数f(x)=x2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q”为假,“p 或q”为真,求实数c 的取值范围.解 ∵函数y =cx 在R 上单调递减,∴0<c<1. 即p :0<c<1,∵c>0且c≠1,∴p :c>1.又∵f(x)=x2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,∴c≤12.即q :0<c≤12,∵c>0且c≠1, ∴q :c>12且c≠1.又∵“p 或q”为真,“p 且q”为假, ∴p 真q 假或p 假q 真. ①当p 真,q 假时,{c|0<c<1}∩⎩⎨⎧⎭⎬⎫c|c>12且c≠1=⎩⎨⎧⎭⎬⎫c|12<c<1. ②当p 假,q 真时,{c|c>1}∩⎩⎨⎧⎭⎬⎫c|0<c ≤12=∅. 综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c|12<c<1. 13.已知c>0,设命题p :函数y =cx 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f(x)=x +1x >1c 恒成立.如果“p 或q”为真命题,“p 且q”为假命题,求c 的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会用二次函数的图象理解、分析、研究二次函数的性质.2.了解幂函数的概念.3.结合幂函数y =x ,y =x2,y =x3,y =x 12,y =1x 的图象,了解它们的变化情况. 【热点题型】题型一二次函数的图象与性质例1、(1)设函数f(x)=x2+x +a(a>0),已知f(m)<0,则() A .f(m +1)≥0B .f(m +1)≤0 C .f(m +1)>0D .f(m +1)<0(2)已知函数h(x)=4x2-kx -8在[5,20]上是单调函数,则k 的取值范围是() A .(-∞,40]B .[160,+∞)C .(-∞,40]∪[160,+∞)D .∅解析 (1)∵f(x)的对称轴为x =-12,f(0)=a>0, ∴f(x)的大致图象如图:由f(m)<0结合图象可知f(m +1)>0.(2)函数h(x)的对称轴为x =k 8,要使h(x)在[5,20]上是单调函数,应有k 8≤5或k8≥20,则k≤40或k≥160,故选C.答案 (1)C(2)C【提分秘籍】二次函数的图象要结合开口方向、对称轴位置及与x 、y 轴交点等来研究,综合二次函数的特征解决问题.【举一反三】已知二次函数的图象如右图所示,那么此函数的解析式可能是()A .y =-x2+2x +1B .y =-x2-2x -1C .y =-x2-2x +1D .y =x2+2x +1解析:设二次函数的解析式为f(x)=ax2+bx +c(a≠0), 由题图象得a<0,b<0,c>0. 答案:C题型二二次函数的综合应用例2、已知函数f(x)=|x2+3x|,x ∈R.若方程f(x)-a|x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.解析 f(x)=⎩⎪⎨⎪⎧x2+3x x≤-3或x≥0-x2-3x -3<x<0.令g(x)=a|x -1|, 如图所示,当g(x)=a|x -1|(x≤1)与y =f(x)有四个交点时,f(x)与g(x)有四个交点,联立⎩⎪⎨⎪⎧y =-x2-3x y =a 1-x得x2+(3-a)x +a =0,Δ=(3-a)2-4a>0得a<1或a>9,由图可知0<a<1.答案:(0,1)∪(9,+∞) 【提分秘籍】与其他图象的公共点问题.解决此类问题的关键是正确作出二次函数及题目所涉及的相应函数的图象,要注意其相对位置关系.【举一反三】对于实数a 和b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a2-ab ,a≤b ,b2-ab ,a>b.设f(x)=(2x -1)*(x -1),且关于x 的方程f(x)=m(m ∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是________.解析:函数f(x)=⎩⎪⎨⎪⎧2x2-x ,x≤0,-x2+x ,x>0的图象如图所示.设y =m 与y =f(x)图象交点的横坐标从小到大分别为x1、x2、x3.由y =-x2+x =-⎝⎛⎭⎫x -122+14,得顶点坐标为⎝⎛⎭⎫12,14. 当y =14时,代入y =2x2-x ,得14=2x2-x ,解得x =1-34(舍去正值),∴x1∈⎝ ⎛⎭⎪⎫1-34,0.又∵y =-x2+x 的对称轴为x =12, ∴x2+x3=1,且x2,x3>0, ∴0<x2x3<⎝⎛⎭⎫x2+x322=14. 又∵0<-x1<3-14,∴0<-x1x2x3<3-116,∴1-316<x1x2x3<0.答案:⎝⎛⎭⎪⎫1-316,0题型三幂函数的图象与性质例3、已知幂函数f(x)=xm2-2m -3(m ∈N*)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)-m 3<(3-2a)-m3的a 的取值范围.解析 ∵函数f(x)在(0,+∞)上递减, ∴m2-2m -3<0,解得-1<m<3. ∵m ∈N*,∴m =1,2. 又函数的图象关于y 轴对称, ∴m2-2m -3是偶数,而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m =1.而f(x)=x -13在(-∞,0),(0,+∞)上均为减函数,∴(a +1)-13<(3-2a)-13等价于a +1>3-2a>0或0>a +1>3-2a 或a +1<0<3-2a. 解得a<-1或23<a<32.故a 的范围为⎩⎨⎧⎭⎬⎫a ⎪⎪a<-1或23<a<32. 【提分秘籍】(1)若已知幂函数图象上一个点的坐标用待定系数法求解析式;若给出性质时,可由图象和性质推断解析式.(2)解幂底含参数的不等式要结合对应幂函数的图象求解. 【举一反三】 如图是函数(m ,n ∈N*,m ,n 互质)的图象,则()A .m ,n 是奇数且mn <1 B .m 是偶数,n 是奇数且mn >1 C .m 是偶数,n 是奇数且mn <1 D .m 是奇数,n 是偶数且mn >1解析:将分数指数式化为根式的形式为y =nxm ,由定义域为R ,值域为[0,+∞)知n 为奇数,m 为偶数.在幂函数y =xα中,当α>1时,图象在第一象限的部分下凸,当0<α<1时,图象在第一象限的部分上凸,故选C.答案:C 【高考风向标】 【高考安徽,文11】=-+-1)21(2lg 225lg . 【答案】1【解析】原式=12122lg 5lg 2lg 22lg 5lg -=-=-+=-+-1.(·江苏卷)已知函数f(x)=x2+mx -1,若对于任意x ∈[m ,m +1],都有f(x)<0成立,则实数m 的取值范围是________.【答案】⎝ ⎛⎭⎪⎫-22,02.(·全国卷)函数y =cos 2x +2sin x 的最大值为________. 【答案】32【解析】因为y =cos 2x +2sin x =1-2sinx2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sin x =12时函数y=cos 2x +2sin x 取得最大值,最大值为32.3.(·全国新课标卷Ⅰ)设函数f(x)=⎩⎪⎨⎪⎧ex -1,x <1,x 13,x≥1,则使得f(x)≤2成立的x 的取值范围是________.【答案】(-∞,8]【解析】当x<1时,由ex -1≤2,得x<1;当x≥1时,由x 13≤2,解得1≤x≤8,综合可知x 的取值范围为x≤8.3.(·安徽卷)“a≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的() A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C【解析】f(x)=|(ax -1)x|=|ax2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax2-x 的对称轴x =12a <0,且x =0时y =0,此时y =ax2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax2-x|在区间(0,+∞)上单调递增,故a≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax2-x|在区间0,12a 上单调递增,在区间12a ,1a 上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.4.(·湖南卷)函数f(x)=2ln x 的图像与函数g(x)=x2-4x +5的图像的交点个数为() A .3 B .2 C .1 D .0 【答案】B5.(·新课标全国卷Ⅱ] 已知函数f(x)=x3+ax2+bx +c ,下列结论中错误的是() A .x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=0 【答案】C【解析】x →-∞ 时,f(x)<0 ,x→+∞ 时,f(x)>0,f(x) 连续,x0∈R ,f(x0)=0,A 正确;通过平移变换,函数可以化为f(x)=x3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确;若x0是f(x)的极小值点,可能还有极大值点x1,则f(x)在区间(x1,x0)单调递减.C 错误.D 正确.故答案为C.6.(·北京卷)函数f(x)的图像向右平移1个单位长度,所得图像与曲线y =ex 关于y 轴对称,则f(x)=()A .ex +1B .ex -1C .e -x +1D .e -x -1 【答案】D【解析】依题意,f(x)向右平移一个单位长度得到f(x -1)的图像,又y =ex 的图像关于y 轴对称的图像的解析式为y =e -x ,所以f(x -1)=e -x ,所以f(x)=e -x -1.【高考押题】1.已知幂函数y =f(x)的图像经过点⎝⎛⎭⎫4,12,则f(2)=()A.14 B .4 C.22D.2解析设f(x)=xα,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12,∴f(2)=2-12=22.答案C2.若函数f(x)是幂函数,且满足f4f 2=3,则f(12)的值为() A .-3 B .-13 C .3D.13解析设f(x)=xα,则由f4f 2=3,得4α2α=3.∴2α=3,∴f(12)=(12)α=12α=13. 答案D3.已知函数f(x)=ex -1,g(x)=-x2+4x -3,若有f(a)=g(b),则b 的取值范围为().A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)解析 f(a)=g(b)⇔ea -1=-b2+4b -3⇔ea =-b2+4b -2成立,故-b2+4b -2>0,解得2-2<b<2+ 2.答案 B4.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x>0,x +1,x≤0,若f(a)+f(1)=0,则实数a 的值等于().A .-3B .-1C .1D .3解析 f(a)+f(1)=0⇔f(a)+2=0⇔⎩⎪⎨⎪⎧ a>0,2a +2=0或⎩⎪⎨⎪⎧a≤0,a +1+2=0,解得a =-3. 答案 A5 .函数f(x)=ax2+bx +c(a≠0)的图象关于直线x =-b2a 对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m[f(x)]2+nf(x)+p =0的解集都不可能是().A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}解析 设关于f(x)的方程m[f(x)]2+nf (x)+p =0有两根,即f(x)=t1或f(x)=t2.而f(x)=ax2+bx +c 的图象关于x =-b 2a 对称,因而f(x)=t1或f(x )=t2的两根也关于x =-b2a 对称.而选项D 中4+162≠1+642.答案 D6.二次函数f(x)=ax2+bx +c ,a 为正整数,c≥1,a +b +c≥1,方程ax2+bx +c =0有两个小于1的不等正根,则a 的最小值是(). A .3B .4C .5D .6答案 C7.对于函数y =x2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增;③它们的图像关于直线y =x 对称;④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1);⑥两个函数的图像都是抛物线型.其中正确的有________.解析从两个函数的定义域、奇偶性、单调性等性质去进行比较.答案①②⑤⑥8.若二次函数f(x)=ax2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.解析 由已知得⎩⎪⎨⎪⎧ a>0,4ac -164a =0⇒⎩⎪⎨⎪⎧a>0,ac -4=0. 答案 a>0,ac =49.方程x2-mx +1=0的两根为α、β,且α>0,1<β<2,则实数m 的取值范围是________.解析 ∵⎩⎪⎨⎪⎧α+β=m ,α·β=1,∴m =β+1β. ∵β∈(1,2)且函数m =β+1β在(1,2)上是增函数,∴1+1<m <2+12,即m ∈⎝⎛⎭⎫2,52. 答案 ⎝⎛⎭⎫2,52 10.设f(x)是定义在R 上以2为最小正周期的周期函数.当-1≤x<1时,y =f(x)的表达式是幂函数,且经过点⎝⎛⎭⎫12,18.求函数在[2k -1,2k +1)(k ∈Z)上的表达式.11.已知函数f(x)=x2+2ax +3,x ∈[-4, 6].(1)当a =-2时,求f(x)的最值;(2)求实数a 的取值范围,使y =f(x)在区间[-4,6]上是单调函数;(3)[理]当a =1时,求f(|x|)的单调区间.解(1)当a =-2时,f(x)=x2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图像开口向上,对称轴是x =-a ,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.(3)当a =1时,f(x)=x2+2x +3,∴f(|x|)=x2+2|x|+3,此时定义域为x ∈[-6,6],且f(x)=⎩⎪⎨⎪⎧x2+2x +3,x ∈0,6]x2-2x +3,x ∈[-6,0], ∴f(|x|)的单调递增区间是(0,6],单调递减区间是[-6,0].12.设函数f(x)=ax2-2x +2,对于满足1<x<4的一切x 值都有f(x)>0,求实数a 的取值范围.13.已知函数f(x)=x -k2+k +2(k ∈Z)满足f(2)<f(3).(1)求k 的值并求出相应的f(x)的解析式;(2)对于(1)中得到的函数f(x),试判断是否存在q>0,使函数g(x)=1-qf(x)+(2q -1)x 在区间[-1,2]上的值域为⎣⎡⎦⎤-4,178?若存在,求出q ;若不存在,请说明理由. 解 (1)∵f(2)<f(3),∴f(x)在第一象限是增函数.故-k2+k +2>0,解得-1<k<2.又∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k2+k +2=2,∴f(x)=x2.(2)假设存在q>0满足题设,由(1)知g(x)=-qx2+(2q -1)x +1,x ∈[-1,2].∵g(2)=-1,∴两个最值点只能在端点(-1,g(-1))和顶点⎝⎛⎭⎫2q -12q ,4q2+14q 处取得.而4q2+14q -g(-1)=4q2+14q -(2-3q)=4q -124q ≥0,∴g(x)max =4q2+14q =178, g(x)min =g(-1)=2-3q =-4.解得q =2,∴存在q =2满足题意.高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解集合的含义,体会元素与集合的从属关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.【热点题型】题型一集合的基本概念例1、已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.【提分秘籍】(1)判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.(2)已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn图帮助分析.【举一反三】设全集U=R,集合M={x|x>1},P={x|x2>1},则下列关系中正确的是()A.M=P B.P⊈MC.M⊈P D.(∁UM)∩P=∅解析:对集合P:由x2>1,知x>1或x<-1,借助数轴,故M⊈P,选C.答案:C题型二集合的基本运算(例2、(1)(设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2) C.[1,2) D.(1,4)(2)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)解析(1)由已知可得A={x|0<x<2},又∵B={x|1≤x≤4},∴A∩B={x|1≤x<2}.(2)由于M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|-1<x<1},所以M∩N={x|0≤x<1}=[0,1).答案(1)C(2)D【提分秘籍】在进行集合运算时要尽可能地借助韦恩(Venn)图、数轴和坐标平面等工具,使抽象问题直观化.一般地,集合元素离散时用韦恩(Venn)图表示;集合元素为连续实数时用数轴表示,用数轴表示时注意端点值的取舍.【举一反三】若集合M={x|x2+x-6=0},N={x|ax+2=0,a∈R},且M∩N=N,求实数a的取值集合.题型三集合的创新性问题例3.设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,且集合M中的两个元素都是“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个解析:由题意,知S为函数y=lg(36-x2)的定义域内的自然数集,由36-x2>0,解得-6<x<6,又因为x∈N,所以S={0,1,2,3,4,5}.依题意,可知若k 是集合M 的“酷元”是指k2与k 都不属于集合M.显然若k =0,则k2=k =0,若k =1,则k2=k =1,所以0,1,都不是“酷元”.若k =2,则k2=4;若k =4,则k =2.所以2与4不能同时在集合M 中,才能称为“酷元”.显然3与5都是集合S 中的“酷元”.综上,若集合M 中所含的两个元素都是“酷元”,则这两个元素的选择可分为两类:(1)只选3与5,即M ={3,5};(2)从3与5中任选一个,从2与4中任选一个,即M ={3,2}或{3,4}或{5,2}或{5,4}.所以满足条件的集合M 共有5个.故选C.答案:C 【提分秘籍】以集合为背景的创新性问题是命题的一个热点,这类题目常以问题为核心,考查考生探究,发现的能力,常见的命题形式有:新定义、新运算与性质等.(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质. (2)按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决. (3)对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解. 【举一反三】设集合A ={1,2,3},B ={2,3,4,5},定义A ⊙B ={(x ,y)|x ∈A∩B ,y ∈A ∪B},则A ⊙B 中元素的个数是( )A .7B .10C .25D .52解析:A∩B ={2,3},A ∪B ={1,2,3,4,5},由列举法可知A ⊙B ={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B.答案:B 【高考风向标】1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A∩B={8,14},故选D. 2.【高考重庆,文1】已知集合{1,2,3},B {1,3}A ,则A B =()(A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3} 【答案】C【解析】由已知及交集的定义得A B ={1,3},故选C.3.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q =,故选A.4.【高考天津,文1】已知全集{1,2,3,4,5,6}U,集合{2,3,5}A ,集合{1,3,4,6}B ,则集合A UB ()()(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B【解析】{2,3,5}A ,{2,5}UB ,则A 2,5U B (),故选B.5.【高考四川,文1】设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =( ) (A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 【答案】A【解析】由已知,集合A =(-1,2),B =(1,3),故A ∪B =(-1,3),选A6.【高考山东,文1】已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3()(B )1,4()(C )(2,3()(D )2,4())【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C . 7.【高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤, 所以[0,1]MN =,故答案选A .8.【高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B【解析】∵{}6,5,1=B C U ,∴()U A C B ={}1,∴选B.9.【高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C 【解析】{}1MN =,故选C .1.(·北京卷) 若集合A ={0,1,2,4},B ={1,2,3},则A∩B =( ) A .{0,1,2,3,4} B .{0,4} C .{1,2} D .{3} 【答案】C【解析】A∩B ={0,1,2,4}∩{1,2,3}={1,2}.2.(·福建卷) 若集合P ={x|2≤x<4},Q ={x|x≥3},则P∩Q 等于( ) A .{x|3≤x<4} B .{x|3<x<4} C .{x|2≤x<3} D .{x|2≤x≤3} 【答案】A【解析】把集合P ={x|2≤x<4}与Q ={x|x≥3}在数轴上表示出来,得P∩Q ={x |3≤x<4},故选A. 3.(·福建卷) 已知集合{a ,b ,c}={0,1,2},且下列三个关系:①a≠2;②b =2;③c≠0有且只有一个正确,则100a +10b +c 等于________.【答案】2014.(·广东卷) 已知集合M ={2,3,4},N ={0,2,3,5},则M∩N =( ) A .{0,2} B .{2,3} C .{3,4} D .{3,5}【答案】B【解析】∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3}.5.(·湖北卷) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=() A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}【答案】C【解析】由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.6.(·湖南卷) 已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}【答案】C【解析】由集合运算可知A∩B={x|2<x<3}.7.(·重庆卷) 已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=________.【答案】{3,5,13}【解析】由集合交集的定义知,A∩B={3,5,13}.8.(·江苏卷) 已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.【答案】{-1,3}【解析】由题意可得A∩B={-1,3}.9.(·江西卷) 设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁RB)=()A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)【答案】C【解析】∵A=(-3,3),∁RB=(-∞,-1]∪(5,+∞),∴A∩(∁RB)=(-3,-1].10.(·辽宁卷) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【答案】D【解析】由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)=x|0<x<1}.11.(·全国卷) 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为() A.2 B.3C.5 D.7【答案】B【解析】根据题意知M∩N={1,2,4,6,8}∩{1,2,3,5,6,7}={1,2,6},所以M∩N中元素的个数是3.12.(·新课标全国卷Ⅱ)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.∅ B.{2}C.{0} D.{-2}【答案】B【解析】因为B={-1,2},所以A∩B={2}.13.(·全国新课标卷Ⅰ)已知集合M={x|-1<x<3},N={-2<x<1},则M∩N=()A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)【答案】B【解析】利用数轴可知M∩N={x|-1<x<1}.14.(·山东卷) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)【答案】C【解析】因为集合A={x|0<x<2},B={x|1≤x≤4},所以A∩B={x|1≤x<2},故选C.15.(·陕西卷) 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)【答案】D【解析】由M={x|x≥0},N={x|x2<1}={x|-1<x<1},得M∩N=[0,1).16.(·四川卷) 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}【答案】D【解析】由题意可知,集合A={x|(x+1)(x-2)≤0}={x|-1≤x≤2},所以A∩B={-1,0,1,2}.故选D.17.(·天津卷) 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.【解析】(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3},可得A ={0,1,2,3,4,5,6,7}.18.(·浙江卷) 设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]【答案】D【解析】依题意,易得S∩T=[2,5] ,故选D.19.(·福建卷) 若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2B.3C.4 D.16【答案】C【解析】A∩B={1,3},子集共有22=4个,故选C.20.(·北京卷) 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}【答案】B【解析】∵-1∈B,0∈B,1B,∴A∩B={-1,0},故选B.21.(·安徽卷) 已知A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=()A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}【答案】A【解析】因为A={x|x>-1},所以∁RA={x|x≤-1},所以(∁RA)∩B={-2,-1}.22.(·天津卷) 已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]【答案】D【解析】A∩B={x∈R|-2≤x≤2}∩{x∈R|x≤1}={x∈R|-2≤x≤1}.23.(·陕西卷) 设全集为R,函数f(x)=1-x的定义域为M,则∁RM为()A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)【答案】B【解析】M={x|1-x≥0}={x|x≤1},故∁RM= (1,+∞).24.(·新课标全国卷Ⅱ] 已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【答案】C【解析】M∩N={-2,-1,0}.故选C.25.(·辽宁卷) 已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}【答案】B【解析】由题意可知,|x|<2,得-2<x<2,从而B={x|-2<x<2},A∩B={0,1},故选B. 26.(·江苏卷) 集合{-1,0,1}共有________个子集.【答案】8【解析】集合{-1,0,1}共有3个元素,故子集的个数为8.27.(·湖南卷) 已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁UA)∩B=________.【答案】{6,8}【解析】由已知得∁UA={6,8},又B={2,6,8},所以(∁UA)∩B={6,8}.28.(·湖北卷) 已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩(∁UA)=() A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}【答案】B【解析】∁UA={3,4,5},B∩(∁UA)={3,4}.29.(·广东卷) 设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=() A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}【答案】A【解析】S={-2,0},T={0,2},S∩T={0},故选A.30.(·广东卷) 设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=() A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}【答案】A【解析】S={-2,0},T={0,2},S∩T={0},故选A.31.(·新课标全国卷Ⅰ)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=() A.{1,4} B.{2,3}C.{9,16} D.{1,2}【答案】A【解析】集合B={1,4,9,16},所以A∩B={1,4}.32.(·浙江卷) 设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()A.[-4,+∞) B.(-2,+∞)C.[-4,1] D.(-2,1]【答案】D【解析】从数轴可知,S∩T=(-2,1].所以选择D.33.(·重庆卷) 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U(A ∪B)=( )A .{1,3,4}B .{3,4}C .{3}D .{4}【答案】D 【解析】因为A ∪B ={1,2,3} ,所以∁U(A ∪B)={4},故选D.【高考押题】1.下列集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y)|x +y =1},N ={y|x +y =1}D .M ={2,3},N ={(2,3)}答案 B2.设集合M ={0,1,2},N ={x|x2-3x +2≤0},则M∩N 等于( )A .{1}B .{2}C .{0,1}D .{1,2}答案 D解析 由x2-3x +2=(x -1)(x -2)≤0,解得1≤x≤2,故N ={x|1≤x≤2},∴M∩N ={1,2}.3.已知全集S ={1,2,a2-2a +3},A ={1,a},∁SA ={3},则实数a 等于( )A .0或2B .0C .1或2D .2答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a2-2a +3=3,则a =2. 4.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个答案B解析∵M={0,1,2,3,4},N={1,3,5},∴M∩N={1,3}.∴M∩N的子集共有22=4个.5.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于()A.(0,1) B.(0,2]C.(1,2) D.(1,2]答案D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.6.设全集U为整数集,集合A={x∈N|y=7x-x2-6},B={x∈Z|-1<x≤3},则右图中阴影部分表示的集合的真子集的个数为()A.3B.4C.7D.8答案C解析因为A={x∈N|y=7x-x2-6}={x∈N|7x-x2-6≥0}={x∈N|1≤x≤6},由题意知,图中阴影部分表示的集合为A∩B={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.7.已知集合A={x|x>1},B={x|x2-2x<0},则A∪B等于()A.{x|x>0}B.{x|x>1}C.{x|1<x<2}D.{x|0<x<2}答案A解析由x2-2x<0,得0<x<2,∴B={x|0<x<2},故A∪B={x|x>0}.8.已知集合A ={x|-1<x<0},B ={x|x≤a},若A ⊆B ,则a 的取值范围为( )A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(0,+∞)答案 B解析 用数轴表示集合A ,B(如图)由A ⊆B 得a≥0.9.设全集U ={n ∈N|1≤n≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁UA)∩B =________.答案 {7,9}解析 U ={1,2,3,4,5,6,7,8,9,10},画出Venn 图,如图所示,阴影部分就是所要求的集合,即(∁UA)∩B ={7,9}.10.已知全集U =R ,集合A ={x ∈Z|y =x -3},B ={x|x>5},则A∩(∁UB)=________.答案 {3,4,5}解析 ∵A ={x ∈Z|x≥3},∁UB ={x|x≤5},∴A∩(∁UB)={3,4,5}.11.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y)|x +y -1=0,x ,y ∈Z},则A∩B =__________. 答案 {(0,1),(-1,2)}解析 A 、B 都表示点集,A∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.12.已知集合A ={x|1≤x<5},C ={x|-a<x≤a +3}.若C∩A =C ,则a 的取值范围是________.答案 (-∞,-1]解析 因为C∩A =C ,所以C ⊆A.①当C =∅时,满足C ⊆A ,此时-a≥a +3,得a≤-32;②当C≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a<a +3,-a≥1,a +3<5,解得-32<a≤-1. 综上,a 的取值范围是(-∞,-1].13.设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S∩B≠∅的集合S 的个数是( )A .57B .56C .49D .8答案 B解析 集合S 的个数为26-23=64-8=56.14.已知集合A ={1,2,3},B ={(x ,y)|x ∈A ,y ∈A ,x +y ∈A},则B 中所含元素的个数为( )A .2B .3C .4D .6答案 B解析 集合B 中所满足条件的元素有(1,1),(1,2),(2,1),共3个.15.若集合A ={x|x2-9x<0,x ∈N*},B ={y|4y ∈N*},则A∩B 中元素个数为( )A .0B .1C .2D .3答案 D解析 由A 得x2-9x<0,x ∈N*,所以0<x<9,且x ∈N*,得A ={1,2,3,4,5,6,7,8},由B 得4y ∈N*,即y =1、2、4,得B ={1,2,4},故A∩B ={1,2,4}.16.已知U ={y|y =log2x ,x>1},P ={y|y =1x ,x>2},则∁UP =________. 答案 ⎣⎡⎭⎫12,+∞ 解析 ∵U ={y|y =log2x ,x>1}={y|y>0},P ={y|y =1x ,x>2}={y|0<y<12},∴∁UP ={y|y≥12}=⎣⎡⎭⎫12,+∞. 17.若x ,y ∈R ,A ={(x ,y)|(x +1)2+y2=2},B ={(x ,y)|x +y +a =0},当A∩B≠∅时,则实数a 的取值范围是________;当A∩B =∅时,则实数a 的取值范围是__________________.答案 [-1,3] (-∞,-1)∪(3,+∞)18.已知集合A={(x,y)|y=a},B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B只有一个真子集,则实数a的取值范围是________.答案(1,+∞)解析由于集合B中的元素是指数函数y=bx的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A∩B只有一个真子集,那么y=bx+1(b>0,b≠1)与y=a的图象只能有一个交点,所以实数a的取值范围是(1,+∞).高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简例1、化简:2cos4x -2cos2x +122tan ⎝⎛⎭⎫π4-x sin2⎝⎛⎭⎫π4+x . 【提分秘籍】三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.【举一反三】化简:⎝ ⎛⎭⎪⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·ta n α2. 题型二 三角函数式的求值例2、3cos 10°-1sin 170°=( )A .4B .2C .-2D .-4【提分秘籍】三角函数求值有三类(1)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(2)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.【举一反三】化简:sin 50°(1+3tan 10°)=________. 题型三 三角恒等综合应用 例3、已知函数f(x)=cos x·sin ⎝⎛⎭⎫x +π3-3cos2x +34,x ∈R. (1)求f(x)的最小正周期;(2)求f(x)在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值. 【提分秘籍】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =Asin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.【举一反三】已知函数f(x)=(2cos2x -1)sin 2x +12cos 4x.(1)求f(x)的最小正周期和最大值;(2)当α∈⎝⎛⎭⎫π2,π时,若f(α)=22,求α的值. 【高考风向标】【高考陕西,文6】“sin cos αα=”是“cos20α=”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要【高考四川,文13】已知sinα+2cosα=0,则2sinαcosα-cos2α的值是______________.【高考押题】1.已知sin 2α=13,则cos2⎝⎛⎭⎫α-π4=( )A .-13B .-23C.13D.232.设tan ⎝⎛⎭⎫α-π4=14,则tan ⎝⎛⎭⎫α+π4=( ) A .-2 B .2C .-4D .43.已知角α的顶点与原点O 重合,始边与x 轴的正半轴重合,若它的终边经过点P(2,3),则tan ⎝⎛⎭⎫2α+π4=( ) A .-125B.512 C.177 D .-7174.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A.118 B .-118C.1718 D .-17185.cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9=()A .-18 B .-116C.116D.186.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc.若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于() A.π12B.π6C.π4D.π37.函数y =32sin 2x +cos2x 的最小正周期为________.8.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________.9.tan ⎝⎛⎭⎫π4+α·cos 2α2cos2⎝⎛⎭⎫π4-α的值为________.10.3tan 12°-34cos212°-2sin 12°=________.11.已知函数f(x)=cos2x +sin xcos x ,x ∈R.(1)求f ⎝⎛⎭⎫π6的值;(2)若sin α=35,且α∈⎝⎛⎭⎫π2,π,求f ⎝⎛⎭⎫α2+π24.12.已知,0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=13,sin(α+β)=45.(1)求sin 2β的值;(2)求cos ⎝⎛⎭⎫α+π4的值.高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.以立体几何的有关定义、公理和定理为出发点,认识和理解空间中线面垂直、面面垂直的有关性质与判定定理,并能够证明相关性质定理;2.能运用线面垂直、面面垂直的判定及性质定理证明一些空间图形的垂直关系的简单命题.【重点知识梳理】1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒l⊥α性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.(2)线面角θ的范围:θ∈⎣⎡⎦⎤0,π2.4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.【高频考点突破】考点一 直线与平面垂直的判定与性质【例1】 如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ; (2)PD ⊥平面ABE.【变式探究】 (·山东卷)如图,在四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.求证:(1)AP ∥平面BEF ; (2)BE ⊥平面PAC.考点二 平面与平面垂直的判定与性质【例2】 如图,在四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.求证:(1)CE ∥平面PAD ;(2)平面EFG⊥平面EMN.【变式探究】 (·江苏卷)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.考点三线面角、二面角的求法【例3】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求PB和平面PAD所成的角的大小;(2)证明:AE⊥平面PCD;(3)求二面角A-PD-C的正弦值.【变式探究】如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC.E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.【真题感悟】1.【高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ; (2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.C D B ⊥P2.【高考湖北,文20】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由; (Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V,求12V V 的值. 3.【高考湖南,文18】(本小题满分12分)如图4,直三棱柱111ABC A B C -的底面是边长为2的正三角形,,E F 分别是1,BC CC 的中点。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.【重点知识梳理】1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b2考点一椭圆的定义及其应用【例1】 (1)(如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A .椭圆B .双曲线C .抛物线D .圆(2)已知F1,F2是椭圆C :x2a2+y2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF →1⊥PF →2.若△PF1F2的面积为9,则b =________.【变式探究】 (1)已知F1,F2是椭圆x216+y29=1的两焦点,过点F2的直线交椭圆于A ,B 两点,在△AF1B 中,若有两边之和是10,则第三边的长度为( )A .6B .5C .4D .3(2)与圆C1:(x +3)2+y2=1外切,且与圆C2:(x -3)2+y2=81内切的动圆圆心P 的轨迹方程为________.即P在以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆上,得点P的轨迹方程为x225+y216=1.答案(1)A(2)x225+y216=1考点二求椭圆的标准方程【例2】 (1)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为2 2.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为________.(2)设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.(3)已知椭圆的长轴长是短轴长的3倍,且过点A(3,0),并且以坐标轴为对称轴,则椭圆的标准方程为________.【变式探究】 求满足下列条件的椭圆的标准方程: (1)与椭圆x24+y23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点;(3)经过两点⎝⎛⎭⎫-32,52,()3,5.由⎩⎪⎨⎪⎧⎝⎛⎭⎫-322m +⎝⎛⎭⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆方程为y210+x26=1. 考点三 椭圆的几何性质【例3】 (1)(·江西卷)过点M(1,1)作斜率为-12的直线与椭圆C :x2a2+y2b2=1(a>b>0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.(2)(·包头测试与评估)已知椭圆x2a2+y2b2=1的左顶点为A ,左焦点为F ,点P 为该椭圆上任意一点;若该椭圆的上顶点到焦点的距离为2,离心率e =12,则AP →·FP →的取值范围是________.不等式.例如,-a≤x≤a ,-b≤y≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系.【变式探究】 已知椭圆C1:x2a2+y2b2=1(a >b >0)的右焦点为F ,上顶点为A ,P 为C1上任一点,MN 是圆C2:x2+(y -3)2=1的一条直径,与AF 平行且在y 轴上的截距为3-2的直线l 恰好与圆C2相切.(1)求椭圆C1的离心率;(2)若PM →·PN →的最大值为49,求椭圆C1的方程.考点四 直线与椭圆的位置关系【例4】 (·四川卷)已知椭圆C :x2a2+y2b2=1(a >b >0)的左焦点为F(-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.规律方法(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2] =⎝⎛⎭⎫1+1k2[(y1+y2)2-4y1y2](k 为直线斜率). 提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零. 【变式探究】 (·陕西卷)已知椭圆x2a2+y2b2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F1(-c ,0),F2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F1F2为直径的圆交于C ,D 两点,且满足|AB||CD|=534,求直线l 的方程.由|AB||CD|=534,得4-m25-4m2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33. 考点五 圆锥曲线上点的对称问题圆锥曲线上两点关于直线的对称问题是高考命题的热点,该问题集中点弦、直线与圆锥曲线的位置关系、点与圆锥曲线的位置关系、方程、函数、不等式、点差法等重要数学知识和方法于一体,符合在知识网络交汇处、思想方法的交织线上和能力层次的交叉区内设置问题的命题特点,此类试题综合性强,难度大,对数学知识和能力的考查具有一定的深度,具有很好的选拔功能,是高考命题的热点.圆锥曲线上两点关于直线的对称问题主要有联立方程法和点差法两种解法.【例5】 椭圆E 经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x 轴上,离心率e =12,其中∠F1AF2的平分线所在的直线l 的方程为y =2x -1.(1)求椭圆E 的方程;(2)在椭圆上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.【真题感悟】1.【高考广东,文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9B .4C .3D .22.【高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A . 3B .3(0,]4C .3D .3[,1)43.【高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是.4.【高考安徽,文20】设椭圆E 的方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510. (Ⅰ)求E 的离心率e;(Ⅱ)设点C 的坐标为(0,b ),N 为线段AC 的中点,证明:MN ⊥AB. 【答案】(Ⅰ)55(Ⅱ)详见解析. 【解析】(Ⅰ)解:由题设条件知,点)31,32(b a M ,又105=OM k 从而1052=a b .进而b b a c b a 2,522=-==,故552==a c e . (Ⅱ)证:由N 是AC 的中点知,点N 的坐标为⎪⎭⎫ ⎝⎛-2,2b a ,可得⎪⎭⎫⎝⎛=65,6b a NM . 又()b a AB ,-=,从而有()22225616561a b b a NM AB -=+-=⋅ 由(Ⅰ)得计算结果可知,522b a =所以0=⋅NM AB ,故AB MN ⊥.5.【高考北京,文20】(本小题满分14分)已知椭圆C:2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(I )求椭圆C 的离心率;(II )若AB 垂直于x 轴,求直线BM 的斜率;(III )试判断直线BM 与直线D E 的位置关系,并说明理由.6.【高考湖南,文20】(本小题满分13分)已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为26,过点F 的直线l 与1C 相交于,A B 两点,C相交于,C D两点,且AC与BD同向.与2C的方程;(I)求2,求直线l的斜率.(II)若AC BD7.【高考山东,文21】平面直角坐标系xOy 中,已知椭圆C :2222+=1(>>0)x y b bαα的离心率为32312)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222+=144x y a b,P 为椭圆C 上任意一点,过点P 的直线=+y kx m 交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值; (ii)求ABQ ∆面积的最大值.【答案】(I )2214x y +=;(II )(i )||2||OQ OP =;(ii ) 3. 【解析】(I )由题意知22311,4a b+=223a b -=,解得224,1a b ==, 所以椭圆C 的方程为22 1.4x y += (II )由(I )知椭圆E 的方程为221164x y +=.8.【高考陕西,文20】如图,椭圆2222:1(0)x yE a ba b+=>>经过点(0,1)A-2.(I)求椭圆E的方程;(II)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点,P Q(均异于点A),证明:直线AP与AQ的斜率之和为2.9.【高考四川,文20】如图,椭圆E:22221x ya b+=(a>b>0)的离心率是22,点P(0,1)在短轴CD上,且PC PD⋅=-1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.此时,OA OB PA PB λ⋅+⋅=-3为定值A DBC O x y P当直线AB 斜率不存在时,直线AB 即为直线CD此时OA OB PA PB OC OD PC PD λ⋅+⋅=⋅+⋅=-2-1=-3 故存在常数λ=-1,使得OA OB PA PB λ⋅+⋅为定值-3.10.【高考天津,文19】(本小题满分14分)已知椭圆22221(a b 0)x y ab 的上顶点为B,左焦点为F ,离心率为55, (I )求直线BF 的斜率;(II )设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M,||=||PM MQ .(i )求的值;(ii )若75||sin =9PM BQP ,求椭圆的方程.0M x =得7.8M P PQ MQ x x x x x x λ-===-1.(·四川卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程.(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当|TF||PQ|最小时,求点T的坐标.2.(·安徽卷)设F1,F2分别是椭圆E :x2+y2b2=1(0<b <1)的左、右焦点,过点F1的直线交椭圆E 于A ,B 两点.若|AF1|=3|F1B|,AF2⊥x 轴,则椭圆E 的方程为________.【答案】x2+32y2=1 【解析】3.(·北京卷)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.d=|2x0-ty0|(y0-2)2+(x0-t)2.又x20+2y20=4,t=-2y0x0,故d=⎪⎪⎪⎪2x0+2y20x0x20+y20+4y20x20+4=⎪⎪⎪⎪4+x20x0x40+8x20+162x20= 2.此时直线AB与圆x2+y2=2相切.4.(·福建卷)设P,Q分别为圆x2+(y-6)2=2和椭圆x210+y2=1上的点,则P,Q两点间的最大距离是()A.5 2 B.46+2C.7+2 D.625.(·湖北卷)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433 B.233 C.3 D.26.(·湖南卷)如图1-7,O为坐标原点,椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:x2a2-y2b2=1的左、右焦点分别为F3,F4,离心率为e2.已知e1e2=32,且|F2F4|=3-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点.当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.图1-77.(·江西卷)过点M(1,1)作斜率为-12的直线与椭圆C :x2a2+y2b2=1(a>b>0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.8.(·辽宁卷)已知椭圆C :x29+y24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN|+|BN|=______.【答案】12 【解析】取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点F1的对称点为A ,点M 关于C 的焦点F2的对称点为B ,则有|GF1|=12|AN|,|GF2|=12|BN|,所以|AN|+|BN|=2(|GF1|+|GF2|)=4a =12.9.(·辽宁卷)圆x2+y2=4的切线与x 轴正半轴,y 轴正半轴围成—个三角形,当该三角形面积最小时,切点为P(如图1-6所示).双曲线C1:x2a2-y2b2=1过点P 且离心率为 3.图1-6(1)求C1的方程;(2)椭圆C2过点P 且与C1有相同的焦点,直线l 过C2的右焦点且与C2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.10.(·全国卷)已知椭圆C :x2a2+y2b2=1(a>b>0)的左、右焦点为F1,F2,离心率为33,过F2的直线l 交C 于A ,B 两点.若△AF1B 的周长为43,则C 的方程为()A.x23+y22=1B.x23+y2=1 C.x212+y28=1 D.x212+y24=1【答案】A 【解析】根据题意,因为△AF1B 的周长为43,所以|AF1|+|AB|+|BF1|=|AF1|+|AF2|+|BF1|+|BF2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b2=a2-c2=3-1=2,所以椭圆C 的方程为x23+y22=1.11.(·新课标全国卷Ⅰ] 已知点A(0,-2),椭圆E :x2a2+y2b2=1(a>b>0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.12.(·新课标全国卷Ⅱ] 设F1,F2分别是椭圆C :x2a2+y2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF2与x 轴垂直,直线MF1与C 的另一个交点为N.(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN|= 5|F1N|,求a ,b.13.(·山东卷)已知a >b >0,椭圆C1的方程为x2a2+y2b2=1,双曲线C2的方程为x2a2-y2b2=1,C1与C2的离心率之积为32,则C2的渐近线方程为()A. x±2y =0B. 2x±y =0C. x±2y =0D. 2x±y =014.(·陕西卷)如图1-5所示,曲线C由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为3 2.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.图1-5∵k≠0,∴k -4(k +2)=0,解得k =-83. 经检验,k =-83符合题意, 故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m≠0),比照方法一给分.15.(·陕西卷)如图1-5所示,曲线C 由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y =-x2+1(y≤0)连接而成,C1与C2的公共点为A ,B ,其中C1的离心率为32.(1)求a ,b 的值;(2)过点B 的直线l 与C1,C2分别交于点P ,Q(均异于点A ,B),若AP ⊥AQ ,求直线l 的方程.图1-516.(·天津卷)设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=32|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.17.(·浙江卷)如图1-6,设椭圆C:x2a2+y2b2=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.图1-618.(·重庆卷)如图1-4所示,设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点D 在椭圆上,DF1⊥F1F2,|F1F2||DF1|=22,△DF1F2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.图1-419.(高考四川卷)从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.24B.12C.22D.3220.(高考浙江卷)如图,点P(0,-1)是椭圆C1:x2a2+y2b2=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程.≤3224k2+3·134k2+3=161313,当且仅当k=±102时取等号.所以所求直线l1的方程为y=±102x-1.【押题专练】1.设F1,F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为()A.4 B.3C.2 D.52.已知椭圆x210-m+y2m-2=1的焦距为4,则m等于()A.4 B.8C.4或8 D.以上均不对3.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是() A.x23+y24=1 B.x24+y23=1C.x24+y23=1 D.x24+y2=1解析依题意,所求椭圆的焦点位于x轴上,且c=1,e=ca=12⇒a=2,b2=a2-c2=3,因此其方程是x24+y23=1,故选C.答案C4.已知椭圆x24+y22=1上有一点P ,F1,F2是椭圆的左、右焦点,若△F1PF2为直角三角形,则这样的点P 有( )A .3个B .4个C .6个D .8个5.已知椭圆C :x2a2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|BF|=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.676.设F1,F2分别是椭圆E :x24+y23=1的左、右焦点,过F1的直线l 与E 相交于A ,B 两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|=( )A.103 B .3 C.83 D .27.设F1,F2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM|+|PF1|的最大值为( )A .10B .12C .15D .18解析 |PF1|+|PF2|=10,|PF1|=10-|PF2|,|PM|+|PF1|=10+|PM|-|PF2|,易知M 点在椭圆外,连接MF2并延长交椭圆于P 点, 此时|PM|-|PF2|取最大值|MF2|, 故|PM|+|PF1|的最大值为10+|MF2|=10+(6-3)2+42=15. 答案 C8.已知P 为椭圆x225+y216=1上的一点,M ,N 分别为圆(x +3)2+y2=1和圆(x -3)2+y2=4上的点,则|PM|+|PN|的最小值为________.9.已知椭圆x2a2+y2b2=1(a>b>0)的离心率等于13,其焦点分别为A ,B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C 的值等于________.10.已知F1(-c ,0),F2(c ,0)为椭圆x2a2+y2b2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF1→·PF2→=c2,则此椭圆离心率的取值范围是________.11.椭圆x2a2+y25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A ,B.若△FAB 的周长的最大值是12,则该椭圆的离心率是________.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案 (1)D (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →, 所以AB →=85AN →-45AM →, 所以λ+μ=45. (2)设BP →=kBN →,k ∈R. 因为AP →=AB →+BP →=AB →+kBN →=AB →+k(AN →-AB →)=AB →+k(14AC →-AB →)=(1-k)AB →+k 4AC →, 且AP →=mAB →+211AC →,所以1-k =m ,k 4=211, 解得k =811,m =311. 【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb +nc =(-6m +n ,-3m +8n),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M(0,20).又∵CN →=ON →-OC →=-2b , ∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N(9,2).∴MN →=(9,-18). 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________.题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________.(2)(·陕西)设0<θ<π2,向量a =(sin2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________.【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.答案 (1)(2,4) (2)60°解析 (1)∵在梯形ABCD 中,DC =2AB ,∴DC →=2AB →. 设点D 的坐标为(x ,y),则DC →=(4,2)-(x ,y)=(4-x,2-y), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y)=2(1,-1),即(4-x,2-y)=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). (2)因为p ∥q ,则(a +c)(c -a)-b(b -a)=0, 所以a2+b2-c2=ab , 所以a2+b2-c22ab =12, 结合余弦定理知, cosC =12,又0°<C<180°, 所以C =60°. 【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4) 【答案】A【解析】∵AB OB OA =-=(3,1),∴BC =AC AB -=(7,4),故选A.1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.152 【答案】C【解析】∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b)⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.2.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3) 【答案】B【解析】由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B.3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【解析】(1)由题意知,f(x)==msin 2x +ncos 2x.因为y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=msin π6+ncos π6,-2=msin 4π3+ncos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f(x)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知,g(x)=f(x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g(x)的图像上符合题意的最高点为(x0,2). 由题意知,x20+1=1,所以x0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g(x)得,sin ⎝⎛⎭⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g(x)=2sin ⎝⎛⎭⎫2x +π2=2cos 2x.由2kπ-π≤2x≤2kπ,k ∈Z 得kπ-π2≤x≤kπ,k ∈Z , 所以函数y =g(x)的单调递增区间为⎣⎡⎦⎤kπ-π2,kπ,k ∈Z.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 【答案】12【解析】因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12. 5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.(2)∵OP →=mAB →+nAC →, ∴(x ,y)=(m +2n ,2m +n),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B(2,3)时,t 取得最大值1,故m -n 的最大值为1. 6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 3 【答案】D【解析】由|OA →|=|OB →|=OA →·OB →=2,可得点A ,B 在圆x2+y2=4上且∠AOB =60°,在平面直角坐标系中,设A(2,0),B(1,3),设P(x ,y),则(x ,y)=λ(2,0)+μ(1,3),由此得x =2λ+μ,y =3μ,解得μ=y 3,λ=12x -12 3y ,由于|λ|+|μ|≤1, 所以12x -12 3y +13y≤1,即|3x -y|+|2y|≤2 3.①⎩⎨⎧3x -y≥0,y≥0,3x +y≤2 3或②⎩⎨⎧3x -y≥0,y<0,3x -3y≤2 3或 ③⎩⎨⎧3x -y<0,y≥0,-3x +3y≤23或④⎩⎨⎧3x -y<0,y<0,-3x -y≤2 3.上述四个不等式组在平面直角坐标系中表示的区域如图阴影部分所示,所以所求区域的面积是4 3.7.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+2 【答案】A【解析】由题可知a·b =0,则a ⊥b ,又|a|=|b|=1,且|c -a -b|=1,不妨令c =(x ,y),a =(1,0),b =(0,1),则(x -1)2+(y -1)2=1,又|c|=x2+y2,故根据几何关系可知|c|max =12+12+1=1+2,|c|min =12+12-1=2-1,故选A.8.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d(n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为md 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d <0,则Sn 存在最大值;若a1<0,d >0,则Sn 存在最小值. 【高频考点突破】考点一 等差数列的性质及基本量的求解【例1】 (1)设Sn 为等差数列{an}的前n 项和,S8=4a3,a7=-2,则a9=() A .-6 B .-4 C .-2 D .2(2)(·浙江卷)已知等差数列{an}的公差d >0.设{an}的前n 项和为Sn ,a1=1,S2·S3=36. ①求d 及Sn ;②求m ,k(m ,k ∈N*)的值,使得am +am +1+am +2+…+am +k =65.规律方法 (1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】 (1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A .0B .37C .100D .-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________. 考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an -an -1=d(n≥2,d 为常数);二是等差中项法,证明2an +1=an +an +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n 项和为Sn ,且满足a3·a4=117,a2+a5=22. (1)求数列{an}的通项公式;(2)若数列{bn}满足bn =Snn +c ,是否存在非零实数c 使得{bn}为等差数列?若存在,求出c 的值;若不存在,请说明理由.考点三 等差数列前n 项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n 项和为Sn ,且S5=S12,则当n 为何值时,Sn 有最大值?规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和Sn =An2+Bn(A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】 (1)等差数列{an}的前n 项和为Sn ,已知a5+a7=4,a6+a8=-2,则当Sn 取最大值时,n 的值是()A .5B .6C .7D .8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________. 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .144.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( ) A .d<0 B .d>0 C .a1d<0 D .a1d>07.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.10.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.12.(·重庆卷)设a1=1,an+1=a2n-2an+2+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8π B.8+8πC.16+16π D.8+16π14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.615.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n 项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{an}前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d = ()A.12 B .2 C .3D .42.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=()A .2B .-2C.12D .-123.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .524.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .125.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或96.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.1167.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8B .Sn 的最小值是S8C .Sn 的最大值是S7D .Sn 的最小值是S78.在等差数列{an}中,a15=33,a25=66,则a35=________.9.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________. 10.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________. 11.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0. (1)求Sn 的最小值及此时n 的值; (2)求n 的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且S k =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 【热点题型】题型一 正、余弦定理的简单运用【例1】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c. (1)若a =23,b =6,A =45°,则c =________. (2)若(a +b +c)(a -b +c)=ac ,则B =________.解析 (1)法一 在△ABC 中,由正弦定理得sin B =bsin A a =6×2223=12,因为b <a ,所以B <A ,所以B =30°,C =180°-A -B =105°,sin C =sin 105°=sin(45°+60°)=sin 45°cos 60°+cos 45°sin 60°=6+24. 故c =asin C sin A =23×6+2422=3+3.【提分秘籍】(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)解题中注意三角形内角和定理的应用及角的范围限制.【举一反三】(1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c2=2a2+2b2+ab ,则△ABC 是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形(2)在△ABC 中,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C=________.题型二正、余弦定理的综合运用【例2】在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.解 (1)在△ABC 中,由题意知,sin A =1-cos2A =33, 因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cosA =63.由正弦定理,得b =asin Bsin A =3×6333=3 2.(2)由B =A +π2,得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B).所以sin C =sin[π-(A +B)]=sin(A +B)=sin Acos B +cos Asin B =33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13 =322. 【提分秘籍】有关三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.【举一反三】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 解 (1)由题意可知c =8-(a +b)=72.由余弦定理得cos C =a2+b2-c22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin Acos2B 2+sin Bcos2A2=2sin C 可得: sin A·1+cos B 2+sin B·1+cos A 2=2sinC ,化简得sin A +sin Acos B +sin B +sin Bcos A =4sin C. 因为sin Acos B +cos Asin B =sin(A +B)=sin C , 所以sin A +sin B =3sin C. 由正弦定理可知a +b =3c. 又因为a +b +c =8,故a +b =6. 由于S =12absin C =92sin C ,所以ab =9, 从而a2-6a +9=0, 解得a =3,b =3.题型三正、余弦定理在实际问题中的应用【例3】如图,在海岸A处,发现北偏东45°方向距A为(3-1)海里的B处有一艘走私船,在A 处北偏西75°方向,距A为2海里的C处的缉私船奉命以103海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:6≈2.449).【提分秘籍】解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【举一反三】如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.解析 在Rt △ABC 中,∠CAB =45°,BC =100 m ,所以AC =1002(m).在△AMC 中,∠MAC =75°,∠MCA =60°,从而∠AMC =45°,由正弦定理,得AC sin 45°=AMsin 60°,因此AM =1003(m).在Rt △MNA 中,AM =100 3 m ,∠MAN =60°,由MN AM =sin 60°,得MN =1003×32=150(m). 答案 150 【高考风向标】【高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.【答案】1006.【解析】在ABC ∆中,030CAB ∠=,000753045ACB ∠=-=,根据正弦定理知,sin sin BC ABBAC ACB=∠∠, 即1sin 2sin 22AB BC BAC ACB =⨯∠==∠3tan 30021006CD BC DBC =⨯∠==,故应填 6..【高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =.AB C D(I )证明:sin cos B A =; (II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C . 【答案】(I )略;(II)30,120,30.A B C ===【解析】(Ⅰ)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,所以sin cos B A =。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到. 解 (1)f(x)=sin ωx +3cos ωx=2⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx =2sin ⎝⎛⎭⎫ωx +π3, 又∵T =π,∴2πω=π,即ω=2.∴f(x)=2sin ⎝⎛⎭⎫2x +π3.∴函数f(x)=sin ωx +3cos ωx 的振幅为2,初相为π3. (2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X.列表,并描点画出图象:x -π6 π12 π3 7π12 5π6 X 0 π2 π 3π2 2π y =sin X 01 0 -1 0 y =2sin ⎝⎛⎭⎫2x +π32-2【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.解 (1)∵T =2πω=π,ω=2,又f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=32,∴sin φ=-32,又-π2<φ<0,∴φ=-π3.(2)由(1)得f(x)=cos ⎝⎛⎭⎫2x -π3,列表: 2x -π3-π3π2π32π53πx 0 π6 512π 23π 1112π π f(x)121-112图象如图.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.解析 (1)由三角函数图象得 T 2=11π12-7π12=π3, 即T =2π3,所以ω=2πT =3.又x =7π12是函数单调增区间中的一个零点, 所以3×7π12+φ=3π2+2kπ, 解得φ=-π4+2kπ,k ∈Z , 所以f(x)=Acos ⎝⎛⎭⎫3x -π4.由f ⎝⎛⎭⎫π2=-23,得A =223,所以f(x)=223cos ⎝⎛⎭⎫3x -π4,所以f(0)=223·cos ⎝⎛⎭⎫-π4=23.法二 以⎝⎛⎭⎫π3,0为第二个“零点”,⎝⎛⎭⎫7π12,-2为最小值点,列方程组⎩⎨⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3,故f(x)=2sin ⎝⎛⎭⎫2x +π3.答案 (1)C (2)f(x)=2sin ⎝⎛⎭⎫2x +π3 【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.解析 (1)由题意得f(0)=0, 即Acos φ=0,因为0<φ<π,A >0,所以φ=π2,由FG =2, 得T 2=πω=2,即ω=π2,E 的纵坐标为yE =2sin 60°=3, 所以A =3,故f(x)=3cos ⎝⎛⎭⎫π2x +π2=-3sin π2x ,所以f(1)=- 3.故选D.(2)由三角函数图象可得A =2,34T =11π12-π6=34π,所以周期 T =π=2πω,解得ω=2.又函数图象过点⎝⎛⎭⎫π6,2所以f ⎝⎛⎭⎫π6=2sin ⎝⎛⎭⎫2×π6+φ=2,0<φ<π,解得φ=π6, 所以f(x)=2sin ⎝⎛⎭⎫2x +π6,f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2π3+π6=1.答案 (1)D (2)1题型三函数y =Asi n(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x ),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.(2)由(1)知f(x)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知g(x)=f(x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g(x)的图象上符合题意的最高点为(x0,2), 由题意知x20+1=1,所以x0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g(x)得sin ⎝⎛⎭⎫2φ+π6=1,因为0<φ<π,所以φ=π6. 因此g(x)=2sin ⎝⎛⎭⎫2x +π2=2cos 2x.由2kπ-π≤2x≤2kπ,k ∈Z 得kπ-π2≤x≤kπ,k ∈Z. 所以函数y =g(x)的单调递增区间为⎣⎡⎦⎤kπ-π2,kπ,k ∈Z.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f ⎝⎛⎭⎫x +π4的最大值及对应的x 的值.解 (1)f(x)=3sin(ωx +φ)-cos(ωx +φ) =2⎣⎢⎡⎦⎥⎤32sin (ωx +φ)-12cos (ωx +φ) =2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,则φ-π6=π2+kπ(k ∈Z),所以φ=2π3+kπ(k ∈Z), 又因为0<φ<π,所以φ=2π3, 所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2·π2,所以ω=2. 故f(x)=2cos 2x.因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2)y =2cos 2x +2cos 2⎝⎛⎭⎫x +π4=2cos 2x +2cos ⎝⎛⎭⎫2x +π2=2cos 2x -2sin 2x=22sin ⎝⎛⎭⎫π4-2x . 令π4-2x =2kπ+π2(k ∈Z),y 有最大值22, 所以当x =-kπ-π8(k ∈Z)时,y 有最大值2 2. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象() (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B.【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心.【答案】(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+π2π3π22πxπ12 π3 7π12 5π6 13π12sin()A x ωϕ+0 5 0 5- 0且函数表达式为π()5sin(2)6f x x =-;(Ⅱ)离原点O 最近的对称中心为π(,0)12-.1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π【答案】C 【解析】∵f(x)=2sin ⎝⎛⎭⎫ωx +π6=1,∴sin ⎝⎛⎭⎫ωx +π6=12,∴ωx1+π6=π6+2k1π(k1∈Z)或 ωx2+π6=5π6+2k2π(k2∈Z),则ω(x2-x1)=2π3+2(k2-k1)π.又∵相邻交点距离的最小值为π3,∴ω=2,∴T =π.2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π4 【答案】C【解析】方法一:将f(x)=2sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =2sin ⎝⎛⎭⎫2x +π4-2φ的图像,由所得图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=kπ+π2,k ∈Z ,即φ=kπ2+3π8,k ∈Z ,又φ>0,所以φmin =3π8.3.(·重庆卷) 将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.【答案】224.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.【解析】(1)f(x)的最小正周期为π. x0=7π6,y0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f(x)取得最大值0; 当2x +π6=-π2,即x =-π3时,f(x)取得最小值-3.5.(·福建卷) 已知函数f(x)=2cos x(sin x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间. 【解析】方法一:(1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.方法二:f(x)=2sin xcos x +2cos2x =sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2kπ+π2,k ∈Z ,得kπ-3π8≤x≤kπ+π8,k ∈Z.所以f(x)的单调递增区间为⎣⎡⎦⎤kπ-3π8,kπ+π8,k ∈Z.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD-A1B1C1D1中,设BB1是直线l1,BC 是直线l2,AD 是直线l3,则DD1是直线l4,此时l1∥l4;设BB1是直线l1,BC 是直线l2,A1D1是直线l3,则C1D1是直线l4,此时l1⊥l4.故l1与l4的位置关系不确定.7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【答案】(1)f(8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增 【答案】B【解析】将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,得到y =3sin ⎝⎛⎭⎫2x -23π的图像 ,函数单调递增,则-π2+2kπ≤2x -23π≤π2+2kπ,k ∈Z ,即π12+kπ≤x≤7π12+kπ,k ∈Z ,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+kπ,7π12+kπ,k ∈Z ,当k =0时,可知函数在区间⎣⎡⎦⎤π12,7π12上单调递增.9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1【解析】 f(x)=sin(x +φ)-2s in φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x -φ),其最大值为1.10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. 【答案】π【解析】因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 【答案】B 【解析】T =2π2=π.134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位 【答案】A【解析】y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,故将函数y =2cos 3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选A.14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度 【答案】A【解析】由函数y =sin x 的图像变换得到函数y =sin(x +1)的图像,应该将函数y =sin x 图像上所有的点向左平行移动1个单位长度,故选A.15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2kπ,π2+2kπ,k ∈Z ,由-π2+2kπ≤3x +π4≤π2+2kπ,k ∈Z ,得-π4+2kπ3≤x≤π12+2kπ3,k ∈Z ,所以函数f(x)的单调递增区间为⎣⎡⎦⎤-π4+2kπ3,π12+2kπ3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αco s π4-sin αsi n π4(cos2α-sin2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2kπ,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( )A.π2B .πC .2πD .4π解析 最小正周期为T =2π12=4π.答案D2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π4 解析 将函数y =cos 2x +1的图象向右平移π4个单位得到y =cos 2⎝⎛⎭⎫x -π4+1=sin 2x +1,再向下平移1个单位得到y =sin 2x ,故选A.答案 A3.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位解析 ∵y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,将y =2cos 3x 的图象向右平移π12个单位即可得到y =2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12的图象,故选A.答案 A4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称6.将函数f(x)=s in(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.即f(x)=sin ⎝⎛⎭⎫12x +π6, ∴f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π12+π6=sin π4=22.答案 227.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.解析 据已知两个相邻最高和最低点距离为22,可得⎝⎛⎭⎫T 22+(1+1)2=22,解得T =4,故ω=2πT =π2,即f(x)=sin ⎝⎛⎭⎫πx 2+φ,又函数图象过点⎝⎛⎭⎫2,-12,故f(2)=sin ⎝⎛⎭⎫π2×2+φ=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f(x)=sin ⎝⎛⎭⎫πx 2+π6.答案 sin ⎝⎛⎭⎫πx 2+π68.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.解 (1)f(x)=4cos xsin ⎝⎛⎭⎫x +π6+a =4cos x·⎝ ⎛⎭⎪⎫32sin x +12cos x +a =3sin 2x +2cos2x +a =3sin 2x +cos 2x+1+a =2sin ⎝⎛⎭⎫2x +π6+1+a 的最大值为2,∴a =-1,最小正周期T =2π2=π.(2)列表:x 0 π6 5π12 2π3 11π12 π 2x +π6π6π2 π 3π2 2π 13π6 f(x)=2sin ⎝⎛⎭⎫2x +π612-21画图如下:10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解 (1)因为f(t)=10-2⎝⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t<24, 所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f(x)在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f(t )>11时实验室需要降温.由(1)得f(t)=10-2sin ⎝⎛⎭⎫π12t +π3,故有10-2sin ⎝⎛⎭⎫π12t +π3>11, 即sin ⎝⎛⎭⎫π12t +π3<-12.又0≤t<24,因此7π6<π12t +π3<11π6,即10<t<18.所以在10时至18时实验室需要降温.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.会从实际情境中抽象出一元二次不等式模型;2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.【重点知识梳理】1.“三个二次”的关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x<x1或x>x2}{x|x≠x1}{x|x∈R} ax2+bx+c<0 (a>0)的解集{x|x1< x<x2}∅∅2.(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法不等式解集a<b a=b a>b(x-a)·(x-b)>0{x|x<a或x>b}{x|x≠a}{x|x<b或x>a}(x-a)·(x-b)<0{x|a<x<b}∅{x|b<x<a}【高频考点突破】考点一一元二次不等式的解法例1、求下列不等式的解集:(1)-x2+8x-3>0;(2)ax2-(a+1)x+1<0.【特别提醒】含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)对方程的根进行讨论,比较大小,以便写出解集. 【变式探究】(1)若不等式ax2+bx +2>0的解为-12<x<13,则不等式2x2+bx +a<0的解集是________. (2)不等式x -12x +1≤0的解集是________.【答案】(1)(-2,3) (2)(-12,1]考点二一元二次不等式的恒成立问题例2、设函数f(x)=mx2-mx-1.(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;(2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.【特别提醒】(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【变式探究】(1)若不等式x2-2x +5≥a2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞) C .(-∞,-1]∪[4,+∞) D .[-2,5](2)已知a ∈[-1,1]时不等式x2+(a -4)x +4-2a>0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞) D .(1,3) 【答案】(1)A (2)C考点三 一元二次不等式的应用例3、某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f(x),并写出定义域; (2)若再要求该商品一天营业额至少为10260元,求x 的取值范围.【特别提醒】求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义.(4)回归实际问题,将数学结论还原为实际问题的结果.【变式探究】某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x的最小值是________.【答案】20考点四、转化与化归思想在不等式中的应用例4、(1)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.(2)已知函数f(x)=x2+2x+ax,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是________.【答案】(1)9 (2){a|a>-3} 【方法与技巧】1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a<0的情形转化为a>0时的情形. 2.f(x)>0的解集即为函数y =f(x)的图象在x 轴上方的点的横坐标的集合,充分利用数形结合思想. 3.简单的分式不等式可以等价转化,利用一元二次不等式解法进行求解. 【失误与防范】1.对于不等式ax2+bx +c>0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax2+bx +c>0 (a≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论. 【真题感悟】1.【高考广东,文11】不等式2340x x --+>的解集为.(用区间表示) 【答案】()4,1-2.(·全国卷)设集合M ={x|x2-3x -4<0},N ={x|0≤x≤5},则M∩N =() A .(0,4] B .[0,4) C .[-1,0) D .(-1,0] 【答案】B3.(·新课标全国卷Ⅱ] 设函数f(x)=3sin πx m ,若存在f(x)的极值点x0满足x20+[f(x0)]2<m2,则m 的取值范围是()A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 【答案】C4.(·安徽卷)已知一元二次不等式f(x)<0的解集为x<-1或x>12,则f(10x)>0的解集为() A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2} 【答案】D5.(·广东卷)不等式x2+x -2<0的解集为________. 【答案】{x|-2<x<1}6.(·四川卷)已知f(x)是定义域为R 的偶函数,当x≥0时,f(x)=x2-4x ,那么,不等式f(x +2)<5的解集是________.【答案】(-7,3)7.(高考全国新课标卷Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧-x2+2x ,x≤0,ln x +1,x>0.若|f(x)|≥ax ,则a 的取值范围是()A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]【答案】D 【押题专练】1.不等式x -2x +1≤0的解集是( )A .(-∞,-1)∪(-1,2]B .(-1,2]C .(-∞,-1)∪[2,+∞)D .[-1,2]【答案】B2. 若集合{},{}x A x x B x x-2=-1≤2+1≤3=≤0,则A B ⋂=( ) A. {}x x -1≤<0B. {}x x 0<≤1C. {}x x 0≤≤2D.{}x x 0≤≤1【答案】B3.设a>0,不等式-c<ax +b<c 的解集是{x|-2<x<1},则a ∶b ∶c =( ). A .1∶2∶3 B .2∶1∶3 C .3∶1∶2 D .3∶2∶1【答案】B4.不等式(x2-2)log2x>0的解集是( ). A .(0,1)∪(2,+∞) B .(-2,1)∪(2,+∞) C .(2,+∞) D .(-2,2)【答案】A5.已知二次函数f(x)=ax2-(a +2)x +1(a ∈Z),且函数f(x)在(-2,-1)上恰有一个零点,则不等式f(x)>1的解集为( ).A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)【答案】C6.设函数f(x)=⎩⎪⎨⎪⎧-2,x >0,x2+bx +c ,x≤0,若f(-4)=f(0),f(-2)=0,则关于x 的不等式f(x)≤1的解集为( ).A .(-∞,-3]∪[-1,+∞)B .[-3,-1]C .[-3,-1]∪(0,+∞)D .[-3,+∞)【答案】C7.已知关于x 的不等式ax2+2x +c>0的解集为⎝⎛⎭⎫-13,12,则不等式-cx2+2x -a>0的解集为________.【答案】(-2,3)8.已知函数f(x)=⎩⎪⎨⎪⎧x2+1,x≥0,1,x <0,则满足不等式f(1-x2)>f(2x)的x 的取值范围是________.【答案】(-1,2-1)9.已知函数f(x)=-x2+2x +b2-b +1(b ∈R),若当x ∈[-1,1]时,f(x)>0恒成立,则b 的取值范围是________.【答案】(-∞,-1)∪(2,+∞)10.设a ∈R ,若x>0时均有[(a -1)x -1](x2-ax -1)≥0,则a =________.【答案】3211.设二次函数f(x)=ax2+bx +c ,函数F(x)=f(x)-x 的两个零点为m ,n(m<n ). (1)若m =-1,n =2,求不等式F(x)>0的解集; (2)若a>0,且0<x<m<n<1a ,比较f(x)与m 的大小.12.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b},(1)求a,b;(2)解不等式ax2-(ac+b)x+bc<0.13.已知抛物线y=(m-1)x2+(m-2)x-1(x∈R).(1)当m为何值时,抛物线与x轴有两个交点?(2)若关于x的方程(m-1)x2+(m-2)x-1=0的两个不等实根的倒数平方和不大于2,求m的取值范围.14.设函数f(x)=a2ln x-x2+ax,a>0.(1)求f(x)的单调区间;(2)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.注e为自然对数的底数.高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.【热点题型】题型一 平面向量数量积的运算例1、(1)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152 C.-322D .-3152(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.【提分秘籍】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.【举一反三】(1)已知平面向量a =(x1,y1),b =(x2,y2),若|a|=2,|b|=3,a·b =-6.则x1+y1x2+y2的值为( )A.23B .-23C.56D .-56(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A.2B .2C.6D .6 题型二 求向量的模与夹角例2、(1)若平面向量a 与平面向量b 的夹角等于π3,|a|=2,|b|=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B .-126 C.112D .-112(2)已知向量a ,b 的夹角为45°,且|a|=1,|2a -b|=10,则|b|=________.(3)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.【提分秘籍】(1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a|=a·a 要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,就会达到简化运算的目的.【举一反三】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.(2)已知单位向量e1与e2的夹角为α,且cosα=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cosβ=________.题型三 数量积的综合应用例3、已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△AB C 的面积.【提分秘籍】解决以向量为载体考查三角形问题时,正弦定理、余弦定理、面积公式的应用、边与角之间的互化是判断三角形形状的常用方法.【举一反三】已知向量m =(2sin(ωx +π3),1),n =(2cosωx ,-3)(ω>0),函数f(x)=m·n 的两条相邻对称轴间的距离为π2.(1)求函数f(x)的单调递增区间; (2)当x ∈[-5π6,π12]时,求f(x)的值域. 题型四向量在平面几何中的应用例4、如图所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:PA =EF.【提分秘籍】用向量方法解决平面几何问题可分三步:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系. 【举一反三】(1)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( ) A.3+33 B.92 C.3D.94(2)在△ABC 所在平面上有一点P ,满足PA →+PB →+PC →=AB →,则△PAB 与△ABC 的面积的比值是( ) A.13B.12C.23D.34题型五向量在三角函数中的应用例5、已知在锐角△ABC 中,两向量p =(2-2sinA ,cosA +sinA),q =(sinA -cosA,1+sinA),且p 与q 是共线向量.(1)求A 的大小; (2)求函数y =2sin2B +cos ⎝⎛⎭⎫C -3B 2取最大值时,B 的大小. 【提分秘籍】解决平面向量与三角函数的交汇问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.【举一反三】(1)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cosA ,sinA).若m ⊥n ,且acosB +bcosA =csinC ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3(2)△ABC 的三个内角A ,B ,C 所对的边长分别是a ,b ,c ,设向量m =(a +b ,sinC),n =(3a +c ,sinB -sinA),若m ∥n ,则角B 的大小为________.题型六平面向量在解析几何中的应用例6、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k),且A 、B 、C 三点共线,当k<0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y2=3的圆心,且圆上有一点M(x ,y)满足OM →·CM →=0,则y x =________.【提分秘籍】向量的共线和数量积在解析几何中可以解决一些平行、共线、垂直、夹角及最值问题,在解题中要充分重视数量积及其几何意义的作用.【举一反三】已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的最大值为________. 【高考风向标】1.【高考广东,文9】在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .52.【高考重庆,文7】已知非零向量,a b 满足||=4||(+)b a a a b ⊥,且2则a b 与的夹角为() (A)3π (B) 2π (C) 32π (D) 65π3.【高考福建,文7】设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .324.【高考天津,文13】在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为. 5.【高考浙江,文13】已知1e ,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b =.1.(·北京卷)已知向量a ,b 满足|a|=1,b =(2,1),且λa +b =0(λ∈R),则|λ|=________. 2.(·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb)⊥(a -λb),则实数λ=________.3.(·江西卷)已知单位向量e1与e2的夹角为α,且cos α=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cos β=________..4.(·全国卷)若向量a ,b 满足:=1,(a +b)⊥a ,(+b)⊥b ,则|=() A .2 B.2 C .1 D.225.(·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b|=10,|a -b|=6,则=() A .1 B .2 C .3 D .56.(·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.7.(·天津卷)已知菱形AB CD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC.若AE →·AF →=1,CE →·CF →=-23,则λ+μ=()A.12B.23C.56D.7128.(高考湖北卷)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为() A.322B.3152C .-322D .-31529.(高考湖南卷)已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的取值范围是() A .[2-1,2+1] B.[]2-1,2+2C .[1,2+1]D .[1,2+2]10.(高考辽宁卷)设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈⎣⎡⎦⎤0,π2.(1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.11.(高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x),x ∈R ,设函数f(x)=a·b.(1)求f(x)的最小正周期;(2)求f(x)在⎣⎡⎦⎤0,π2上的最大值和最小值.【高考押题】1.若向量a ,b 满足|a|=|b|=|a +b|=1,则a·b 的值为( ) A .-12B.12C .-1D .12.已知向量a =(1,3),b =(-1,0),则|a +2b|等于( ) A .1B.2C .2D .43.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a)∥b ,c ⊥(a +b),则c 等于( ) A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 4.向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( ) A .(-7,8) B .(9,-4) C .(-5,10) D .(7,-6)5.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A.5B .25C .5D .106.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B .2OM → C .3OM →D .4OM →7.平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形B .梯形 C .正方形D .菱形8.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形B .等腰三角形 C .直角三角形D .等腰直角三角形9.已知点A(-2,0)、B(3,0),动点P(x ,y)满足PA →·PB →=x2-6,则点P 的轨迹是( ) A .圆B .椭圆 C .双曲线D .抛物线10.若函数y =Asin(ωx +φ)(A>0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π11.已知在△ABC 中,AB →=a ,AC →=b ,a·b<0,S △ABC =154,|a|=3,|b|=5,则∠BA C =________. 12.已知|a|=2|b|,|b|≠0且关于x 的方程x2+|a|x -a·b =0有两相等实根,则向量a 与b 的夹角是________.13.已知在平面直角坐标系中,O(0,0),M(1,1),N(0,1),Q(2,3),动点P(x ,y)满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.14.已知△ABC 中,∠C 是直角,CA =CB ,D 是CB 的中点,E 是AB 上一点,且AE =2EB ,求证:AD ⊥CE.15.已知A ,B ,C 三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中α∈(π2,3π2). (1)若|AC →|=|BC →|,求角α的值. (2)若AC →·BC →=-1,求tan(α+π4)的值.16.已知向量p =(2sinx ,3cosx),q =(-sinx,2sinx),函数f(x)=p·q. (1)求f(x)的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f(C)=1,c =1,ab =23,且a>b ,求a ,b 的值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.理解复数的基本概念. 2.理解复数相等的充要条件.3.了解复数的代数表示形式及其几何意义.4.会进行复数代数形式的四则运算.5.了解复数的代数形式的加、减运算的几何意义. 【重点知识梳理】 1.复数的有关概念内容 意义备注复数的概念 形如a +bi(a ∈R ,b ∈R)的数叫复数,其中实部为a ,虚部为b若b =0,则a +bi 为实数;若a =0且b≠0,则a +bi 为纯虚数复数相等 a +bi =c +di ⇔a =c 且b =d 共轭复数a +bi 与c +di 共轭⇔a =c 且b =-d(a ,b ,c ,d ∈R)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数复数的模设OZ →对应的复数为z =a +bi ,则向量OZ →的长度叫做复数z =a +bi 的模|z|=|a +bi|=a2+b2 2.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +bi复平面内的点Z(a ,b)(a ,b ∈R).(2)复数z =a +bi(a ,b ∈R)平面向量OZ →.3.复数的运算(1)复数的加、减、乘、除运算法则设z1=a +bi ,z2=c +di(a ,b ,c ,d ∈R),则 ①加法:z1+z2=(a +bi)+(c +di)=(a +c)+(b +d)i ;②减法:z1-z2=(a +bi)-(c +di)=(a -c)+(b -d)i ; ③乘法:z1·z2=(a +bi)·(c +di)=(ac -bd)+(ad +bc)i ; ④除法:z1z2=a +bi c +di =(a +bi )(c -di )(c +di )(c -di )=ac +bd +(bc -ad )ic2+d2(c +di≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C ,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).(3)复数加、减法的几何意义①复数加法的几何意义:若复数z1,z2对应的向量OZ1→,OZ2→不共线,则复数z1+z2是以OZ1→,OZ2→为两邻边的平行四边形的对角线OZ →所对应的复数.②复数减法的几何意义:复数z1-z2是OZ1→-OZ2→=Z2Z1→所对应的复数. 【高频考点突破】 考点一 复数的概念【例1】 (1)设i 是虚数单位.若复数a -103-i (a ∈R)是纯虚数,则a 的值为()A .-3B .-1C .1D .3(2)若3+bi 1-i=a +bi(a ,b ∈R),则a +b =________.【答案】(1)D(2)3规律方法 处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从定义出发,把复数问题转化成实数问题来处理.【变式探究】 (1)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z -为() A .2+i B .2-i C .5+i D .5-i(2)复数z =12+i(其中i 为虚数单位)的虚部为________.【答案】(1)D(2)-15 考点二 复数的运算【例2】 (1)(·安徽卷)设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i +i·z -=() A .-2 B .-2i C .2 D .2i(2)-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 014=________.【答案】(1)C(2)0规律方法 (1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式.(2)记住以下结论,可提高运算速度:①(1±i)2=±2i ;②1+i1-i =i ;③1-i 1+i=-i ;④a +bi i =b -ai ;⑤i4n =1,i4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N).【变式探究】 (1)(·天津卷)i 是虚数单位,复数7+i3+4i =()A .1-iB .-1+i C.1725+3125i D .-177+257i(2)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________.【答案】(1)A(2)-1+i 考点三 复数的几何意义【例3】 (1)(·重庆卷)复平面内表示复数i(1-2i)的点位于() A .第一象限 B .第二象限 C .第三象限 D .第四象限 (2)复数z =(2-i )2i (i 为虚数单位),则|z|=() A .25 B.41 C .5 D.5【答案】(1)A(2)C规律方法 要掌握复数的几何意义就要搞清楚复数、复平面内的点以及向量三者之间的一一对应关系,从而准确理解复数的“数”与“形”的特征. 【变式探究】(1)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是()A .AB .BC .CD .D(2)i 为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i ,则z2=________.【答案】(1)B(2)-2+3i 【真题感悟】1.【高考新课标1,文3】已知复数z 满足(1)1z i i -=+,则z =() (A )2i --(B )2i -+(C )2i -(D )2i + 【答案】C2.【高考山东,文2】若复数Z 满足1zi-i =,其中i 为虚数单位,则Z=( ) (A )1i -(B )1i +(C )1i --(D )1i -+ 【答案】A3.【高考湖南,文1】已知2(1)i z-=1i +(i 为虚数单位),则复数z = ( )A 、1i +B 、1i -C 、 1i -+D 、1i -- 【答案】D4.【高考湖北,文1】i 为虚数单位,607i =( ) A .i - B .i C .1-D .1【答案】A .5.【高考广东,文2】已知i 是虚数单位,则复数()21i +=( ) A .2-B .2C .2i -D .2i【答案】D6.【高考福建,文1】若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( )A .3,2-B .3,2C .3,3-D .1,4- 【答案】A7.【高考安徽,文1】设i 是虚数单位,则复数()()112i i -+=( ) (A )3+3i (B )1+3i (3)3+i (D )1+i 【答案】C8.【高考北京,文9】复数()1i i +的实部为. 【答案】1-9.【高考重庆,文11】复数(12i)i 的实部为________. 【答案】210.【高考四川,文11】设i 是虚数单位,则复数1i i-=_________. 【答案】2i11.【高考天津,文9】i 是虚数单位,计算12i2i-+的结果为. 【答案】i12.【高考上海,文3】若复数z 满足i z z +=+13,其中i 是虚数单位,则=z . 【答案】i 2141+(·浙江卷)已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +bi)2=2i”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A(·全国卷)设z =10i 3+i ,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i 【答案】D(·北京卷)复数⎝ ⎛⎭⎪⎫1+i 1-i 2=________.【答案】-1(·福建卷)复数z =(3-2i)i 的共轭复数z 等于( ) A .-2-3i B .-2+3iC .2-3iD .2+3i 【答案】C(·广东卷)已知复数z 满足(3+4i)z =25,则z =( ) A .-3+4i B .-3-4i C .3+4i D .3-4i 【答案】D(·湖北卷)i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( )A .-1B .1C .-iD .i 【答案】A(·湖南卷)满足z +iz =i(i 为虚数单位)的复数z =( ) A.12+12i B.12-12i C .-12+12i D .-12-12i 【答案】B10.(·江西卷)z -是z 的共轭复数,若z +z -=2,(z -z -)i =2(i 为虚数单位),则z =( ) A .1+i B .-1-i C .-1+i D .1-i 【答案】D11.(·辽宁卷)设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i 【答案】A12.(·新课标全国卷Ⅰ] (1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D13.(·新课标全国卷Ⅱ] 设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i ,则z1z2=( ) A .-5 B .5 C .-4+i D .-4-i 【答案】A14.(·山东卷)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+bi 互为共轭复数,则(a +bi)2=( ) A .5-4i B .5+4i C .3-4i D .3+4i 【答案】D15.(·四川卷)复数2-2i 1+i =________.【答案】-2i16.(·天津卷)i 是虚数单位,复数7+i3+4i =( )A .1-iB .-1+iC.1725+3125i D .-177+257i 【答案】A17.(·新课标全国卷Ⅰ] 若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D.45 【答案】D18.(·安徽卷)设i 是虚数单位,z 是复数z 的共轭复数,若z·zi +2=2z ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i 【答案】A19.(·北京卷)在复平面内,复数(2-i)2对应的点位于( ) A .第一象限B .第二象限 C .第三象限 D .第四象限 【答案】D20.(·福建卷)已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D21.(·广东卷)若复数iz =2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,-4) C .(4,-2) D .(4,2)【答案】C22.(·湖北卷)在复平面内,复数z =2i1+i (i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D23.(·湖南卷)复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 【答案】B24.(·江苏卷)设z =(2-i)2(i 为虚数单位),则复数z 的模为________. 【答案】525.(·江西卷)已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M∩N ={4},则复数z =( ) A .-2i B .2i C .-4i D .4i 【答案】C26.(·辽宁卷)复数z =1i -1的模为( )A.12B.22 C. 2 D .2 【答案】B27.(·全国卷)(1+3i)3=()A.-8 B.8C.-8i D.8i【答案】A28.(·山东卷)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数z为()A.2+i B.2-i C.5+i D.5-i【答案】D29.(·陕西卷)设z1,z2是复数,则下列命题中的假命题是()A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1·z1=z2·z2D.若|z1|=|z2|,则z21=z22【答案】D30.(·四川卷)如图1-1所示,在复平面内,点A表示复数z,则图1-1中表示z的共轭复数的点是()图1-1A.A B.B C.C D.D【答案】B31.(·天津卷)已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,则a+bi=________.【答案】1+2i32.(·新课标全国卷Ⅱ] 设复数z满足(1-i)z=2i,则z=()A.-1+i B.-1-iC.1+i D.1-i【答案】A33.(·浙江卷] 已知i是虚数单位,则(-1+i)(2-i)=()A.-3+i B.-1+3iC.-3+3i D.-1+i【答案】B34.(·重庆卷)已知复数z=5i1+2i(i是虚数单位),则|z|=________.【答案】5【押题专练】1.若复数z满足z(1+i)=2i(i为虚数单位),则|z|=() A.1 B.2 C. 2D.3【答案】C2.已知复数z=-2i,则1z+1的虚部为()A.25iB.25C.255iD.255【答案】B3.设z 是复数,则下列命题中的假命题是()A .若z2≥0,则z 是实数B .若z2<0,则z 是虚数C .若z 是虚数,则z2≥0D .若z 是纯虚数,则z2<0【答案】C4.设z =11+i +i ,则|z|=()A.12B.22C.32 D .2【答案】B5.已知a ,b ∈R ,i 是虚数单位.若a +i =2-bi ,则(a +bi)2=() A .3-4i B .3+4i C .4-3i D .4+3i【答案】A6.设复数z =3+i(i 为虚数单位)在复平面中对应点A ,将OA 绕原点O 逆时针旋转90°得到OB ,则点B 在() A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B7.下面是关于复数z =2-1+i 的四个命题:p1:|z|=2; p2:z2=2i ;p3:z 的共轭复数为1+i; p4:z 的虚部为-1. 其中的真命题为() A .p2,p3B .p1,p2C .p2,p4D .p3,p4【答案】C8.设f(n)=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n(n ∈N*),则集合{f(n)}中元素的个数为() A .1B .2C .3D .无数个【答案】C9.复数3+ii2(i 为虚数单位)的实部等于______.【答案】-310.若复数(m2-5m +6)+(m2-3m)i(m 为实数,i 为虚数单位)是纯虚数,则m =________.【答案】211.已知复数z1=-2+i ,z2=a +2i(i 为虚数单位,a ∈R).若z1z2为实数,则a 的值为________.【答案】412.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________.【答案】⎝⎛⎭⎫-∞,2313.已知复数z =i +i2+i3+…+i2 0141+i,则复数z 在复平面内对应的点为________.【答案】(0,1) 14.定义运算|abcd|=ad -bc.若复数x =1-i1+i ,y =|4ixi2x +i|,则y =________.高考模拟复习试卷试题模拟卷【答案】-2。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【重点知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z)函数 y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且x≠⎭⎬⎫kπ+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数 奇函数递增 区间 ⎣⎡⎦⎤2kπ-π2,2kπ+π2[2kπ-π,2kπ]⎝⎛⎭⎫kπ-π2,kπ+π2递减 区间 ⎣⎡⎦⎤2kπ+π2,2kπ+3π2 [2kπ,2kπ+π]无对称 中心 (kπ,0) ⎝⎛⎭⎫kπ+π2,0⎝⎛⎭⎫kπ2,0对称轴 方程 x =kπ+π2x =kπ无【高频考点突破】考点一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为() A .2- 3 B .0 C .-1 D .-1-3【答案】(1){x|x≠π4+kπ且x≠π2+kπ,k ∈Z}(2)A 【规律方法】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sin x±cos x ,化为关于t 的二次函数求值域(最值).【变式探究】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin xcos x 的值域为________.【答案】(1)⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z (2)⎣⎡⎦⎤-12-2,1考点二 三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是() A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数【答案】(1)A(2)A 【规律方法】(1)求f(x)=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asin(ωx +φ)或y =Acos(ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.【变式探究】 (1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为() A.π6 B.π4 C.π3 D.π2(2)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=()A.π2B.2π3C.3π2D.5π3【答案】(1)A(2)C考点三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________.(2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是() A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2]【答案】(1)⎣⎡⎦⎤0,π4(2)A【规律方法】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【变式探究】 (1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于()A.23B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______.【答案】(1)B(2)⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z)【真题感悟】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是.【答案】32,2π-【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【答案】8【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为23,则ω =_____.【答案】2πω=【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【答案】π【高考福建,文21】已知函数()2103sin cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析.【高考重庆,文18】已知函数f(x)=12sin2x 32cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. 【答案】(Ⅰ)()f x 的最小正周期为π,最小值为2+32,(Ⅱ)1323[,]22.(·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2.求cos A 与a 的值.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 【答案】D图1-2(·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.【答案】π6(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________.【答案】π(·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( )图1-3 【答案】D(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________. 【答案】-2 55【押题专练】1.函数y =|2sin x|的最小正周期为( ) A .π B .2π C.π2D.π4【答案】A2.已知f(x)=cos 2x -1,g(x)=f(x +m)+n ,则使g(x)为奇函数的实数m ,n 的可能取值为( ) A .m =π2,n =-1 B .m =π2,n =1 C .m =-π4,n =-1D .m =-π4,n =1【答案】D3.已知函数y =sin x 的定义域为[a ,b],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( )A.π3B.2π3 C .π D.4π3【答案】A4.已知函数f(x)=sin πx 的部分图象如图1所示,则图2所示的函数的部分图象对应的函数解析式可以是( )A .y =f ⎝⎛⎭⎫2x -12B .y =f ⎝⎛⎭⎫x 2-12C .y =f (2x -1)D .y =f ⎝⎛⎭⎫x 2-1【答案】C5.定义行列式运算:⎪⎪⎪⎪⎪⎪a1a2a3a4=a1a4-a2a3,将函数f(x)=⎪⎪⎪⎪⎪⎪3 cos x 1 sin x 的图象向左平移m 个单位(m>0),若所得图象对应的函数为偶函数,则m 的最小值为( )A.π8B.π3C.56πD.2π3【答案】D6.已知f(x)=sin x ,x ∈R ,g(x)的图象与f(x)的图象关于点⎝⎛⎭⎫π4,0对称,则在区间[0,2π]上满足f(x)≤g(x)的x 的取值范围是( )A.⎣⎡⎦⎤π4,3π4 B .⎣⎡⎦⎤3π4,7π4C.⎣⎡⎦⎤π2,3π2D.⎣⎡⎦⎤3π4,3π2【答案】B7.若函数f(x)=sin(2x +φ)(φ∈[0,π])是偶函数,则φ=________.【答案】π28.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.【答案】π9.函数f(x)=2sin ωx(ω>0)在⎣⎡⎦⎤0,π4上单调递增,且在这个区间上的最大值是3,那么ω等于________.【答案】4310.已知函数y =sin ⎝⎛⎭⎫π3-2x ,求: (1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.11.已知函数f(x)=2sin2⎝⎛⎭⎫π4x +9π4. (1)求函数f(x)的最小正周期; (2)计算f(1)+f(2)+…+f(2 013)的值.12.设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f(x)的单调递增区间.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简与给角求值 【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______.解析 (1)原式=⎝⎛⎭⎫2cos2α2+2sin α2cos α2·⎝⎛⎭⎫cos α2-sin α24cos2α2=cos α2⎝⎛⎭⎫cos2α2-sin2α2⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪cos α2.因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α. (2)原式=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)· 2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)] =22sin(50°+10°)=22×32= 6. 答案 (1)cos α (2)6 【提分秘籍】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【举一反三】(1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)(·临沂模拟)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________.(2)法一 (从“角”入手,复角化单角)原式=sin2αsin2β+cos2αcos2β-12(2cos2α-1)(2cos2β-1) =sin2αsin2β+cos2αcos2β-12(4cos2αcos2β-2cos2α-2cos2β+1) =sin2αsin2β-cos2αcos2β+cos2α+cos2β-12 =sin2αsin2β+cos2αsin2β+cos2β-12 =sin2β+cos2β-12 =1-12=12.法二 (从“名”入手,异名化同名)原式=sin2αsin2β+(1-sin2α)cos2β-12cos 2αcos 2β =cos2β-sin2α(cos2β-sin2β)-12cos 2αcos 2β =cos2β-cos 2β(sin2α+12cos 2α) =1+cos 2β2-12cos 2β=12.法三 (从“幂”入手,利用降幂公式先降次)原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β =14+14=12.题型二三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值. 解 (1)∵0<β<π2<α<π, ∴π4<α-β2<π, -π4<α2-β<π2,∴sin ⎝⎛⎭⎫α-β2=1-cos2⎝⎛⎭⎫α-β2=459,cos ⎝⎛⎭⎫α2-β= 1-sin2⎝⎛⎭⎫α2-β=53,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β=cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2s in ⎝⎛⎭⎫α2-β=⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729.【提分秘籍】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. 【举一反三】已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.解 (1)∵cos α=17,0<α<π2, ∴sin α=437,∴tan α=43, ∴tan 2α=2tan α1-tan2α=2×431-48=-8347.(2)∵0<β<α<π2,∴0<α-β<π2, ∴sin(α-β)=3314, ∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.题型三三角变换的简单应用【例3】已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.解 (1)由f ⎝⎛⎭⎫5π12=32,得Asin 2π3=32,又sin 2π3=32,∴A = 3.(2)由(1)得f(x)=3sin ⎝⎛⎭⎫x +π4,由f(θ)+f(-θ)=32,得3sin ⎝⎛⎭⎫θ+π4+3sin ⎝⎛⎭⎫-θ+π4=32, 化简得cos θ=64,∵θ∈⎝⎛⎭⎫0,π2,∴sin θ=1-cos 2θ=1-⎝ ⎛⎭⎪⎫642=104,故f ⎝⎛⎭⎫3π4-θ=3sin ⎝⎛⎭⎫3π4-θ+π4=3sin θ=3×104=304.【提分秘籍】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【举一反三】已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.(2)由已知,有sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos2α-sin2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α). 当sin α+cos α=0时,由α是第二象限角, 知α=3π4+2kπ,k ∈Z. 此时cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54. 由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52. 【高考风向标】【高考重庆,文6】若11tan ,tan()32,则tan =() (A) 17 (B) 16 (C) 57 (D) 56【答案】A【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯,故选A.【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【答案】π【解析】因为x x 2cos 1sin 22-=,所以x x x f 2cos 2321)2cos 1(231)(+-=--=,所以函数)(x f 的最小正周期为ππ=22. 【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【答案】(1)3-;(2)1. 【解析】(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+- 222222⨯=+- 1=1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD-A1B1C1D1中,设BB1是直线l1,BC 是直线l2,AD 是直线l3,则DD1是直线l4,此时l1∥l4;设BB1是直线l1,BC 是直线l2,A1D1是直线l3,则C1D1是直线l4,此时l1⊥l4.故l1与l4的位置关系不确定.2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【解析】(1)f(8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-4【解析】设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC2=CD2+DE2-2CD·DE·cos ∠EDC ,于是由题设知,7=CD2+1+CD ,即CD2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CD sin α. 于是,sin α=CD·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin2α=1-2149=277.而∠AEB=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α =-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE ,故 BE =2cos ∠AEB =2714=47.4.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B. 【解析】由题设和正弦定理得3sin Acos C =2sin Ccos A , 故3tan Acos C =2sin C.因为tan A =13, 所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C)] =-tan(A +C) =tan A +tan Ctan Atan C -1=-1, 所以B =135°.6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1【解析】 f(x)=sin(x +φ)-2sin φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x -φ),其最大值为1.7.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积. 【解析】(1)在△ABC 中,由题意知,sin A =1-cos2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =asin Bsin A =3×6333=3 2.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B), 所以sin C =sin[π-(A +B)] =sin(A +B)=sin Acos B +cos Asin B=33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13=322.8.(·四川卷) 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2kπ,π2+2kπ,k ∈Z ,由-π2+2kπ≤3x +π4≤π2+2kπ,k ∈Z ,得-π4+2kπ3≤x≤π12+2kπ3,k ∈Z ,所以函数f(x)的单调递增区间为⎣⎡⎦⎤-π4+2kπ3,π12+2kπ3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin 2α). 所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αco s π4-sin αsi n π4(cos2α-sin2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2kπ,k ∈Z.此时,cos α-sin α=- 2.当sin α+cos α≠0时,(co s α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.【解析】(1)由题意可知c =8-(a +b)=72.由余弦定理得cos C =a2+b2-c22ab= 22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin Acos2B 2+sin Bcos2A 2=2sin C 可得sin A·1+cos B 2+sin B·1+cos A 2=2sin C ,化简得sin A +sin Acos B +sin B +sin Bcos A =4sin C.因为sin Acos B +cos Asin B =sin(A +B)=sin C ,所以sin A +sin B =3sin C.由正弦定理可知a +b =3c.又a +b +c =8,所以a +b =6.由于S =12absin C =92sin C ,所以ab =9,从而a2-6a +9=0,解得a =3,所以b =3.【高考押题】1.若tan θ=3,则sin 2θ1+cos 2θ=( ) A. 3B .-3 C.33D .-33 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos2θ-1=tan θ= 3. 答案 A2.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α=( ) A.118B.1718C.89D.29解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin2⎝⎛⎭⎫π4-α=1-cos ⎝⎛⎭⎫π2-2α2=1-sin 2α2=1+892=1718,故选B. 答案 B3.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( ) A .7B.17 C .-17 D .-7解析 因α∈⎝⎛⎭⎫π,32π,且cos α=-45,所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=1-341+34=17. 答案 B4.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12 B.π3 C.π4 D.π65.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则 ( ) A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析 由条件得sin αcos α=1+sin βcos β,即sin α cos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.答案 B6.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________. 解析 ∵sin ⎝⎛⎭⎫π2+θ=cos θ=35, ∴cos 2θ=2cos2θ-1=2×⎝⎛⎭⎫352-1=-725. 答案 -7257.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________. 解析 ∵f(x)=22sin 2x -22cos 2x -2(1-cos 2x) =22sin 2x +22cos 2x -2=sin(2x +π4)-2,∴最小正周期T =2π2=π.答案 π8.已知cos4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________. 解析 ∵cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos 2α=23,又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12co s 2α-32sin 2α =12×23-32×53=2-156.答案 2-1569.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sinα=12. 又π2<α<π,所以cos α=-1-sin2α=-32.(2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2.又sin(α-β)=-35,得cos (α-β)=45.cos β=cos []α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310.高考模拟复习试卷试题模拟卷。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d(n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为md 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d <0,则Sn 存在最大值;若a1<0,d >0,则Sn 存在最小值. 【高频考点突破】考点一 等差数列的性质及基本量的求解【例1】 (1)设Sn 为等差数列{an}的前n 项和,S8=4a3,a7=-2,则a9=() A .-6 B .-4 C .-2 D .2(2)(·浙江卷)已知等差数列{an}的公差d >0.设{an}的前n 项和为Sn ,a1=1,S2·S3=36. ①求d 及Sn ;②求m ,k(m ,k ∈N*)的值,使得am +am +1+am +2+…+am +k =65.规律方法 (1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】 (1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A .0B .37C .100D .-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________. 考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an -an -1=d(n≥2,d 为常数);二是等差中项法,证明2an +1=an +an +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n 项和为Sn ,且满足a3·a4=117,a2+a5=22. (1)求数列{an}的通项公式;(2)若数列{bn}满足bn =Snn +c ,是否存在非零实数c 使得{bn}为等差数列?若存在,求出c 的值;若不存在,请说明理由.考点三 等差数列前n 项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n 项和为Sn ,且S5=S12,则当n 为何值时,Sn 有最大值?规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和Sn =An2+Bn(A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】 (1)等差数列{an}的前n 项和为Sn ,已知a5+a7=4,a6+a8=-2,则当Sn 取最大值时,n 的值是()A .5B .6C .7D .8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________. 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .144.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( ) A .d<0 B .d>0 C .a1d<0 D .a1d>07.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.10.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.12.(·重庆卷)设a1=1,an+1=a2n-2an+2+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8π B.8+8πC.16+16π D.8+16π14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.615.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n 项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{an}前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d = ()A.12 B .2 C .3D .42.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=()A .2B .-2C.12D .-123.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .524.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .125.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或96.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.1167.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8B .Sn 的最小值是S8C .Sn 的最大值是S7D .Sn 的最小值是S78.在等差数列{an}中,a15=33,a25=66,则a35=________.9.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________. 10.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________. 11.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0. (1)求Sn 的最小值及此时n 的值; (2)求n 的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且S k =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简与给角求值 【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______.解析 (1)原式=⎝⎛⎭⎫2cos2α2+2sin α2cos α2·⎝⎛⎭⎫cos α2-sin α24cos2α2=cos α2⎝⎛⎭⎫cos2α2-sin2α2⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪cos α2.因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α. (2)原式=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)· 2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)] =22sin(50°+10°)=22×32= 6. 答案 (1)cos α (2)6 【提分秘籍】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【举一反三】(1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)(·临沂模拟)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________.(2)法一 (从“角”入手,复角化单角)原式=sin2αsin2β+cos2αcos2β-12(2cos2α-1)(2cos2β-1) =sin2αsin2β+cos2αcos2β-12(4cos2αcos2β-2cos2α-2cos2β+1) =sin2αsin2β-cos2αcos2β+cos2α+cos2β-12 =sin2αsin2β+cos2αsin2β+cos2β-12 =sin2β+cos2β-12 =1-12=12.法二 (从“名”入手,异名化同名)原式=sin2αsin2β+(1-sin2α)cos2β-12cos 2αcos 2β =cos2β-sin2α(cos2β-sin2β)-12cos 2αcos 2β =cos2β-cos 2β(sin2α+12cos 2α) =1+cos 2β2-12cos 2β=12.法三 (从“幂”入手,利用降幂公式先降次)原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β =14+14=12.题型二三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值. 解 (1)∵0<β<π2<α<π, ∴π4<α-β2<π, -π4<α2-β<π2,∴sin ⎝⎛⎭⎫α-β2=1-cos2⎝⎛⎭⎫α-β2=459,cos ⎝⎛⎭⎫α2-β= 1-sin2⎝⎛⎭⎫α2-β=53,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β=cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2s in ⎝⎛⎭⎫α2-β=⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729.【提分秘籍】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. 【举一反三】已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.解 (1)∵cos α=17,0<α<π2, ∴sin α=437,∴tan α=43, ∴tan 2α=2tan α1-tan2α=2×431-48=-8347.(2)∵0<β<α<π2,∴0<α-β<π2, ∴sin(α-β)=3314, ∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.题型三三角变换的简单应用【例3】已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.解 (1)由f ⎝⎛⎭⎫5π12=32,得Asin 2π3=32,又sin 2π3=32,∴A = 3.(2)由(1)得f(x)=3sin ⎝⎛⎭⎫x +π4,由f(θ)+f(-θ)=32,得3sin ⎝⎛⎭⎫θ+π4+3sin ⎝⎛⎭⎫-θ+π4=32, 化简得cos θ=64,∵θ∈⎝⎛⎭⎫0,π2,∴sin θ=1-cos 2θ=1-⎝ ⎛⎭⎪⎫642=104,故f ⎝⎛⎭⎫3π4-θ=3sin ⎝⎛⎭⎫3π4-θ+π4=3sin θ=3×104=304.【提分秘籍】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【举一反三】已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.(2)由已知,有sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos2α-sin2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α). 当sin α+cos α=0时,由α是第二象限角, 知α=3π4+2kπ,k ∈Z. 此时cos α-sin α=- 2.当sin α+cos α≠0时,有(co s α-sin α)2=54. 由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52. 【高考风向标】【高考重庆,文6】若11tan ,tan()32,则tan =() (A) 17 (B) 16 (C) 57 (D) 56【答案】A【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯,故选A.【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【答案】π【解析】因为x x 2cos 1sin 22-=,所以x x x f 2cos 2321)2cos 1(231)(+-=--=,所以函数)(x f 的最小正周期为ππ=22. 【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【答案】(1)3-;(2)1. 【解析】(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+- 222222⨯=+- 1=1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD-A1B1C1D1中,设BB1是直线l1,BC 是直线l2,AD 是直线l3,则DD1是直线l4,此时l1∥l4;设BB1是直线l1,BC 是直线l2,A1D1是直线l3,则C1D1是直线l4,此时l1⊥l4.故l1与l4的位置关系不确定.2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【解析】(1)f(8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-4【解析】设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC2=CD2+DE2-2CD·DE·cos ∠EDC ,于是由题设知,7=CD2+1+CD ,即CD2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CD sin α. 于是,sin α=CD·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin2α=1-2149=277.而∠AEB=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α =-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE ,故 BE =2cos ∠AEB =2714=47.4.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B. 【解析】由题设和正弦定理得3sin Acos C =2sin Ccos A , 故3tan Acos C =2sin C.因为tan A =13, 所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C)] =-tan(A +C) =tan A +tan Ctan Atan C -1=-1, 所以B =135°.6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1【解析】 f(x)=sin(x +φ)-2sin φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x -φ),其最大值为1.7.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积. 【解析】(1)在△ABC 中,由题意知,sin A =1-cos2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =asin Bsin A =3×6333=3 2.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B), 所以sin C =sin[π-(A +B)] =sin(A +B)=sin Acos B +cos Asin B=33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13=322.8.(·四川卷) 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2kπ,π2+2kπ,k ∈Z ,由-π2+2kπ≤3x +π4≤π2+2kπ,k ∈Z ,得-π4+2kπ3≤x≤π12+2kπ3,k ∈Z ,所以函数f(x)的单调递增区间为⎣⎡⎦⎤-π4+2kπ3,π12+2kπ3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αco s π4-sin αsi n π4(cos2α-sin2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2kπ,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,(co s α-sin α)2=54.由α是第二象限角,得cos α-si n α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 【解析】(1)由题意可知c =8-(a +b)=72. 由余弦定理得cos C =a2+b2-c22ab= 22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin Acos2B 2+sin Bcos2A2=2sin C 可得 sin A·1+cos B 2+sin B·1+cos A 2=2sin C ,化简得sin A +sin Acos B +sin B +sin Bcos A =4sin C.因为sin Acos B +cos Asin B =sin(A +B)=sin C ,所以sin A +sin B =3sin C. 由正弦定理可知a +b =3c.又a +b +c =8,所以a +b =6.由于S =12absin C =92sin C ,所以ab =9,从而a2-6a +9=0,解得a =3,所以b =3. 【高考押题】1.若tan θ=3,则sin 2θ1+cos 2θ=( )A. 3 B .-3 C.33D .-33解析sin 2θ1+cos 2θ=2sin θcos θ1+2cos2θ-1=tan θ= 3.答案 A2.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α=( )A.118 B.1718 C.89D.29解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin2⎝⎛⎭⎫π4-α=1-cos ⎝⎛⎭⎫π2-2α2=1-sin 2α2=1+892=1718,故选B.答案 B3.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( )A .7B.17C .-17D .-7解析 因α∈⎝⎛⎭⎫π,32π,且cos α=-45,所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=1-341+34=17.答案 B4.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π65.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则 ( )A .3α-β=π2 B .2α-β=π2 C .3α+β=π2D .2α+β=π2解析 由条件得sin αc os α=1+sin βcos β,即sin α cos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B. 答案 B6.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________.解析 ∵sin ⎝⎛⎭⎫π2+θ=cos θ=35, ∴cos 2θ=2cos2θ-1=2×⎝⎛⎭⎫352-1=-725.答案 -7257.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.解析 ∵f(x)=22sin 2x -22cos 2x -2(1-cos 2x) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴最小正周期T =2π2=π. 答案 π8.已知cos4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________.解析 ∵cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos 2α=23,又α∈⎝⎛⎭⎫0,π2,∴2α∈(0,π),∴sin 2α=1-cos22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 答案2-1569.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.解 (1)因为sin α2+cos α2=62,两边同时平方,得sinα=12.又π2<α<π,所以cos α=-1-sin2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2.又sin(α-β)=-35,得cos (α-β)=45. cos β=cos []α-(α-β) =cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310.高考模拟复习试卷试题模拟卷。