2017-2018学年七年级期末考试·数学试题
- 格式:doc
- 大小:242.00 KB
- 文档页数:4
2017-2018学年吉林省白山市七年级(下)期末数学试卷一、单项选择题(每小题2分,共12分)1.(2分)如图,点E在BC的延长线上,则下列条件中,能判定AD平行于BC的是()A.∠1=∠2B.∠3=∠4C.∠D+∠DAB=180°D.∠B=∠DCE2.(2分)如图,在一次活动中,位于A处的七年一班准备前往相距3km的B处与七年二班会合,若用方向和距离描述七年二班相对于七年一班的位置,可以描述为()A.南偏西30°,3km B.南偏西50°,3kmC.北偏东40°,3km D.北偏东50°,3km3.(2分)等于()A.±4B.4C.﹣4D.±24.(2分)下列各组数值是二元一次方程2x﹣y=4的解的是()A.B.C.D.5.(2分)已知a>b,下列不等式变形不正确的是()A.a+2>b+2B.a﹣2>b﹣2C.2a>2b D.2﹣a>2﹣b 6.(2分)某中学为了解学生的视力情况,需要抽取部分学生进行调查,下列抽取方法中最合适的是()A.随机抽取一部分男生B.随机抽取一个班级的学生C.随机抽取一个年级的学生D.在各个年级中,每班各随机抽取20名学生二、填空题(每小题3分,共24分)7.(3分)计算:(+)=.8.(3分)如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,如果∠COE=40°,则∠AOD等于度.9.(3分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为.10.(3分)方程组的解为.11.(3分)x的与5的和不小于3,用不等式表示为.12.(3分)甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是公司(填“甲”或“乙”).13.(3分)某家具厂有22名工人,每名工人每天可加工3张桌子或10把椅子,1张桌子与4把椅子配成一套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 名工人加工桌子,y名工人加工椅子,则列出的方程组为.14.(3分)请写出不等式﹣x+2≥0的一个正整数解(写出一个即可).三、解答题(每小题5分,共20分)15.(5分)+﹣16.(5分)解方程组.17.(5分)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.18.(5分)请完成下面的解答过程完.如图,∠1=∠B,∠C=110°,求∠3的度数.解:∵∠1=∠B∴AD∥(内错角相等,两直线平行)∴∠C+∠2=180°,()∵∠C=110°.∴∠2=°.∴∠3==70°.()四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中,半径为1的圆从原点出发沿x轴正方向滚动一周,圆上一点由原点O到达点O′,圆心也从点A到达点A′.(1)点O′的坐标为,点A′的坐标为;(2)若点P是圆在滚动过程中圆心经过的某一位置,求以点P,点O,点O′为顶点的三角形的面积.20.(7分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如下(未完成),解答下列问题:(1)样本容量为,频数分布直方图中a=;(2)扇形统计图中D小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不含80分)为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?21.(7分)已知方程组由于甲看错了①中a,得到方程组的解为,乙看错了方程组②中的b,得到方程组的解为,若按照正确的a,b计算,请求出方程组的解.22.(7分)如图,已知∠A=90°+x°,∠B=90°﹣x°,∠CED=90°,4∠C﹣∠D=30°,射线EF∥AC.(1)判断射线EF与BD的位置关系,并说明理由;(2)求∠C,∠D的度数.五、解答题(每小题8分,共16分)23.(8分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?24.(8分)甲、乙两家超市以相同的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲超市累计购买商品价格总额超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品价格总额超出200元之后,超出部分按原价的九折优惠.若顾客累计购买商品价格总额超出300元,到哪家超市购物花费少?六、解答题(每小题10分,共20分)25.(10分)如图,在平面直角坐标系中,长方形ABCD的边AB在y轴正半轴上,顶点A 的坐标为(0,2),设顶点C的坐标为(a,b).(1)顶点B的坐标为,顶点D的坐标为(用a或b表示);(2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y=12成立,就说这个点的坐标是方程2x+3y=12的解.已知顶点B和D的坐标都是方程2x+3y=12的解,求a,b的值;(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,①这次平移可以看成是先将长方形ABCD向右平移个单位长度,再向下平移个单位长度的两次平移;②若点P(m,n)是对角线BD上的一点,且点P的坐标是方程2x+3y=12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y=12的解.26.(10分)【阅读理解】在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组(2)已知,求x+y+z的值解:(1)把②代入①得:x+2×1=3.解得:x=1.把x=1代入②得:y=0.所以方程组的解为(2)①×2得:8x+6y+4z=20.③②﹣③得:x+y+z=5.【类比迁移】(1)若,则x+2y+3z=.(2)解方程组【实际应用】打折前,买39件A商品,21件B商品用了1080元.打折后,买52件A商品,28件B商品用了1152元,比不打折少花了多少钱?2017-2018学年吉林省白山市七年级(下)期末数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.(2分)如图,点E在BC的延长线上,则下列条件中,能判定AD平行于BC的是()A.∠1=∠2B.∠3=∠4C.∠D+∠DAB=180°D.∠B=∠DCE【解答】解:∵∠3=∠4(已知),∴AD∥BC(内错角相等,两直线平行).故选:B.2.(2分)如图,在一次活动中,位于A处的七年一班准备前往相距3km的B处与七年二班会合,若用方向和距离描述七年二班相对于七年一班的位置,可以描述为()A.南偏西30°,3km B.南偏西50°,3kmC.北偏东40°,3km D.北偏东50°,3km【解答】解;用方向和距离描述七年二班相对于七年一班的位置为:南偏西30°,AB=3km,故选:A.3.(2分)等于()A.±4B.4C.﹣4D.±2【解答】解:=|﹣4|=4,故选:B.4.(2分)下列各组数值是二元一次方程2x﹣y=4的解的是()A.B.C.D.【解答】解:是二元一次方程2x﹣y=4的解,故选:A.5.(2分)已知a>b,下列不等式变形不正确的是()A.a+2>b+2B.a﹣2>b﹣2C.2a>2b D.2﹣a>2﹣b【解答】解:A、由a>b知a+2>b+2,此选项变形正确;B、由a>b知a﹣2>b﹣2,此选项变形正确;C、由a>b知2a>2b,此选项变形正确;D、由a>b知﹣a<﹣b,则2﹣a<2﹣b,此选项变形错误;故选:D.6.(2分)某中学为了解学生的视力情况,需要抽取部分学生进行调查,下列抽取方法中最合适的是()A.随机抽取一部分男生B.随机抽取一个班级的学生C.随机抽取一个年级的学生D.在各个年级中,每班各随机抽取20名学生【解答】解:某中学为了解学生的视力情况,需要抽取部分学生进行调查,下列抽取方法中最合适的是各个年级中,每班各随机抽取20名学生,故选:D.二、填空题(每小题3分,共24分)7.(3分)计算:(+)=3.【解答】解:原式=2+1=3,故答案为:3.8.(3分)如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,如果∠COE=40°,则∠AOD等于130度.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠COE=40°,∴∠AOC=∠AOE﹣∠COE=90°﹣40°=50°,∴∠AOD=180°﹣∠AOC=180°﹣50°=130°.故答案为:1309.(3分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为(﹣3,1).【解答】解:如图所示:“兵”的坐标为:(﹣3,1).故答案为:(﹣3,1).10.(3分)方程组的解为.【解答】解:,①+②得2x=4,解得x=2,把x=2代入①得2+y=5,解得y=3.故原方程组的解为.故答案为:.11.(3分)x的与5的和不小于3,用不等式表示为x+5≥3.【解答】解:x的与5的和不小于3,用不等式表示为x+5≥3.故答案为:x+5≥3.12.(3分)甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是甲公司(填“甲”或“乙”).【解答】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从2014~2018年甲公司增长了500辆;乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从2014~2018年,乙公司中销售量增长了300辆.所以这两家公司中销售量增长较快的是甲公司,故答案为:甲.13.(3分)某家具厂有22名工人,每名工人每天可加工3张桌子或10把椅子,1张桌子与4把椅子配成一套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x名工人加工桌子,y名工人加工椅子,则列出的方程组为.【解答】解:设安排x名工人加工桌子,y名工人加工椅子,根据题意得:.故答案为:.14.(3分)请写出不等式﹣x+2≥0的一个正整数解2(答案不唯一)(写出一个即可).【解答】解:﹣x+2≥0,移项、合并得,﹣x≥﹣2,化系数为1得,x≤4.故不等式﹣x+2≥0的正整数解可以是2,答案不唯一.故答案为2(答案不唯一).三、解答题(每小题5分,共20分)15.(5分)+﹣【解答】解:+﹣=﹣2﹣0.2=﹣1.7.16.(5分)解方程组.【解答】解:①×3+②,得:7x=7,解得:x=1,将x=1代入①,得:1﹣y=﹣1,解得:y=2,所以方程组的解为.17.(5分)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得x≥﹣1;(2)解不等式②,得x<2;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为﹣1≤x<2.【解答】解:(1)解不等式①,得:x≥﹣1;(2)解不等式②,得:x<2;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为:﹣1≤x<2.故答案为:(1)x≥﹣1;(2)x<2;(4)﹣1≤x<2.18.(5分)请完成下面的解答过程完.如图,∠1=∠B,∠C=110°,求∠3的度数.解:∵∠1=∠B∴AD∥BC(内错角相等,两直线平行)∴∠C+∠2=180°,(两直线平行,同旁内角互补)∵∠C=110°.∴∠2=70°.∴∠3=∠2=70°.(对顶角相等)【解答】解:∵∠1=∠B,∴AD∥BC,(内错角相等,两直线平行)∴∠C+∠2=180°,(两直线平行,同旁内角互补)∵∠C=110°,∴∠2=70°,∴∠3=∠2=70°.(对顶角相等)故答案为:BC,两直线平行,同旁内角互补,70,∠2,对顶角相等.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中,半径为1的圆从原点出发沿x轴正方向滚动一周,圆上一点由原点O到达点O′,圆心也从点A到达点A′.(1)点O′的坐标为(2π,0),点A′的坐标为(2π,1);(2)若点P是圆在滚动过程中圆心经过的某一位置,求以点P,点O,点O′为顶点的三角形的面积.【解答】解:(1)∵半径为1的圆从原点出发沿x轴正方向滚动一周,∴⊙O滚动的距离OO′=AA′=2π,则点O′的坐标为(2π,0),点A′的坐标为(2π,1),故答案为:(2π,0)、(2π,1);(2)S△POO′=×2π×1=π.20.(7分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如下(未完成),解答下列问题:(1)样本容量为200,频数分布直方图中a=16;(2)扇形统计图中D小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不含80分)为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?【解答】解:(1)学生总数是40÷20%=200(人),则a=200×8%=16;故答案为:200;16;(2)n=360×=126°.C组的人数是:200×25%=50.如图所示:;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.21.(7分)已知方程组由于甲看错了①中a,得到方程组的解为,乙看错了方程组②中的b,得到方程组的解为,若按照正确的a,b计算,请求出方程组的解.【解答】解:把代入3x+by=2中得:b=4,把代入ax﹣y=5中得:a=2,原方程组为,解得:.22.(7分)如图,已知∠A=90°+x°,∠B=90°﹣x°,∠CED=90°,4∠C﹣∠D=30°,射线EF∥AC.(1)判断射线EF与BD的位置关系,并说明理由;(2)求∠C,∠D的度数.【解答】解:(1)EF∥BD,∵∠A+∠B=(90+x)°+(90﹣x)°=180°,∴AC∥BD,∵EF∥AC,∴EF∥BD;(2)∵AC∥EF∥BD,∴∠CEF=∠C,∠DEF=∠D,∵∠CED=90°,∴∠C+∠D=90°,联立,解得.五、解答题(每小题8分,共16分)23.(8分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?【解答】解:设平路有x米,坡路有y米,根据题意列方程得,,解这个方程组,得,所以x+y=700.所以小华家离学校700米.24.(8分)甲、乙两家超市以相同的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲超市累计购买商品价格总额超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品价格总额超出200元之后,超出部分按原价的九折优惠.若顾客累计购买商品价格总额超出300元,到哪家超市购物花费少?【解答】解:设顾客累计购买商品价格总额为x(x>300)元,(1)若到甲超市购物花费少,则200+0.9(x﹣200)>300+0.8(x﹣300),解得x>400,即顾客累计购买商品价格总额超出400元时,到甲超市购物花费少.(2)若到乙超市购物花费少,则200+0.9(x﹣200)<300+0.8(x﹣300),解得x<400,即顾客累计购买商品价格总额超出300元而不到400元时,到乙超市购物花费少.(3)若200+0.9(x﹣200)=300+0.8(x﹣300),解得x=400,即顾客累计购买商品价格总额为400元时,到两家超市购物花费一样.六、解答题(每小题10分,共20分)25.(10分)如图,在平面直角坐标系中,长方形ABCD的边AB在y轴正半轴上,顶点A 的坐标为(0,2),设顶点C的坐标为(a,b).(1)顶点B的坐标为(0,b),顶点D的坐标为(a,2)(用a或b表示);(2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y=12成立,就说这个点的坐标是方程2x+3y=12的解.已知顶点B和D的坐标都是方程2x+3y=12的解,求a,b的值;(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,①这次平移可以看成是先将长方形ABCD向右平移3个单位长度,再向下平移2个单位长度的两次平移;②若点P(m,n)是对角线BD上的一点,且点P的坐标是方程2x+3y=12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y=12的解.【解答】解:(1)由题意:B(0,b),D(a,2),故答案为(0,b),(a,2);(2)∵顶点B和D的坐标都是方程2x+3y=12的解,∴,解得.(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,①这次平移可以看成是先将长方形ABCD向右平移3个单位长度,再向下平移2个单位长度的两次平移;故答案为3,2;②点P(m,n)平移后的坐标为(m+3,n﹣2),∵点P的坐标是方程2x+3y=12的解,∴2m+3n=12,将P′的坐标代入方程2x+3y=12,左边=2(m+3)+3(n﹣2)=3m+2n=12=右边,∴P′的坐标也是方程2x+3y=12的解.26.(10分)【阅读理解】在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组(2)已知,求x+y+z的值解:(1)把②代入①得:x+2×1=3.解得:x=1.把x=1代入②得:y=0.所以方程组的解为(2)①×2得:8x+6y+4z=20.③②﹣③得:x+y+z=5.【类比迁移】(1)若,则x+2y+3z=18.(2)解方程组【实际应用】打折前,买39件A商品,21件B商品用了1080元.打折后,买52件A商品,28件B商品用了1152元,比不打折少花了多少钱?【解答】解:【类比迁移】(1),(①+②)÷2,得:x+2y+3z=18.故答案为:18.(2),由①得:2x﹣y=2③,将③代入②中得:1+2y=9,解得:y=4,将y=4代入①中得:x=3.∴方程组的解为.【实际应用】设打折前A商品每件x元,B商品每件y元,根据题意得:39x+21y=1080,即13x+7y=360,将两边都乘4得:52x+28y=1440,1440﹣1152=288(元).答:比不打折少花了288元.。
山东省菏泽市单县启智学校2017-2018学年七年级(下)期末数学试卷(解析版)一、选择题1.把多项式2x2﹣8分解因式,结果正确的是()A.2(x2﹣8)B.2(x﹣2)2C.2(x+2)(x﹣2)D.2x(x﹣)【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式2,进而利用平方差公式分解因式得出即可.【解答】解:2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2).故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式分解因式是解题关键.2.下列计算正确的是()A.x3+x3=x6B.x3÷x4=C.(m5)5=m10D.x2y3=(xy)5【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【分析】直接利用同底数幂的乘法、幂的乘方、积的乘方以及同底数幂的除法的性质求解即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、x3+x3=2x3,故本选项错误;B、x3÷x4=x﹣1=,故本选项正确;C、(m5)5=m25,故本选项错误;D、(xy)5=x5y5,故本选项错误.故选B.【点评】此题考查了同底数幂的乘法、幂的乘方、积的乘方以及同底数幂的除法.此题比较简单,注意掌握指数的变化是解此题的关键.3.若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.6【考点】L3:多边形内角与外角.【分析】根据多边形的外角和定理作答.【解答】解:∵多边形外角和=360°,∴这个正多边形的边数是360°÷45°=8.故选C.【点评】本题主要考查了多边形的外角和定理:任何一个多边形的外角和都为360°.4.如果等腰三角形的一个外角等于110°,则它的顶角是()A.40°B.55°C.70°D.40°或70°【考点】KH:等腰三角形的性质.【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故选D.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.5.下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x+1 C.x2+2x﹣1 D.x2﹣2x﹣1【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式得出即可.【解答】解:A、x2+x+1,无法分解因式,故此选项错误;B、x2+2x+1=(x+1)2,故此选项正确;C、x2+2x﹣1,无法分解因式,故此选项错误;D、x2﹣2x﹣1,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.6.用加减法解方程组时,(1)×2﹣(2)得()A.3x=﹣1 B.﹣2x=13 C.17x=﹣1 D.3x=17【考点】98:解二元一次方程组.【分析】此题考查的是加减消元法,消元时两方程相减,要注意是方程的左边减去左边、方程的右边减去右边.【解答】解:(1)×2﹣(2),得2(5x+y)﹣(7x+2y)=2×4﹣(﹣9),去括号,得10x+2y﹣7x﹣2y=2×4+9,化简,得3x=17.故选D.【点评】本题要求同学们要熟悉二元一次方程组的解法:加减消元法和代入消元法,解题时要根据方程组的特点进行有针对性的计算.7.在平面直角坐标系中,已知点A(3,﹣4),B(4,﹣3),C(5,0),O是坐标原点,则四边形ABCO的面积为()A.9 B.10 C.11 D.12【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】作出图形,作AD⊥x轴于D,BE⊥x轴于E,然后把四边形ABCD的面积转化为△OAD、梯形ADEB、△BEC的面积和,再根据三角形的面积和梯形的面积公式列式计算即可得解.【解答】解:如图,作AD⊥x轴于D,BE⊥x轴于E,则S四边形ABCD=S△OAD+S梯形ADEB+S△BEC=×3×4+(3+4)×1+×1×3=6++=6+5=11.故选C.【点评】本题考查了坐标与图形性质,三角形的面积,把四边形分解成规则的三角形和梯形是解题的关键,作出图形更形象直观.8.如图所示,∠1+∠2+∠3+∠4的度数为()A.100° B.180° C.360° D.无法确定【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】把原图形化为两个三角形,然后根据三角形内角和定理求解.【解答】解:如图,,∠1+∠2+∠3+∠4=2×180°=360°.故选C.【点评】本题考查了三角形内角和定理:记住三角形内角和是180°.9.若(1﹣2x)0=1,则()A.x≠0 B.x≠2C.x≠D.x为任意有理数【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由(1﹣2x)0=1,得1﹣2x≠0.解得x≠,故选:C.【点评】本题考查了零指数幂,利用非零的零次幂等于1得出不等式是解题关键.10.多项式4x2+mxy+25y2是完全平方式,则m的值是()A.20 B.10 C.10或﹣10 D.20或﹣20【考点】4E:完全平方式.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵4x2+mxy+25y2是完全平方式,∴m=±20,故选D【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.二、填空题11.分解因式:3x2﹣27= 3(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】观察原式3x2﹣27,找到公因式3,提出公因式后发现x2﹣9符合平方差公式,利用平方差公式继续分解.【解答】解:3x2﹣27,=3(x2﹣9),=3(x+3)(x﹣3).故答案为:3(x+3)(x﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.12.点P(﹣5,1)到x轴距离为 1 .【考点】D1:点的坐标.【分析】根据点P(x,y)到x轴距离为|y|求解.【解答】解:点P(﹣5,1)到x轴距离为1.故答案为1.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.13.已知a+b=2,ab=﹣10,则a2+b2= 24 .【考点】4C:完全平方公式.【分析】此题可将a2+b2变形为(a+b)2﹣2ab,再代入求值即可.【解答】解:∵a+b=2,ab=﹣10,∴a2+b2=(a+b)2﹣2ab,=22﹣2×(﹣10),=4+20=24.故答案为:24.【点评】本题考查了因式分解的应用,注意应用因式分解对a2+b2变形是解决此题的关键.14.若5x=18,5y=3,则5x﹣2y= 2 .【考点】48:同底数幂的除法;47:幂的乘方与积的乘方.【分析】利用同底数的幂的除法的性质,以及幂的乘方的性质,所求的式子可以变形=,代入即可求解.【解答】解:原式====2.故答案是:2.【点评】本题考查了幂的除法的性质,以及幂的乘方的性质,正确对所求的式子进行变形是关键.15.若代数式x2﹣(a﹣2)x+9是一个完全平方式,则a= 8或﹣4 .【考点】4E:完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a的值.【解答】解:∵代数式x2﹣(a﹣2)x+9是一个完全平方式,∴﹣(a﹣2)x=±2•x•3,解得:a=8或﹣4,故答案为:8或﹣4.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要,注意:完全平方公式为①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.16.(﹣)2015×22014= ﹣.【考点】47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可得积的乘方,根据积的乘方,可得答案.【解答】解:原式=(﹣)×[(﹣)2014×22014]=﹣×(﹣×2)2014=﹣,故答案为:﹣.【点评】本题考查了积的乘方,利用积的乘方是解题关键.17.蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是6.1 万元和 6.9 万元.【考点】9A:二元一次方程组的应用.【分析】设甲、乙两种贷款分别是x、y万元,根据甲、乙两种贷款,共13万元可以列出方程x+y=13,根据王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为 3.5%可以列出方程6%x+3.5%y=0.6075,联立两个方程组成方程组,解方程组即可求出甲、乙两种贷款的数目.【解答】解:设甲、乙两种贷款分别是x、y万元,则6075元=0.6075万元,依题意得,解之得,答:甲、乙两种贷款分别是6.1万元,6.9万元.【点评】此题主要考查了利率、利息和本金之间的关系,解题关键是弄清题意,合适的等量关系,列出方程组.18.如图,已知∠1=∠2,∠B=40°,则∠3= 40°.【考点】JB:平行线的判定与性质.【分析】由∠1=∠2,根据“内错角相等,两直线平行”得AB∥CE,再根据两直线平行,同位角相等即可得到∠3=∠B=40°.【解答】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,而∠B=40°,∴∠3=40°.故答案为40°.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等.19.已知是方程kx﹣2y﹣1=0的解,则k= 3 .【考点】92:二元一次方程的解.【分析】根据二元一次方程解的定义,直接把代入方程kx﹣2y﹣1=0中,得到关于k的方程,然后解方程就可以求出k的值.【解答】解:把代入方程kx﹣2y﹣1=0,得5k﹣14﹣1=0,则k=3.故答案为:3.【点评】此题主要考查了二元一次方程的解的定义,利用定义把已知的解代入原方程得到关于k的方程,解此方程即可.20.(2015﹣π)0+(﹣)﹣2= 10 .【考点】6F:负整数指数幂;6E:零指数幂.【分析】首先根据零指数幂的运算方法:a0=1(a≠0),求出(2015﹣π)0的值是多少;然后根据负整指数幂的运算方法:a﹣p=,求出(﹣)﹣2的值是多少;最后把求出的(2015﹣π)0、(﹣)﹣2的值相加,求出算式的值是多少即可.【解答】解:(2015﹣π)0+(﹣)﹣2=1+9=10.故答案为:10.【点评】(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a ≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.三、计算题(20分)21.(10分)分解因式:(1)3a3﹣6a2+3a.(2)a2(x﹣y)+b2(y﹣x).【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式提取3a,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=3a(a2﹣2a+1)=3a(a﹣1)2;(2)原式=(x﹣y)(a2﹣b2)=(x﹣y)(a﹣b)(a+b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.(10分)计算:(1)4x2﹣(﹣2x+3)(﹣2x﹣3)(2)(x+2y)2﹣(x+y)(3x﹣y)﹣5y2.【考点】4I:整式的混合运算.【分析】(1)先利用平方差公式,再利用整式混合运算的顺序求解即可,(2)先利用完全平方公式及多项式乘多项式的方法,再利用整式混合运算的顺序求解即可.【解答】解:(1)4x2﹣(﹣2x+3)(﹣2x﹣3)=4x2﹣(4x2﹣9)=4x2﹣4x2+9=9;(2)(x+2y)2﹣(x+y)(3x﹣y)﹣5y2=x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2=﹣2x2+2xy.【点评】本题主要考查了整式的混合运算,解题的关键是熟记平方差,完全平方公式及整式混合运算的顺序.四、解答题23.(9分)将一副直角三角板如图放置,已知AE∥BC,求∠AFD的度数.【考点】JA:平行线的性质.【分析】根据平行线的性质及三角形内角定理解答.【解答】解:由三角板的性质,可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.因为AE∥BC,所以∠EAC=∠C=30°,所以∠DAF=∠EAD﹣∠EAC=45°﹣30°=15°,所以∠AFD=180°﹣∠ADE﹣∠DAF=180°﹣90°﹣15°=75°.【点评】本题考查的是平行线的性质及三角形内角和定理,解题时注意:两直线平行,内错角相等.24.(9分)先化简再求值:(a+2b)(2a﹣b)﹣(a+2b)2﹣(a﹣2b)2,其中.【考点】4J:整式的混合运算—化简求值.【分析】利用多项式乘以多项式法则和完全平方公式法化简,然后把给定的值代入求值.【解答】解:原式=2a2+3ab﹣2b2﹣(a2+4ab+4b2)﹣(a2﹣4ab+4b2),=2a2+3ab﹣2b2﹣a2﹣4ab﹣4b2﹣a2+4ab﹣4b2,=3ab﹣10b2,当时,原式=3×(﹣)×(﹣3)﹣10×(﹣3)2=3﹣90=﹣87.【点评】考查的是整式的混合运算,主要考查了公式法、多项式与多项式相乘以及合并同类项的知识点.25.(10分)某儿童服装店欲购进A、B两种型号的儿童服装.经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.求A、B两种型号童装的进货单价各是多少元?【考点】9A:二元一次方程组的应用.【分析】可设A型号童装进货单价为x元,则B型号童装进货单价为y元,则y=2x;再利用购进A型号童装60件和B型号童装40件共用2100元.则60x+40y=2100,联立方程组解答.【解答】解:设A型号童装进货单价为x元,则B型号童装进货单价为y元,依题意得:,解得.答:A型号童装进货单价为15元,则B型号童装进货单价为30元.【点评】本题考查了二元一次方程组的应用.二元一次方程组的应用问题的解答关键是审题,找出题干中的相等关系,设未知数,列关系式解答.26.(12分)△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移5个单位后再向下平移3个单位得到△A1B1C1(1)写出经平移后△A1B1C1点A1、B1、C1的坐标;(2)作出△A1B1C1;(3)求△ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用(1)中所求进而得出答案;(3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:A1(3,0),B1(2,﹣1),C1(4,﹣2);(2)如图所示:△A1B1C1即为所求;(3)△ABC的面积为:2×2﹣×1×1﹣×1×2﹣×1×2=1.5.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:事件A 必然事件 随机事件m 的值 ________ ________(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
2017-2018学年陕西省西安市新城区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. B.C. D.2.西安市2017年生产总值(GDP)约为7700亿元人民币,用科学记数法表示7700亿为()A. B. C. D.3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A. B.C. D.4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带去B. 带去C. 带去D. 带和去5.如图所示:AB∥CD,MN交CD于点E,交AB于F,BE⊥MN于点E,若∠DEM=55°,则∠ABE=()A.B.C.D.6.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A. B. C. D.7.如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是()A. B.C. D.8.下列图形中,不一定是轴对称图形的是()A. 等腰三角形B. 线段C. 钝角D. 直角三角形9.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A、C两点之间B. E、G两点之间C. B、F两点之间D. G、H两点之间10.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A. B. C. D.二、填空题(本大题共4小题,共12.0分)11.“早上的太阳从东方升起”是______事件.(填“确定”或“不确定”)12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为______.13.则∠BAC的度数=______.14.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为______.三、计算题(本大题共1小题,共8.0分)15.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,求排水时y与x之间的关系式.如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.四、解答题(本大题共9小题,共70.0分)16.计算(1)-32+()-2+(π-2018)0(2)[(a-2b)2-b(a+4b)]÷(-3a)17.先化简再求值:(x+2y)(x-2y)-2y(x-2y),其中x=-1,y=.18.尺规作图,已知线段a、线段c和∠α,用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠α.(要求:作图时,保留作图痕迹,不写作法)19.如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.20.某种产品的商标如图所示,O是线段AC、BD的交点,并且AO=DO.请你在不作辅助线的情况下添加一个条件,证明△ABO和△DCO全等.添加条件______.证明:21.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是______;(2)若∠BFE=65°,求∠EBF的度数.22.某校在汉字听写大赛活动中需要一名主持人小丽和小芳都想当主持人,小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?23.如图,E,F分别是等边△ABC边AB,AC上的点,且AE=CF,CE,BF交于点P.(1)证明:CE=BF;(2)求∠BPC的度数.24.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,这个结论可以简称为“等角对等边”.(1)如图1,在△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F点,则图中共有______个等腰三角形;(2)如图2,若AB≠AC,在其他条件不变的情况下,边EF与BE、CF间的数量关系为______;(3)如图3,若在△ABC中,∠B的平分线BO与三角形外角平分线CO交于O点,过O点作OE∥BC交AB于E点,交AC于F点,则EF与BE、CF之间有怎样的数量关系?并说明理由.答案和解析1.【答案】C【解析】解:A、a2、a3不是同类项,不能合并,此选项错误;B、(a-2)2=a2-4a+4,此选项错误;C、2a2-3a2=-a2,此选项正确;D、(a+2)(a-2)=a2-4,此选项错误;故选:C.根据合并同类项法则、完全平方公式、平方差公式逐一计算即可判断.此题考查了整式的混合运算,熟练掌握合并同类项法则、完全平方公式、平方差公式是解本题的关键.2.【答案】B【解析】解:7700亿=7700 00000000=7.7×1011,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;B、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:A.根据平行线的判定分别进行分析可得答案.此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.4.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.5.【答案】B【解析】解:如图,∵BE⊥MN,∴∠MEB=90°.∵∠DEM=55°,∴∠DEB=90°-55°=35°.∵AB∥CD,∴∠ABE=∠DEB=35°.故选:B.由平行线的性质和余角的定义解答.本题考查了平行线的性质和垂线,正确观察图形,熟练掌握平行线的性质和垂直的定义.6.【答案】C【解析】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证即可.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.7.【答案】A【解析】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,∴反映到图象上应选A.故选:A.先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.本题主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系,难度适中.8.【答案】D【解析】解:A、是轴对称图形,故选项错误;B、是轴对称图形,故选项错误;C、是轴对称图形,故选项错误;D、不一定是轴对称图形如不是等腰直角三角形,故选项正确.故选:D.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.【答案】B【解析】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.【答案】B【解析】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选:B.找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.11.【答案】确定【解析】解:“早上的太阳从东方升起”是必然事件,属于确定事件,故答案为:确定.根据事件的可能性得到相应事件的类型即可.本题主要考查随机事件,用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.【答案】【解析】解:输出数据的规律为,当输入数据为8时,输出的数据为=.根据图表找出输出数字的规律,直接将输入数据代入即可求解.此题主要考查根据已有输入输出数据找出它们的规律,进而求解.13.【答案】110°【解析】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,则2(∠B+∠C)=140°,解得,∠B+∠C=70°,∴∠BAC=110°,故答案为:110°.根据线段的垂直平分线的性质得到DA=DB,EA=EC,根据等腰三角形的性质得到∠DAB=∠B,∠EAC=∠C,根据三角形内角和定理计算即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.【答案】70°【解析】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为:70°.此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.15.【答案】解:(1)依题意得洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升;(2)∵洗衣机的排水速度为每分钟19升,从第15分钟开始排水,排水量为40升,∴y=40-19(x-15)=-19x+325,∵排水时间为2分钟,∴y=-19×(15+2)+325=2升.∴排水结束时洗衣机中剩下的水量2升.【解析】(1)根据函数图象可以确定洗衣机的进水时间,清洗时洗衣机中的水量;(2)①由于洗衣机的排水速度为每分钟19升,并且从第15分钟开始排水,排水量为40升,由此即可确定排水时y与x之间的关系式;②根据①中的结论代入已知数值即可求解.此题主要考查了一次函数应用,解题的关键首先正确理解题意,然后利用数形结合的思想和待定系数法即可求解.16.【答案】解:(1)原式=-9+4+1=-4;(2)[(a-2b)2-b(a+4b)]÷(-3a)=[(a2-4ab+4b2)-ab-4b2]÷(-3a)=(a2-5ab)÷(-3a)=-a+b.【解析】(1)直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算,进而得出答案.此题主要考查了整式的混合运算以及实数运算,正确掌握相关运算法则是解题关键.17.【答案】解:(x+2y)(x-2y)-2y(x-2y)=x2-4y2-2xy+4y2=x2-2xy,当x=-1,y=时,原式=(-1)2-2×(-1)×=2.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.【答案】解:如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.【解析】如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.本题考查作图-复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.19.【答案】解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,∴△ACD的周长=DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【解析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.20.【答案】BO=CO【解析】解:添加条件为BO=CO,证明:在△ABO和△DCO中,∵,∴△ABO≌△DCO.故答案为:BO=CO.由AO=DO,结合隐含的条件∠AOB=∠DOC,依据全等三角形的判定添加合适的条件即可得.本题主要考查全等三角形的判定,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题注意:不是所有的条件都可以当作全等的条件.21.【答案】BC'【解析】解:(1)矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上,∴DC的对应线段是BC',故答案为:BC';(2)由翻折的性质得:∠DEF=∠BEF,∵四边形ABCD为矩形,∴AD∥BC.∴∠DEF=∠BFE.∴∠BEF=∠BFE=65°.∴△BEF中,∠EBF=180°-2×65°=50°.(1)依据折叠的性质即可得到DC的对应线段;(2)由翻折的性质得∠DEF=∠BEF,由长方形纸片的上下两边平行,可得∠DEF=∠BFE,所以∠BEF=∠BFE,根据“三角形内角和定理”可知∠EBF的度数.本题主要考查的是翻折的性质、矩形的性质、等腰三角形的判定,解题时注意运用:两直线平行,内错角相等.22.【答案】解:不会同意.因为转盘中有两个3,一个2,这说明小丽去的可能性是=,而小丽去的可能性是,所以游戏不公平.【解析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中只要计算出指针指到2和指针指到3概率是否相等,求出概率比较,即可得出结论.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】证明:(1)∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°-60°=120°.即:∠BPC=120°【解析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.【答案】5 EF=BE+CF【解析】解:(1)如图1,图中共有5个等腰三角形,分别是△AEF、△OEB、△OFC、△OBC、△ABC;(1分)理由是:∵AB=AC,∴∠ACB=∠ABC,△ABC是等腰三角形;∵BO、CO分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=,∠OCB=∠ACO=∠ACB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO,∴△EOB、△OBC、△FOC都是等腰三角形,∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE,∴△AEF是等腰三角形,故答案为:5;(2)如图2,EF=BE+FC.(2分)理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;(5分)∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF;(7分)故答案为:EF=BE+FC(3)如图3,EF=BE-CF,(8分)理由是:∵OE∥BC,BO平分∠ABC,∴∠EBO=∠EOB=∠OBC,∴EB=OE,(10分)同理得:OF=CF,∴EF=OE-OF=BE-CF.(11分)(1)根据等腰三角形的判定、平分线的性质及角平分线可得有5个等腰三角形;(2)由△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(3)同理得△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,根据图3可得结论.此题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.运用等角对等边这一性质并进行线段的等量代换是正确解答本题的关键.。
上海市2017学年宝山区七年级第一学期数学期末试卷一、填空题(每题2分,满分30分))1.用代数式表示“x与y的相反数的和”.2.单项式﹣x2y的系数是.3.计算:5x2•(﹣xy)=.4.若3x m y3与x2y n是同类项,则m+n=.5.若代数式有意义,则x的取值范围是.6.把2x﹣2y3写成只含有正整数指数幂的形式,其结果为.7.数据0.0000032用科学记数法表示为.8.若4a+3b=1,则8a+6b﹣3=.9.化简:=.10.计算:=.11.如果4m×8m=215,那么m=.12.正三角形ABC是轴对称图形,它的对称轴共有条.13.如图,△ABC的周长为12,把△ABC的边AC对折,使顶点C与点A重合,折痕交BC 边于点D,交AC边于点E,联结AD,若AE=2,则△ABD的周长是.14.甲乙两家商店9月份的销售额均为a万元,在10月份和11月份这两个月份中,甲商店的销售额平均每月增长x%,乙商店的销售额平均每月减少x%,11月份甲商店的销售额比乙商店的销售额多万元.15.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为厘米.二、选择题(本大题共5题,每题2分,满分10分)16.下列计算正确的是()A.a2•a3=a6B.(a3)2=a5C.(ab)2=ab2D.a3÷a=a2 17.下列多项式能因式分解的是()A.m2+n2B.m2﹣3m+4C.m2+m+D.m2﹣2m+4 18.如果一个正多边形绕着它的中心旋转60°后,能与原正多边形重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.既是轴对称图形,又是中心对称图形C.是中心对称图形,但不是轴对称图形D.既不是轴对称图形,也不是中心对称图形19.计算(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2)的结果为()A.B.C.D.20.若a=2017×2018﹣1,b=20172﹣2017×2018+20182,则下列判断结果正确的是()A.a<b B.a>b C.a=b D.无法判断三、简答题(每题5分;满分30分)21.计算:b•(﹣b)2﹣(﹣2b)322.(2x﹣y+1)(2x+y﹣1)(用公式计算)23.计算:÷(x+1﹣)24.因式分解:x4﹣5x2﹣36.25.分解因式:a2﹣b2﹣2a+2b26.解方程:.四、解答题(本大题共4题,第27、28题每题6分;第29题8分;第30题10分;满分30分)27.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC三个顶点的位置如图所示,现将△ABC平移,使点A移动到点A′,点B'、点C′分别是B、C的对应点(1)请画出平移后的B′点;(2)点A′绕点B′按逆时针方向旋转90°后,它经过的路线是怎样的图形?画出这个图形.28.(6分)先化简,再求值(﹣)÷,其中x=2,y=1.29.(8分)小丽、小明练习打字,已知小丽比小明每分钟多打80个字,小丽打3500个字的时间与小明打2500个字的时间相同.(1)小丽、小明每分钟分别可打多少字?(2)如果有一份总字数为m的稿件需要输入电脑,小丽工作了a个小时后余下的输入工作由小明继续完成,则小明还需要工作多少小时?(所得结果用含有m、a的代数式表示;m、a均为大于零的正数)30.(10分)如图,将直角三角形ABC绕着直角顶点C逆时针旋转90°,得到△A1B1C;再将△A1B1C向右平移,使点B1与点A重合,得到△A2AC2,设BC=a,AC=b.(1)试画出△A1B1C和△A2AC2;(2)联结A2B,用a、b表示△AA2B的面积;(3)若上述平移的距离为6,△AA2B的面积为8,试求△ABC的面积.参考答案一、填空题1.用代数式表示“x与y的相反数的和”x﹣y.【分析】根据题意列出代数式即可.解:用代数式表示“x与y的相反数的和”为:x﹣y,故答案为:x﹣y.【点评】本题主要考查的是列代数式,理清运算的先后顺序是解题的关键.2.单项式﹣x2y的系数是﹣.【分析】直接利用单项式系数的定义得出答案.解:单项式﹣x2y的系数是﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式系数的确定方法是解题关键.3.计算:5x2•(﹣xy)=﹣5x3y.【分析】直接利用单项式乘以单项式运算法则计算得出答案.解:5x2•(﹣xy)=﹣5x3y.故答案为:﹣5x3y.【点评】此题主要考查了单项式乘以单项式运算,正确掌握相关运算法则是解题关键.4.若3x m y3与x2y n是同类项,则m+n=5.【分析】根据同类项的概念即可求出答案.解:由题意可知:m=2,n=3,∴m+n=5,故答案为:5.【点评】本题考查同类项的概念,解题的关键是正确理解同类项的概念,本题属于基础题型.5.若代数式有意义,则x的取值范围是x≠2.【分析】分式有意义的条件是:分母≠0,可得x﹣2≠0,解不等式可得答案.解:∵代数式有意义,∴x﹣2≠0,∴x≠2,故答案为:x≠2.【点评】此题主要考查了分式有意义的条件,关键是把握:分母≠0.6.把2x﹣2y3写成只含有正整数指数幂的形式,其结果为..【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.解:把2x﹣2y3写成只含有正整数指数幂的形式,其结果为.故答案为:.【点评】本题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数是解题关键.7.数据0.0000032用科学记数法表示为 3.2×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000032用科学记数法表示为3.2×10﹣6,故答案为:3.2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.8.若4a+3b=1,则8a+6b﹣3=﹣1.【分析】原式变形后,将已知等式代入计算即可求出值.解:∵4a+3b=1,∴原式=2(4a+3b)﹣3=2×1﹣3=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.9.化简:=.【分析】先把分子、分母进行因式分解,然后约分即可.解:==;故答案为:.【点评】此题考查了约分,用到的知识点是因式分解和平方差公式,关键是把分子、分母进行因式分解.10.计算:=x﹣1.【分析】根据同分母分式的加减,分母不变,只把分子相加减,计算求解即可.解:==x﹣1.故答案为:x﹣1.【点评】本题比较容易,考查同分母分式的加减运算,一定注意最后结果能约分的一定要约分.11.如果4m×8m=215,那么m=3.【分析】直接利用幂的乘方运算法则以及结合同底数幂的乘法运算法则计算得出答案.解:∵4m×8m=215,∴22m×23m=215,∴25m=215,解得:m=3.故答案为:3.【点评】此题主要考查了幂的乘方运算以及结合同底数幂的乘法运算,正确掌握相关运算法则是解题关键.12.正三角形ABC是轴对称图形,它的对称轴共有3条.【分析】关于某条直线对称的图形叫轴对称图形,这条直线叫做对称轴.解:等边三角形3条角平分线所在的直线是等边三角形的对称轴,∴有3条对称轴,故答案为:3【点评】此题考查轴对称图形,如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做它的对称轴.13.如图,△ABC的周长为12,把△ABC的边AC对折,使顶点C与点A重合,折痕交BC 边于点D,交AC边于点E,联结AD,若AE=2,则△ABD的周长是8.【分析】直接利用翻折变换的性质得出AE=EC,进而得出△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC,进而得出答案.解:∵把△ABC的边AC对折,使顶点C与点A重合,∴AD=DC,AE=CE=2∴AB+BC=12﹣4=8,故△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC=8,故答案为:8【点评】本题主要考查了翻折变换的性质,正确得出AB+BC的长是解题关键.14.甲乙两家商店9月份的销售额均为a万元,在10月份和11月份这两个月份中,甲商店的销售额平均每月增长x%,乙商店的销售额平均每月减少x%,11月份甲商店的销售额比乙商店的销售额多4ax%万元.【分析】根据甲商店的销售额平均每月增长x%,乙商店的销售额平均每月减少x%,表示出甲乙两家商店的销售额,求出之差即可.解:根据题意得:a(1+x%)2﹣a(1﹣x%)2=4ax%(万元).则11月份甲商店的销售额比乙商店的销售额多4ax%万元.故答案为:4ax%.【点评】此题考查了列代数式,根据题意表示出甲乙两家商店的销售额是解本题的关键.15.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为1或5厘米.【分析】小正方形的高不变,根据面积即可求出小正方形平移的距离.解:当两个正方形重叠部分的面积为2平方厘米2时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【点评】此题考查了平移的性质,要明确:平移前后图形的形状和面积不变.画出图形即可直观解答.二、选择题(本大题共5题,每题2分,满分10分)16.下列计算正确的是()A.a2•a3=a6B.(a3)2=a5C.(ab)2=ab2D.a3÷a=a2【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别判断得出答案.解:A、a2•a3=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、(ab)2=a2b2,故此选项错误;D、a3÷a=a2,正确.故选:D.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.17.下列多项式能因式分解的是()A.m2+n2B.m2﹣3m+4C.m2+m+D.m2﹣2m+4【分析】直接利用完全平方公式分解因式进而得出答案.解:A、m2+n2,无法分解因式,故此选项错误;B、m2﹣3m+4,无法分解因式,故此选项错误;C、m2+m+=(m+)2,故此选项正确;D、m2﹣2m+4,无法分解因式,故此选项错误;故选:C.【点评】此题主要考查了因式分解的意义,正确运用公式是解题关键.18.如果一个正多边形绕着它的中心旋转60°后,能与原正多边形重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.既是轴对称图形,又是中心对称图形C.是中心对称图形,但不是轴对称图形D.既不是轴对称图形,也不是中心对称图形【分析】根据旋转对称图形、轴对称图形和中心对称图形的定义即可解答.解:∵一个正多边形绕着它的中心旋转60°后,能与原正多边形重合,360°÷60°=6,∴这个正多边形是正六边形,正12边形,正18边形,…正六边形,正12边形,正18边形,…既是轴对称图形,又是中心对称图形.故选:B.【点评】本题考查了旋转对称图形的概念,中心对称图形和轴对称图形的定义.根据定义,得一个正n边形只要旋转的倍数角即可.奇数边的正多边形只是轴对称图形,偶数边的正多边形既是轴对称图形,又是中心对称图形.19.计算(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2)的结果为()A.B.C.D.【分析】直接利用负指数幂的性质以及分式的混合运算法则计算得出答案.解:(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2)=(﹣)÷(﹣)=÷=×=.故选:D.【点评】此题主要考查了负指数幂的性质以及分式的混合运算,正确将原式变形是解题关键.20.若a=2017×2018﹣1,b=20172﹣2017×2018+20182,则下列判断结果正确的是()A.a<b B.a>b C.a=b D.无法判断【分析】根据完全平方公式得到b=20172﹣2017×2018+20182=(2017﹣2018)2+2017×2018=1+2017×2018,再与a=2017×2018﹣1比较大小即可求解.解:∵a=2017×2018﹣1,b=20172﹣2017×2018+20182=(2017﹣2018)2+2017×2018=1+2017×2018,∴2017×2018﹣1<1+2017×2018,∴a<b.故选:A.【点评】考查了完全平方公式,解决本题的关键是利用完全平方公式计算b得到b=1+2017×2018.三、简答题(本大题共6题,每题5分;满分30分)21.计算:b•(﹣b)2﹣(﹣2b)3【分析】直接利用积的乘方运算法则将原式变形进而合并得出答案.解:b•(﹣b)2﹣(﹣2b)3=b3﹣(﹣8b3)=9b3.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.22.(2x﹣y+1)(2x+y﹣1)(用公式计算)【分析】把y﹣1看成一个整体,对所求式子变形,可化为[2x﹣(y﹣1)][2x+(y﹣1)],再利用平方差公式计算即可,最后利用完全平方公式展开(y﹣1)2即可.解:原式=[2x﹣(y﹣1)][2x+(y﹣1)]=(2x)2﹣(y﹣1)2=4x2﹣y2+2y﹣1.【点评】本题考查了平方差公式、完全平方公式.对于括号里含有3项的式子,可把两个括号中完全相同的项看成一个整体,当做一项去使用.23.计算:÷(x+1﹣)【分析】先将被除式分母因式分解,同时计算括号内的减法,再将除法转化为乘法,继而约分即可得.解:原式=÷(+)=÷=•=.【点评】本题主要考查分式的混合运算,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.24.因式分解:x4﹣5x2﹣36.【分析】原式利用十字相乘法分解即可.解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).【点评】此题考查了因式分解﹣十字相乘法,熟练掌握因式分解的方法是解本题的关键.25.分解因式:a2﹣b2﹣2a+2b【分析】原式两两结合后,利用平方差公式,提取公因式方法分解即可.解:原式=(a+b)(a﹣b)﹣2(a﹣b)=(a﹣b)(a+b﹣2).【点评】此题考查了因式分解﹣分组分解法,难点是采用两两分组还是三一分组.26.解方程:.【分析】去分母化为整式方程即可解决问题.解:两边乘x﹣2得到,1+3(x﹣2)=x﹣1,1+3x﹣6=x﹣1,x=2,∵x=2时,x﹣2=0,∴x=2是分式方程的增根,原方程无解.【点评】本题考查分式方程的解,解题的关键是掌握解分式方程的步骤,注意解分式方程必须检验.四、解答题(本大题共4题,第27、28题每题6分;第29题8分;第30题10分;满分30分)27.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC三个顶点的位置如图所示,现将△ABC平移,使点A移动到点A′,点B'、点C′分别是B、C的对应点(1)请画出平移后的B′点;(2)点A′绕点B′按逆时针方向旋转90°后,它经过的路线是怎样的图形?画出这个图形.【分析】(1)将点B先向左平移3个单位长度,再向下平移2个单位长度,据此可得;(2)根据旋转变换的定义作图即可得.解:(1)如图所示,点B′即为所求.(2)如图所示,即为所求.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义和性质.28.(6分)先化简,再求值(﹣)÷,其中x=2,y=1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x,y的值代入计算可得.解:原式=[﹣]•=(﹣)•=[﹣]•=•=﹣,当x=2,y=1时,原式=﹣=﹣1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.29.(8分)小丽、小明练习打字,已知小丽比小明每分钟多打80个字,小丽打3500个字的时间与小明打2500个字的时间相同.(1)小丽、小明每分钟分别可打多少字?(2)如果有一份总字数为m的稿件需要输入电脑,小丽工作了a个小时后余下的输入工作由小明继续完成,则小明还需要工作多少小时?(所得结果用含有m、a的代数式表示;m、a均为大于零的正数)【分析】(1)设每分钟打x个字,则小刚每分钟比小明多打50个字,根据速录员小明打2500个字和小刚打3000个字所用的时间相同,列方程即可;(2)根据题意列出代数式即可.解:(1)设小明每分钟打x个字,则小丽每分钟打(x+80)个字,根据题意得=,解得:x=200,经检验:x=200是原方程的解.∴x+80=280,答:小丽每分钟打280个字,小明每分钟打200个字;(2)小明还需要工作小时.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.30.(10分)如图,将直角三角形ABC绕着直角顶点C逆时针旋转90°,得到△A1B1C;再将△A1B1C向右平移,使点B1与点A重合,得到△A2AC2,设BC=a,AC=b.(1)试画出△A1B1C和△A2AC2;(2)联结A2B,用a、b表示△AA2B的面积;(3)若上述平移的距离为6,△AA2B的面积为8,试求△ABC的面积.【分析】(1)根据旋转和平移变换的定义作图即可得;(2)根据△AA2B的面积=﹣S﹣求解可得;△ABC(3)由题意得出a+b=6,a2+b2=8,即a2+b2=16,再根据2ab=(a+b)2﹣(a2+b2)求解可得.解:(1)如图所示,△A1B1C和△A2AC2即为所求.﹣(2)△AA2B的面积=﹣S△ABC=×(a+b)(a+b)﹣ab﹣ab=a2+b2;(3)由题意知a+b=6,∵a2+b2=8,即a2+b2=16,∴2ab=(a+b)2﹣(a2+b2)=20,则ab=10,∴△ABC的面积=ab=5.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质及割补法求三角形的面积.。
2017-2018学年七年级数学上册期末测试卷一.单选题(共10题;共30分)1.现有四种说法:①-a表示负数;②若|x|=-x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式;其中正确的是( )A. ①B. ②C. ③D. ④2.已知|3x|﹣y=0,|x|=1,则y的值等于()A. 3或﹣3B. 1或﹣1C. -3D. 33.给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是()A. 能B. 不能C. 有的能有的不能D. 无法确定4.若(a+1)2+|b﹣2|=0,化简a(x2y+xy2)﹣b(x2y﹣xy2)的结果为()A. 3x2yB. ﹣3x2y+xy2C. ﹣3x2y+3xy2D. 3x2y﹣xy25.如果向右走5步记为+5,那么向左走3步记为()A. +3B. ﹣3C. +D. ﹣6.下列四种运算中,结果最大的是()A. 1+(﹣2)B. 1﹣(﹣2)C. 1×(﹣2)D. 1÷(﹣2)7.一个长为19cm,宽为18cm的长方形,如果把这个长方形分成若干个正方形要求正方形的边长为正整数,那么该长方形最少可分成正方形的个数()A. 5个B. 6个C. 7个D. 8个8.在解方程3x+时,去分母正确的是()A. 18x+2(2x-1)=18-3(x+1)B. 3x+(2x-1)=3x-(x+1)C. 18x+(2x-1)=18-(x+1)D. 3x+2(2x-1)=3-3(x+1)9.在数轴上,点A表示的数是﹣5,点C表示的数是4,若AB=2BC,则点B在数轴上表示的数是()A. 1或13B. 1C. 9D. ﹣2或1010.如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有()A. 1条B. 2条C. 3条D. 5条二.填空题(共8题;共24分)11.若|m﹣3|+(n+2)2=0,则m+2n的值为________ .12.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为 ________。
2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
2017-2018学年四川省成都市成华区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图,∠1和∠2是一对()A. 对顶角B. 同位角C. 内错角D. 同旁内角2.计算a3•a2正确的是()A. aB. a5C. a6D. a93.下列各图中,∠1与∠2互为余角的是()A. B. C. D.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A. 7.6×10−9B. 7.6×10−8C. 7.6×109D. 7.6×1085.下列计算正确的是()A. 3a+4b=7abB. (ab3)3=ab6C. (a+2)2=a2+4D. x12÷x6=x66.下面各语句中,正确的是()A. 同角或等角的余角相等B. 过一点有且只有一条直线与已知直线平行C. 互补的两个角不可能相等D. 相等的角是对顶角7.在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下表关系:x(kg)01234…y(cm)1010.51111.512…下列说法不正确的是()A. y随x的增大而增大B. 所挂物体质量每增加1kg弹簧长度增加0.5cmC. 所挂物体为7kg时,弹簧长度为13.5cmD. 不挂重物时弹簧的长度为0cm8.如图,下列判断中错误的是()A. 由∠A+∠ADC=180∘得到AB//CDB. 由AB//CD得到∠ABC+∠C=180∘C. 由∠1=∠2得到AD//BCD. 由AD//BC得到∠3=∠49.如图,点E在线段BA的延长线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A. 50∘B. 40∘C. 30∘D. 20∘10. 星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回家,图中的折线段OA -AB -BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A. B.C.D.二、填空题(本大题共9小题,共36.0分)11. 某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中______是自变量,______是因变量. 12. 如果一个角的补角是150°,那么这个角的余角的度数是______度. 13. 如果二次三项式x 2+mx +25是一个完全平方式,则m =______. 14. 园林队在某公司进行绿化,中间休息了一段时间,已知绿化面积S (平方米)与工作时间t (小时)的关系的图象如图所示,则休息后园林队每小时绿化面积为______平方米. 15. 计算:42016×(-0.25)2017=______.16. 如图,AB ∥EF ,CD ⊥EF 于点D ,若∠ABC =40°,则∠BCD的度数是______.17. 若3m =6,9n =2,则32m -4n +1=______.18. 已知(x -y )2=259,x +y =76,则xy 的值为______.19. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a +b )n (n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序);)2017展开式中含x2015项的系数是______.请依据上述规律,写出(x−2x三、计算题(本大题共3小题,共24.0分)20.计算下列各题)−2(1)32÷(-2)3+(2017-π)0+|-32+1|−(12(2)4xy2(2x-xy)÷(-2xy)2(3)(x-1)(x-1)(x2-1)21.计算下列各题:(1)20172-2018×2016(2)(3x-y+2)(3x+y-2)22.先画简,再求值:(x+y)2-(x+y)(x-y)+y(x-2y),其中x,y满足(x-1)2+|1-y|=0四、解答题(本大题共6小题,共60.0分)23.根据下面解答过程,完成下面填空:如图,已知AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.24.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.25.小明在暑假社会实践活动中,以每千克1.2元的价格从批发市场购进若干千克西瓜市场上去销售,在销售了40千克之后,余下的打5折全部售完.销售金额y(元)售出西瓜的千克数x(千克)之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系;(2)小明这次社会实践活动赚了多少钱?(3)若要使这次活动赚44元钱,问余下的西瓜应打几折销售完?26.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:______.方法2:______.(2)由(1)中两种不同的方法,你能得到怎样的等式?请说明这个等式成立;(3)已知(2m+n)2=13,(2m-n)2=5,请利用(2)中的等式,求mn的值.27.已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA 的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA 的平分线于点P,求∠BPC的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.28.阅读理解并完成下面问题:我们知道,任意一个正整数c都可以进行这样的因式分解:c=p×q(p,q是正整数),在c的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是c的最佳分解.并规定:F (c )=pq (其中p ≤q ).例如:12可以分解成1×12,2×6或3×4,因为|1-12|>|2-6|>|3-4|,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数,若m 是一个完全平方数,求F (m )的值;(2)如果一个两位正整数t ,交换其个位数字与十位数字得到的新两位数减去原数所得的差为18,那么我们称这个两位正整数t 为“吉祥数”,求符合条件的所有“吉祥数”;(3)在(2)中的所有“吉祥数”中,求F (t )的最小值.答案和解析1.【答案】C【解析】解:∠1与∠2是内错角,故选:C.∠1与∠2符合内错角定义.本题考查了内错角的判别,熟练掌握内错角的定义是关键.2.【答案】B【解析】解:a3•a2=a3+2=a5.故选:B.根据同底数幂相乘,底数不变,指数相加计算后直接选取答案.本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.【答案】B【解析】解:∵三角形的内角和为180°,∴选项B中,∠1+∠2=90°,即∠1与∠2互为余角,故选B.如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.本题考查了余角的定义,掌握定义并且准确识图是解题的关键.4.【答案】A【解析】解:0.0000000076用科学记数法表示为7.6×10-9.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】D【解析】解:A、3a+4b,无法计算,故此选项错误;B、(ab3)3=a3b9,故此选项错误;C、(a+2)2=a2+4a+4,故此选项错误;D、x12÷x6=x6,故此选项正确.故选:D.直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则分别计算得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.6.【答案】A【解析】解:A、同角或等角的余角相等,正确;B、过直线外一点有且只有一条直线与已知直线平行,错误;C、互补的两个角可能相等,错误;D、相等的角不一定是对顶角,错误;故选:A.A、根据余角的性质进行判断;B.根据平行公理进行判断;C.根据补角的定义进行判断;D.根据对顶角的定义进行判断.本题考查了对顶角的定义,平行公理,余角的性质,是基础知识,比较简单.7.【答案】D【解析】解:A、y随x的增大而增大,正确;B、所挂物体质量每增加1kg弹簧长度增加0.5cm,正确;C、所挂物体为7kg时,弹簧长度为13.5cm,正确;D、不挂重物时,弹簧的长度为10cm,错误;故选:D.由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度进行解答即可.本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.8.【答案】D【解析】解:A、由∠A+∠ADC=180°得到AB∥CD(同旁内角互补,两直线平行),正确;B、由AB∥CD得到∠ABC+∠C=180°(两直线平行,同旁内角互补),正确;C、由∠1=∠2得到AD∥BC(内错角相等,两直线平行),正确;D、由AD∥BC得到∠1=∠2(两直线平行,内错角相等),所以此选项错误.故选:D.根据平行线的性质与判定,逐一判定.此题考查了平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角.9.【答案】C【解析】解:∵AD∥BC,∴∠B=∠EAD=30°.∵AD平分∠EAC,∴∠DAC=∠EAD=30°.∵AD∥BC,∴∠C=∠DAC=30°.故选:C.首先根据平行线的性质可得∠EAD=∠B,∠DAC=∠C,再根据AD是∠EAC的平分线,可得∠EAD=∠CAD.利用等量代换可得∠B=∠C=30°.此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10.【答案】B【解析】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选:B.根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.11.【答案】销售量;销售收入【解析】解:根据题意知,公司的销售收入随销售量的变化而变化,所以销售量是自变量,收入数为因变量.故答案为:销售量,销售收入.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量,会变动的数为自变量.本题考查的是对函数定义中自变量和因变量的判定和对定义的理解.12.【答案】60【解析】解:180°-150°=30°,90°-30°=60°.故答案为:60°.首先求得这个角的度数,然后再求这个角的余角.本题主要考查的是补角和余角的定义,掌握补角和余角的定义是解题的关键.13.【答案】±10【解析】解:∵x2+mx+25=x2+mx+52,∴mx=±2×5×x,解得m=±10.故答案为:±10.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.14.【答案】50【解析】解:休息后2小时内绿化面积为160-60=100平方米.∴休息后园林队每小时绿化面积为.故答案为:50根据休息后2小时的绿化面积100平方米,即可判断;本题考查函数的图象,解题的关键是读懂图象信息,属于中考常考题型.15.【答案】-0.25【解析】解:42016×(-0.25)2017=[4×(-0.25)]2016×(-0.25)=-0.25.故答案为:-0.25根据幂的乘方和积的乘方法则解答即可.此题考查幂的乘方和积的乘方,关键是根据法则计算.16.【答案】130°【解析】解:如图,过C作HK∥AB.∴∠BCK=∠ABC=40°.∵CD⊥EF,∴∠CDF=90°.∵HK∥AB∥EF.∴∠KCD=90°.∴∠BCD=∠BCK+∠KCD=130°.故选答案为:130°.过C作HK∥AB.利用平行线的性质得出∠B=∠BCK,∠KCD=90°,进而得出答案.此题主要考查了平行线的判定与性质,作出正确辅助线是解题关键.17.【答案】27【解析】解:原式=32m÷34n×3=3m×3m÷92n×3=6×6÷4×3=27故填27.根据题意进行同底数幂的运算,注意同底数幂相乘底数不变指数相加,根据此可得出答案.本题考查代数式的求值,关键在于掌握同底数幂相乘底数不变指数相加.18.【答案】-1748【解析】解:∵x+y=.∴(x+y)2=x2+y2+2xy=,(x-y)2==x2+y2-2xy.∴xy===-.故答案为:-.直接利用完全平方公式将原式变形进而得出答案.此题主要考查了完全平方公式,正确将原式变形是解题关键.19.【答案】-4034【解析】解:(x-)2017展开式中含x2015项的系数,由(x-)2017=x2017-2017•x2016•()+…可知,展开式中第二项为-2017•x2016•()=-4034x2015,∴(x-)2017展开式中含x2015项的系数是-4034,故答案为:-4034.首先确定x2015是展开式中第几项,根据杨辉三角即可解决问题.本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.20.【答案】解:(1)原式=32÷(-8)+1+9-1-4=-4+1+9-1+4=9;(2)原式=(8x2y2-4x2y2)÷4x2y2=2-y;(3)原式=(x2-2x+1)(x2-1)=x4-x2-2x3+2x+x2-1=x4-2x3+2x-1.【解析】(1)根据实数混合运算顺序和运算法则计算可得;(2)先计算乘法,再计算除法可得;(3)根据多项式乘多项式依次计算可得.本题主要考查实数与整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则.21.【答案】(1)解:原式=20172-(2017+1)(2017-1)=20172-(20172-1)=1;(2)解:原式=[3x-(y-2)][3x+(4-2)]=9x2-(y-2)2=9x2-y2+4y-4.【解析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式利用平方差公式,完全平方公式计算即可求出值.此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.22.【答案】解:原式=x2+2xy+y2-(x2-y2)+xy-2y2=x2+2xy+y2-x2+y2+xy-2y2=3xy.∵(x-1)2+|1-y|=0.∴x=1,y=1.把x=1,y=1代入原式=3×1×1=3.【解析】根据平方差公式和完全平方公式进行计算,再根据非负数性质得出x,y的值,代入计算即可.本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简与非负数性质是解此题的关键.23.【答案】解:∵AB∥CD(已知).∴∠A+∠ACD=180°(同旁内角已互补,两直线平行).∵∠A =105°.∴∠ACD =75°.∵∠DCE =∠ACD -∠ACE ,∠ACE =51°.∴∠DCE =24°.∵CD ∥EF (已知).∴∠E =∠DCE (两直线平行、内错角相等).∴∠E =24°.【解析】直接利用平行线的性质得出∠ACD=75°,进而得出∠DCE=24°,再得出∠E=∠DCE 即可得出答案.此题主要考查了平行线的性质,正确得出∠DCE 的度数是解题关键. 24.【答案】解:∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠DBF =12∠ABC ,∠ECB =12∠ACB ,∵∠ABC =∠ACB ,∴∠DBF =∠ECB ,∵∠DBF =∠F ,∴∠ECB =∠F ,∴EC ∥DF .【解析】 此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F .根据BD 平分∠ABC ,CE 平分∠ACB ,得出∠DBF=∠ABC ,∠ECB=∠ACB ,∠DBF=∠ECB ,再根据∠DBF=∠F ,得出∠ECB=∠F ,即可证出EC ∥DF .25.【答案】解:(1)设y =kx .∵y =kx 过点(40,80).∴y =2x .(2)由y =2x 可得,x ≤40时售价为2元.∵当x >40时,售价为2×0.5=1元. (110-80)÷1=30, ∴这批西瓜的总重量-30+40=70千克.,∴40×2+(70-40)×1-70×1.2=26元. (3)设余下的西瓜打a 折.40×2+30×2×a -70×1.2=44.80×60a -84=44. ∴a =0.8.∴当余下的西瓜打8折销售,这次活动可赚44元.【解析】(1)设y=kx.将(40,80)代入求解即可;(2)先求得降价后的单价,然后可求得降价后出售的重量,从可求得这批西瓜的总总量,然后可求得这次社会实践活动赚了多少钱;(3)设余下的西瓜打a折,根据这次活动赚44元钱列方程求解即可.本题主要考查的是一次函数的应用,求得这批西瓜的总重量是解题的关键.26.【答案】(1)4ab;(a+b)2-(a-b)2.(2)(a+b)2-(a-b)2=4ab,成立.证明:∵(a+b)2-(a-b)2=a2+2ab+b2-(a2-2ab+b2)=4ab.∴(a+b)2-(a-b)2=4ab.(3)由(2)得:(2m+n)2-(2m-n)2=8mn.∵(2m+n)2=13,(2m-n)2=5,∴8mn=13-5=8.∴mn=1.【解析】解:(1)阴影部分的面积为:4ab或(a+b)2-(a-b)2,故答案为:4ab;(a+b)2-(a-b)2.(2)见答案;(3)见答案.(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积-小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据(2)的结论代入即可解答.本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等,列等式是解题的关键.27.【答案】解:(1)如图1,过点P作PE∥MN.∵PB平分∠DBA.∠DBA=40°.∴∠BPE=12∴∠BPE=∠DBP=40°(两直线平行,内错角相等).∠DCA=25°.同理可证.∠CPE=∠PCA=12∴∠BPC=40°+25°=65°.(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°-80°=100°.∵BP平分∠DBA.∠DBA=50°.∴∠DBP=12∵MN∥PE,∴∠BPE=180°-∠DBP=130°(两直线平行,同旁内角互补).∵PC平分∠DCA.∠DCA=25°(两直线平行,内错角相等).∴∠PCA=∠CPE=12∴∠BPC=130°+25°=155°.(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=40°=∠BPE(两直线平行等,内错角相等).∴CP平分∠DCA.∠DCA=180°-∠DCG=130°.∠DCA=65°.∴∠PCA=12∴∠CPE=180°-∠PCA=150°(两直线平行,同旁内角互补).∴∠BPC=40°+115°=155°.【解析】(1)过点P作PE∥MN,根据平行线的性质和角平分线的性质得:.,相加可得结论;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=180°-80°=100°.由角平分线和平行线的性质得∠BPE=130°.,相加可得结论;(3)如图3,作平行线,同理可得结论.本题考查了角平分线和平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.28.【答案】解:(1)∵m 是完全平方数∴m =p ×q 且p =q ∴F (m )=p q =1;(2)设正整数为:10x +y ,则t ′=10y +x ,∵10y +x -(10x +y )=18,则9y -9x =18,故(y -x )=2.∴t 可取13,24,35,46,57,68,79;(3)由(2)得.∴F (13)=113,F (24)=46=23,F (35)=57,F (46)=223,F (57)=319,F (68)=417,F (79)=179. ∵57>23>417>319>223>113>179.∴F (t )的最小值为179.【解析】(1)直接利用完全平方数的概念分析得出答案;(2)利用一个两位正整数t ,交换其个位数字与十位数字得到的新两位数减去原数所得的差为18,得出等式求出答案;(3)利用(2)中所求,分别计算得出答案.此题主要考查了完全平方数,正确利用新定义得出符合条件的数字是解题关键.。
2017-2018学年七年级(下)期末数学试卷一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的( )2•已知:如图,直线a , b 被直线c 所截,且a // b ,若/仁70°则/2的度数 是()D.D. 调查一架隐形战机的各零部件的质量情况8. 甲、乙两班学生植树造林,已知甲班每天比乙班多植所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据题意列出方程是() A 孔叫 B _ 'C 詆 ⑴D 山:U I5 9.已知x - =2,则代数式5X 2+ - 3的值为( ) 宣 xA . 27 B. 7C. 17 D . 2 10 .用如图①中的长方形和正方形纸板作侧面和底面, 做成如图②的竖式和横式 的两种无盖纸盒.现在仓库里有 m 张正方形纸板和n 张长方形纸板,如果做两 种纸盒若干个,恰好使库存的纸板用完,则m+n 的值可能是()A . 2013B . 2014 C. 2015 D . 2016二、填空题(每小题3分,共30分)11 .用科学记数法表示:0.00000706=—.12 .当x=—时,分式的值为0 .13 .如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC 的条件:—(一个即可). 7. A . 一儿一[i=2 1次方程组:「的解是() 5棵树,甲班植80棵树B .C - •&314 .某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是16•若多项式x2- kx+9是一个完全平方式,则常数k的值是_ .r“3&+2b a17 •计算: _ _ - -r~二=_____ •a a -b18. 若多项式x2- mx+n (m、n是常数)分解因式后,有一个因式是x- 2,则2m - n的值为___ •19. 已知:如图放置的长方形ABCD和等腰直角三角形EFG中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点F、G、D、C 在同一直线上,点G 和点D重合,现将△ EFG沿射线FC向右平移,当点F和点D重合时停止移动,若△ EFG与长方形重叠部分的面积是4cm2,则△ EFG向右平移了②若a=3,则b+c=9;③若C M0,则(1 - a) (1 - b) = +—a④若c=5,则a2+b2=15.其中正确的是____ (把所有正确结论的序号都填上)___ cm.,c满足a+b=ab=c,有下列结论:a^3ab+b =①若、解答题(共50 分)21 •计算下列各题(1)(-3) 1 2+ ( n+ 了)—2(2)(2x- 1) 2-(x- 1) (4x+3)(1)22 •解方程(组)3x+y=-2(2) ^― - : =2.' 72x-l l-2x23. 分解因式(1)2X2- 8(2)3灼-6xy2+3y3.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.1 本次接收随机抽样调查的男生人数为人,扇形统计图中良好”所对应的圆心角的度数为____________ ;2 补全条形统计图中优秀”的空缺部分;25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图2两幅不完整的统计图,请根据图中信息回答下列问题:合格 20% 不合格优秀30%(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到良好的人数.26. 为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A, B, C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套) 乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1) 问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?(2) 求a, b的值.四、附加题(每小题10分,共20分)27. 已知:直线a// b,点A, B分别是a, b上的点,APB是a, b之间的一条折备用图备用图(1) ______________________________ 若/ 仁33°, / APB=74,则/2= 度.(2)若/ Q的一边与PA平行,另一边与PB平行,请探究/ Q,Z 1, 2间满足的数量关系并说明理由.(3)若/ Q的一边与PA垂直,另一边与PB平行,请直接写出/ Q,Z 1 , 2之间满足的数量关系.28•教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= ___ .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.参考答案与试题解析一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的()【考点】利用平移设计图案.【分析】根据平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等可得答案.【解答】解:根据平移可得B是平移可得到图形中的图案,故选:B.2•已知:如图,直线a,b被直线c所截,且a// b,若/仁70°则/2的度数是()A. 130°B. 110°C. 80°D. 70°【考点】平行线的性质.【分析】由a/b,根据两直线平行,同位角相等,即可求得/ 3的度数,又由邻补角的定义即可求得/ 2的度数.【解答】解:I a/ b,.•./ 3=Z 仁70°,vZ 2+Z 3=180°,•••/ 2=110°.3•分式打一有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 1【考点】分式有意义的条件.【分析】分母不为零,分式有意义,依此求解.【解答】解:由题意得X-1M0,解得X M 1.故选A.4. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a【考点】同底数幕的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】根据同底数幕的乘法、除法,积的乘方,幕的乘方,即可解答.【解答】解:A、a3x a4=a7,故本选项错误;B、a5* a=a\故本选项错误;C (ab2)3=a3b6,故本选项错误;D、正确;故选:D.5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y) =ax+ayB. x - 4x+4= (x- 2)C. 2a- 4b+2=2 (a-2b)D. x2- 16+3x= (x-4) (x+4) +3x【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【解答】解:A、结果不是整式的乘积的形式,不是因式分解,选项错误;B、是因式分解,选项正确;C 2a-4b+2=2 (a-2b+1),选项错误;D、结果不是整式的乘积的形式,不是因式分解,选项错误.故选B.6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查D. 调查一架隐形战机的各零部件的质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤半径,适合抽查,选项错误;B、了解全国中学生的身高情况,适合抽查,选项错误;C、对市场上某种饮料质量情况的调查,适合抽查,选项错误;D、调查一架隐形战机的各零部件的质量情况,适合全面调查,选项正确. 故选D.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.7.A .fx+2y=10,尸2葢的解是(D. *y=2['、尸2\ 7=4 C.把②代入①得:x+4x=10,即x=2, 把x=2代入②得:y=4, 则方程组的解为: 故选A .8.甲、乙两班学生植树造林,已知甲班每天比乙班多植 5棵树,甲班植80棵树 所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据 题意列出方程是( )A 80B 80 _ 70C 80 JOD 80^ 70.乂:.二 二 1 .工 ” £ 工.工 乙 1【考点】由实际问题抽象出分式方程.【分析】设甲班每天植树x 棵,则乙班每天植树(x -5)棵,根据甲班植80棵 树所用的天数与乙班植70棵树所用的天数相等,列方程即可.【解答】解:设甲班每天植树x 棵,则乙班每天植树(x - 5)棵, +日石亠何 80 70由题意得, = .x 故选D .1 o 59.已知x - =2,则代数式5x 2+ - 3的值为( )A . 27 B. 7C. 17 D . 2【考点】完全平方公式.【分析】原式前两项提取5,利用完全平方公式变形,将已知等式代入计算即可 求出值.【解答】解:I x-—=2,•••原式=5 (只+丁)- 3=5[ (x - ) 2+2] - 3=30-3=27,故选A【解答】解:{囂笄10 .用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒•现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是()A. 2013B. 2014C. 2015D. 2016【考点】二元一次方程组的应用.【分析】设做竖式和横式的两种无盖纸盒分别为x个、y个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x、y的系数表示出m+n并判断m+n为5的倍数,然后选择答案即可.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得丄+〉:一I x+2y=in,两式相加得,m+n=5 (x+y),••• x、y都是正整数,••• m+n是5的倍数,••• 2013、2014、2015、2016四个数中只有2015是5的倍数,• m+n的值可能是2015.故选C.、填空题(每小题3分,共30 分)11.用科学记数法表示:0.00000706= 7.06X 10「6【考点】科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a x 10「n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000706=7.06X 10「6,故答案为:7.06X 10「6.12•当x=】时,分式1的值为0.—3—x+2【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零进行判断.【解答】解:•••分式」一的值为0,x+z••• 3x-仁0,且x+2工0,解得 , X M- 2,即x=.故答案为:—13. 如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC的【考点】平行线的判定.【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【解答】解:T AD和BC被BE所截,•当/ EADN B 时,AD / BC.故答案为:/ EADN B.14. 某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率二频数宁数据总和计算出成绩在90.5〜95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20) =50人,其中在90.5〜95.5这一分数段有20人,则成绩在90.5〜95.5这一分数段的频率是.=0.4.50故本题答案为:0.4.15. 计算:(6a2- 10ab+4a)*( 2a) = 3a-5b+2 .【考点】整式的除法.【分析】根据多项式除以单项式的运算方法求解即可.【解答】解:(6a2- 10ab+4a)-( 2a)=(6a2)*( 2a)-( 10ab)*( 2a) + (4a)*( 2a)=3a- 5b+2故答案为:3a- 5b+2.16. 若多项式x2- kx+9是一个完全平方式,则常数k的值是土6 .【考点】完全平方式.【分析】先根据两平方项项确定出这两个数是x和3,再根据完全平方公式求解即可. 【解答】解:••• x2- kx+9=W- kx+32,解得k=± 6. 故答案为:土 6.17.计算:3a+2b a 2【考点】分式的加减法.【分析】根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.2(a+b) (a+b) (a-b) =2 a-b .故答案为:18. 若多项式x 2- mx+n (m 、n 是常数)分解因式后,有一个因式是 x - 2,则 2m - n 的值为 4.【考点】因式分解的意义.【分析】设另一个因式为x -a ,因为整式乘法是因式分解的逆运算,所以将两 个因式相乘后结果得x 2- mx+ n ,根据各项系数相等列式,计算可得 2m - n=4 .【解答】解:设另一个因式为x -a ,由①得:a=m - 2③,把③代入②得:n=2 ( m - 2), 2m - n=4, 故答案为:4 .19.已知:如图放置的长方形 A BCD 和等腰直角三角形EFG 中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点 F 、G 、D 、C 在同一直线上,点 G 和点 D【解答】 解:贝卩 x 2- mx+n= (x - 2) (x - a )=« - ax - 2x+2a=x^ -(a+2) x+2a , 了且+21>-且重合,现将△ EFG 沿射线FC 向右平移,当点F 和点D 重合时停止移动,若△ EFG 与长方形重叠部分的面积是4cm 2,则厶EFG 向右平移了 3 cm .【分析】首先判断出平移厶EFG 经过长方形ABCD 对角线的交点时,重叠面积是 长方形的面积的一半即面积为 4cm 2,然后求出平移的距离. 【解答】解:•••长方形AB=2cm, AD=4cm, •••长方形的面积为8cm 2,•••△ EFG 与长方形重叠部分的面积是 4cm 2,• △ EFG 边DE 经过长方形ABCD 对角线的交点, ••• FG=4 CD=2 •;( FG+CD ) =3,• △ EFG 向右平移了 3cm , 故答案为3.20. 已知实数a ,b ,c 满足a+b=ab=c,有下列结论:② 若 a=3,则 b+c=9;③ 若 C M 0,贝U( 1-a ) (1 - b ) = + ; ④ 若 c=5,则 a 2+b 2=15. 其中正确的是 ①③④(把所有正确结论的序号都填上).【考点】分式的混合运算;实数的运算.【分析】①由题意可知:a+b=ab=cM 0,将原式变形后将a+b 整体代入即可求出 答案.②由题意可知:a+b=ab=3,联立方程后,可得出一个一元二次方程,由于△< 0,所以a 、b 无解,①若0,2a+7 ab+2b 2; ■; 等腰直角三角形.③分别计算(1 - a)(1 - b)和一+a E>④由于a+b=ab=5,联立方程可知△> 0,所以由完全平方公式即可求出a2+b2的值.【解答】解:①T甘0,--ab M 0•'a+b_3比 _此£ 乩__2rb 2a+b=ab,•原式=—円性—= 士?5!= 三巳匕=—上朋2(a+b)+7ab 2ab+7ab 9ab 9 故①正确;②••• c=3,二ab=3,••• a+b=3,化简可得:b2- 3b+3=0,•/△< 0,•该方程无解,c=3时,a、b无解,故②错误;③••• C M 0,--ab M 0,a+b=ab•( 1 - a) (1 - b) =1 - b- a+ab=1,一==1二卜吕. ,•( 1 - a) (1 - b) = +| ,故③正确;④••• c=5,• a+b=ab=5,化简可得:b2- 5b+5=0,a2+b2= (a+b) 2- 2ab=15,故④正确故答案为:①③④三、解答题(共50分)21 •计算下列各题(1)(—3) 2+ ( n+ 匚)°—(—=) 2(2)(2x—1) 2—(X—1) (4x+3)【考点】多项式乘多项式;实数的运算;完全平方公式;零指数幕;负整数指数幕. 【分析】(1)原式利用乘方的意义,零指数幕、负整数指数幕法则计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=9+1 —4=6;(2)原式=4x2—4x+1 —4x2—3x+4x+3= —3x+4.22 •解方程(组)f2x+7y=5(1)I -(2)" —「严・【考点】解分式方程;解二兀一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1) ②X 7 —①得:19x=— 19, 即卩x=- 1,把x=—1代入①得:y=1,则方程组的解为;y=l(2)去分母得:x+2=4x—2,解得:x=.,经检验X=f是分式方程的解.23•分解因式(1)2X2- 8(2)3灼-6xy2+3y3.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式2,进而利用平方差公式分解因式得出答案;(2)首先提取公因式3y,进而利用完全平方公式分解因式得出答案.【解答】解:(1) 2x2- 8=2 (x2- 4)=2 (x+2) (x- 2);(2) 3灼-6xy2+3y3=3y (x2- 2xy+y2)=3y (x-y) 2.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.【考点】平行线的判定与性质;垂线.【分析】(1)先根据AD丄BE, BC丄BE得出AD// BC,故可得出/ ADE=Z C,再由/ A=Z C得出/ADE=Z A,故可得出结论;(2)由AB//CD得出/C的度数,再由直角三角形的性质可得出结论.【解答】解:(1) AB// CD.理由:••• AD丄BE, BC丄BE,••• AD// BC,•••/ ADEN C.vZ A=Z C,•••/ ADE=Z A ,••• AB// CD;(2)v AB// CD,Z ABC=120,•••Z C=180 - 120°60°,•••Z BEC=90- 60°=30o .25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图 2两幅不完整的统计图,请根据图中信息回答下列问题: (1) 本次接收随机抽样调查的男生人数为 40人,扇形统计图中 良好”所对 应的圆心角的度数为 162° ;(2) 补全条形统计图中 优秀”的空缺部分;(3) 若该校七年级共有男生480人,请估计全年级男生体质健康状况达到 良好” 的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)合格人数除以所占的百分比即可得出所调查的男生总人数, 用良好 的人数除以总人数再乘以360°即可得出 良好”所对应的圆心角的度数;合格 20% 不吕格优秀 30%(2)用40 - 2 -8 - 18 即可;(3)用480乘以良好所占的百分比即可.【解答】解:(1)8- 20%=40(人),18-40X 360°=162°(2)优秀”的人数=40- 2-8 - 18=12, 如图,(3)良好”的男生人数:話X480=216 (人),答:全年级男生体质健康状况达到良好”的人数为216人.26.为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A,B,C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套)乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元? (2)求a,b的值.【考点】二元一次方程组的应用.【分析】(1 )设甲型垃圾桶的单价是x元/套,乙型垃圾桶的单价是y元/套.根据图表中的甲型、乙型垃圾桶的数量和它们的总价列出方程组并解答.(2)根据图表中的数据列出关于 a b 的二元一次方程,结合 a b 的取值范围 来求它们的值即可.【解答】解:(1 )设甲型垃圾桶的单价是x 元/套,乙型垃圾桶的单价是y 元/套. |y=240 答:甲型垃圾桶的单价是140元/套,乙型垃圾桶的单价是240元/套. (2)由题意得:140a+240b=2580, 整理,得 7a+12b=129, 因为a 、b 都是正整数, 所以或(a=15 . b=9 b~2 四、附加题(每小题10分,共20分) 27.已知:直线a // b ,点A ,B 分别是a ,b 上的点,APB 是a ,b 之间的一条折 弦,且/ APN<90° Q 是a ,b 之间且在折线APB 左侧的一点,如图.(1) 若/ 仁33°, / APB=74,则/2= 41 度.(2) 若/ Q 的一边与PA 平行,另一边与PB 平行,请探究/ Q ,Z 1, 2间满足 的数量关系并说明理由.(3) 若/ Q 的一边与PA 垂直,另一边与PB 平行,请直接写出/ Q ,Z 1 , 2之 间满足的数量关系.【考点】平行线的性质.【分析】(1)图1,过P 作PC//直线a ,根据平行线的性质得到/ 仁/APC, / 2=Z BPC 于是得到结论;依题意得:10x+8y=33205x+9y=2860 x=140 解得* 备用图 葺■甲图(2)如图2,由已知条件得到四边形MQNP是平行四边形,根据平行四边形的性质得到/ MQN=Z P=Z 1 + Z2,根据平角的定义即可得到结论;(3)由垂直的定义得到/ QEP=90,由平行线的性质得到/ QFE=/ P,根据平角的定义得到结论.【解答】解:(1)图1,过P作PC//直线a,••• PC// b,•••/ 1=/ APC / 2=/BPC•••/ 2=/ APB- / 1=41°故答案为:41;(2)如图2,v QM // PB, QN// PA•••四边形MQNP是平行四边形,•••/ MQN=/ P=/ 1 + /2,•••/ EQN=180-/ MQM=180 -/ 1 -/ 2;即/ Q=/ 1 + / 2=180°-/ 1 -/ 2;(3):QE丄AP,•••/ QEP=90,••• QF// PB,•••/ QFE=/ P,•••/ EQF=90-/ QFE=90-/ 1 -/ 2,•••/ EQG=18°—/ EQF=90+/ 1+/2 .A7 a28 .教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= (m+1) (m - 5) .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.【考点】因式分解的应用;非负数的性质:偶次方.【分析】(1)根据阅读材料,先将m2- 4m-5变形为m2- 4m+4- 9,再根据完全平方公式写成(m- 2) 2-9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2- 4a+6b+18转化为(a- 2) 2+ (b+3) 2+5,然后利用非负数的性质进行解答;(3)利用配方法将多项式a2- 2ab+2b2- 2a-4b+27转化为(a- b- 1) 2+(b-3)2+17,然后利用非负数的性质进行解答.【解答】解:(1)m2- 4m - 52=m - 4m+4- 9=(m- 2)2- 9=(m- 2+3)(m- 2- 3)=(m+1)(m- 5).故答案为(m+1)(m- 5);(2)v a F+b2- 4a+6b+18= (a-2) 2+ (b+3) 2+5,•••当a=2, b=- 3 时,多项式a2+b2- 4a+6b+18 有最小值5;(3)v a2- 2ab+2b2-2a- 4b+27=a2- 2a(b+1) +(b+1) 2+(b- 3) 2+17=( a- b- 1 ) 2+( b- 3) 2+17,•••当a=4, b=3 时,多项式a2- 2ab+2b2- 2a- 4b+27 有最小值17.2017年4月18日A. 130°B. 110°C. 80°D. 70°33. 分式——有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 14. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y)=ax+ayB. X - 4X+4=(x- 2)C. 2a- 4b+2=2 (a- 2b)D. X*2-16+3X=(X- 4)(X+4)+3X6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年沪科版七年级下册期末数学试卷含答案解析2017-2018学年七年级(下)期末数学试卷一、选择题1.在实数0.1,0.2,√2,0.中,无理数的个数是()A。
2个 B。
1个 C。
3个 D。
4个2.下列图形中,不能通过其中一个四边形平移得到的是()A。
B。
C。
D。
3.下列运算正确的是()A。
(2a^2)^3=8a^6 B。
-a^2b^2×3ab^3=-3a^3b^5C。
a^2+=-1 D。
a^2•=-14.某种计算机完成一次基本运算的时间约为0.xxxxxxxx3秒,把数据0.xxxxxxxx3用科学记数法表示为()A。
0.3×10^-8 B。
0.3×10^-9 C。
3×10^-8 D。
3×10^-95.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为()A。
20x/12+20(x/5)=1200 B。
20x/12+2(x/5)=1200C。
20x/15+20(x/5)=1200 D。
20x/15+2(x/5)=12006.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A。
∠1=∠3 B。
∠5=∠4 C。
∠5+∠3=180° D。
∠4+∠2=180°7.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为()A。
26cm B。
52cm C。
78cm D。
104cm8.如图,长方形ABCD的周长为16,以长方形四条边为边长向外作四个正方形,若四个正方形面积之和为68,则长方形ABCD的面积为()A。
12 B。
15 C。
18 D。
209.观察下列等式:a1=n,a2=1-n,a3=1-n,a4=1-n,…根据其蕴含的规律可得()A。
镇江市2017-2018学年七年级(上)期末数学试卷一、填空题(每小题2分,共24分)1.﹣3的相反数是.2.移动互联网已经全面进入人们的日常生活.截止2017年12月,全国4G用户总数947000 000,这个数用科学记数法表示为.3.方程2x+a=2的解是x=1,则a=.4.某超市举办促销活动,全场商品一律打八折,小强买了一件商品比标价少付了20元,那么这件商品的标价是元.5.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.6.长方体的主视图与俯视图如图所示,则这个长方体的体积是.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3=.8.如图,OA⊥OC,∠BOC=50°,若OD平分∠AOC,则∠BOD=°.9.如图,C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,则线段EF的长度为.10.已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为.11.已知∠AOB=50°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为.12.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为.二、选择题(每小题3分,共15分)13.如图,下列图案分别是一些汽车的车标,其中,可以看作由平移得到的是()A.B.C.D.14.下列各组单项式中,是同类项一组的是()A.3x2y与3xy2B.2abc与﹣3ac C.2xy与2ab D.﹣2xy与3yx15.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°16.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)17.规定一种新运算“☆”,a☆b=a2﹣2b,则﹣3☆(﹣1)的值为()A.11B.8C.7D.﹣7三、解答题(共81分)18.(8分)计算:(1)(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)19.(10分)解方程:(1)5x﹣2=﹣3(x﹣2)(2)20.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.21.(6分)(1)由大小相同的小立方块搭成的几何体如图1,请在如图的方格中画出该几何体的俯视图和左视图.(2)在左视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,线段最短,理由:;(4)点C到直线AB的距离是线段的长度.23.(7分)一快递员骑摩托车需要在规定的时间内把快递送到某地,若每小时行驶40km,就早到12分钟;若每小时行驶30km,就要迟到8分钟.求快递员所要骑行的路程.24.(8分)如图,M是线段AC的中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.25.(8分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出80m3的部分 2.5超出80m3不超出130m3的部分a超出130m3的部分a+0.5(1)若甲用户3月份用气125m3,缴费335元,求a的值;(2)在(1)的条件下,若乙用户3月份缴费392元,则乙用户3月份的用气量是多少?26.(9分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC=°,∠DOE=°;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC=°,∠DOE=°;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.27.(12分)如图,已知数轴上点A表示的数为10,点B在点A左边,且AB=18.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.①问点P运动多少秒时追上点Q?②问点P运动多少秒时与点Q相距4个单位长度?并求出此时点P表示的数;(3)若点P、Q以(2)中的速度同时分别从点A、B向右运动,同时点R从原点O以每秒7个单位的速度向右运动,是否存在常数m,使得2QR+3OP﹣mOR为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.参考答案与试题解析一、填空题(每小题2分,共24分)1.﹣3的相反数是3.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.移动互联网已经全面进入人们的日常生活.截止2017年12月,全国4G用户总数947000 000,这个数用科学记数法表示为9.47×108.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:947000 000=9.47×108.故答案为:9.47×108.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.方程2x+a=2的解是x=1,则a=0.【分析】将x=1代入方程得到关于a的方程,解之可得.【解答】解:将x=1代入方程,得:2+a=2,解得:a=0,故答案为:0.【点评】本题考查了一元一次方程的解,本题关键是理解方程解的意义:使方程左右两边相等的未知数的值.4.某超市举办促销活动,全场商品一律打八折,小强买了一件商品比标价少付了20元,那么这件商品的标价是100元.【分析】设这件商品的标价是x元,根据标价﹣实际付款钱数=20,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件商品的标价是x元,根据题意得:x﹣0.8x=20,解得:x=100.故答案为:100.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.5.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.【分析】利用正方体及其表面展开图的特点,分别求得a,b,c的值,然后代入求解.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.长方体的主视图与俯视图如图所示,则这个长方体的体积是36.【分析】根据所给的三视图判断出长方体的长、宽、高,再根据体积公式进行计算即可.【解答】解:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和3,因此这个长方体的长、宽、高分别为4、3、3,则这个长方体的体积为4×3×3=36.故答案为:36.【点评】此题考查了三视图判断几何体,注意:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3=150°.【分析】根据∠1和∠2互为余角,∠1=60°,求得∠2的度数,然后根据∠2与∠3互补,得出∠3=180°﹣∠2.【解答】解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故答案为:150°.【点评】本题考查了余角和补角的知识,属于基础题,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.8.如图,OA⊥OC,∠BOC=50°,若OD平分∠AOC,则∠BOD=95°.【分析】首先根据角平分线的定义求出∠COD的度数,进而求出∠BOD的度数.【解答】解:∵∠AOC=90°,∵OD平分∠AOC,∴∠COD=∠AOC=×90°=45°.∵∠BOC=50°∴∠BOD=∠COD+∠BOC=45°+50°=95°.故答案为95【点评】本题考查了角度的计算,正确理解角平分线的定义,求得∠COD是关键.9.如图,C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,则线段EF的长度为3.【分析】根据数轴和题意可以求得EF的长,本题得以解决.【解答】解:∵C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,∴AE=EC=AC,CF=BF=CB,∵AC+CB=AB,∴EC+CF=AB=3,即EF=3,故答案为:3.【点评】本题考查两点间的距离,解答本题的关键是明确题意,利用数轴的知识解答.10.已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为﹣1.【分析】根据一元一次方程定义可得:|k|=1,且k﹣1≠0,再解即可.【解答】解:由题意得:|k|=1,且k﹣1≠0,解得:k=﹣1,故答案为:﹣1.【点评】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.11.已知∠AOB=50°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为30°或70°.【分析】考虑两种情形:①当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,②当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°.【解答】解:如图.当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°,故答案为30°或70°.【点评】本题考查角的计算、解题的关键是学会正确画出图形,注意有两种情形,属于中考常考题型.12.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为3027.【分析】根据题意得出规律:当n为奇数时,A n﹣A1=,当n为偶数时,A n=A1﹣,把n=2018代入求出即可.【解答】解:根据题意得:当n为奇数时,A n﹣A1=,当n为偶数时,A n﹣A1=﹣,2018为偶数,代入上述规律A2018﹣A1=﹣=﹣1009解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.二、选择题(每小题3分,共15分)13.如图,下列图案分别是一些汽车的车标,其中,可以看作由平移得到的是()A.B.C.D.【分析】根据图形平移、旋转、轴对称的性质对各选项记性逐一分析即可.【解答】解:A、通过旋转得到,故本选项错误;B、通过轴对称得到,故本选项错误;C、通过平移得到,故本选项正确;D、通过旋转得到,故本选项错误.故选:C.【点评】本题考查的是利用平移设计图案,熟知图形平移、旋转、轴对称的性质是解答此题的关键.14.下列各组单项式中,是同类项一组的是()A.3x2y与3xy2B.2abc与﹣3ac C.2xy与2ab D.﹣2xy与3yx【分析】根据同类项是字母项相同且相同字母的指数也同,可得答案.【解答】解:A、相同字母的指数不同,故A错误;B、字母不同不是同类项,故B错误;C、字母不同不是同类项,故C错误;D、字母项相同且相同字母的指数也同,故D正确;故选:D.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°【分析】根据题中的方位角,确定出所求角度数即可.【解答】解:根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点评】此题考查了方向角,解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.16.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)【分析】直接利用直线的性质以及两点确定一条直线的性质分析得出答案.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.【点评】此题主要考查了线段以及直线的性质,正确把握相关性质是解题关键.17.规定一种新运算“☆”,a☆b=a2﹣2b,则﹣3☆(﹣1)的值为()A.11B.8C.7D.﹣7【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=9+2=11,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三、解答题(共81分)18.(8分)计算:(1)(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)【分析】(1)原式利用绝对值的代数意义,以及减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=+﹣3=2﹣3=﹣1;(2)原式=﹣4+3+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(10分)解方程:(1)5x﹣2=﹣3(x﹣2)(2)【分析】(1)直接移项合并同类项进而解方程即可;(2)首先去分母,进而移项合并同类项得出答案.【解答】解:(1)5x﹣2=﹣3(x﹣2)去括号得:5x﹣2=3x﹣6,移项得:5x﹣3x=﹣6+2,合并同类项得:2x=﹣4,系数化为1得:x=﹣2;(2)1﹣=去分母得:6﹣(2x﹣1)=2(2x+1),去括号得:6﹣2x+1=4x+2,移项得:﹣2x﹣4x=2﹣6﹣1,合并同类项得:﹣2x=﹣5,系数化为1得:x=2.5.【点评】此题主要考查了解一元一次方程,正确掌握基本解题步骤是解题关键.20.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab,∵|a+1|+(2﹣b)2=0.∴a+1=0,2﹣b=0,即a=﹣1,b=2,当a=﹣1,b=2时,原式=(﹣1)2﹣8×(﹣1)×2=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(6分)(1)由大小相同的小立方块搭成的几何体如图1,请在如图的方格中画出该几何体的俯视图和左视图.(2)在左视图和俯视图不变的情况下,你认为最多还可以添加2个小正方体.【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可.【解答】解:(1)如图所示:(2)由俯视图易得最底层有4个小立方块,第二层最多有3个小立方块,所以最多有2个小立方块.故答案为:2.【点评】考查了作图﹣三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,CE线段最短,理由:垂线段最短;(4)点C到直线AB的距离是线段的长度.【分析】(1)取点D作直线CD即可;(2)取点F作直线CF交AB与E即可;(3)根据垂线段最短即可解决问题;(3)根据三角形的面积的两种求法,构建方程即可解决问题;【解答】解:(1)直线CD即为所求;(2)直线CE即为所求;(3)在线段CA、CB、CE中,线段CE最短,理由:垂线段最短;故答案为CE,垂线段最短;=•AB•CE,(4)∵S△ABC∴18﹣×1×5﹣×1×3﹣×2×6=×2×CE,∴CE=.,【点评】本题考查作图﹣应用与设计,垂线段最短、勾股定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(7分)一快递员骑摩托车需要在规定的时间内把快递送到某地,若每小时行驶40km,就早到12分钟;若每小时行驶30km,就要迟到8分钟.求快递员所要骑行的路程.【分析】设送件的规定时间为x小时,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出x的值,再利用路程=速度×时间,即可求出快递员所要骑行的路程.【解答】解:设送件的规定时间为x小时,根据题意得:40(x ﹣)=30(x +),解得:x=,∴40×(﹣)=40(千米).答:快递员所要骑行的路程为40千米.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.(8分)如图,M是线段AC的中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.【分析】先根据AB=4cm,BC=2AB求出BC的长,进而得出AC的长,由M是线段AC 中点求出MC及AM,再由BM=AM﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25.(8分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出80m3的部分 2.5a超出80m3不超出130m3的部分超出130m3的部分a+0.5(1)若甲用户3月份用气125m3,缴费335元,求a的值;(2)在(1)的条件下,若乙用户3月份缴费392元,则乙用户3月份的用气量是多少?【分析】(1)根据应缴费用=80×2.5+超出80m3部分×a,即可得出关于a的一元一次方程,解之即可得出结论;(2)设乙用户3月份的用气量是xm3,由80×2.5+(130﹣80)×3=350<392可得出x >130,根据应缴费用=80×2.5+(130﹣80)×3+超出130m3部分×(3+0.5),即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:80×2.5+(125﹣80)a=335,解得:a=3.答:a的值为3.(2)设乙用户3月份的用气量是xm3,根据题意得:80×2.5+(130﹣80)×3+(x﹣130)×(3+0.5)=392,解得:x=142.答:乙用户3月份的用气量是142m3.【点评】本题考查了一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.26.(9分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC=90°,∠DOE=45°;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC=(n﹣m)°,∠DOE=(n﹣m)°;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.【分析】(1)依据AOC=20°,∠AOB=110°,可得∠BOC=110°﹣20°=90°;再根据OD、OE 分别平分∠AOB、∠AOC,即可得到∠DOE的度数;(2)依据∠AOC=m°,∠AOB=n°,可得∠BOC=n°﹣m°=(n﹣m)°;再根据OD、OE分别平分∠AOB、∠AOC,可得∠AOD=n°,∠AOE=m°,进而得出∠DOE的度数;(3)依据OD、OE分别平分∠AOB、∠AOC,即可得出∠AOD=∠AOB,∠AOE=∠AOC,进而得到∠DOE=∠AOD﹣∠AOE=(∠AOB﹣∠AOC)=∠BOC.【解答】解:(1)∵∠AOC=20°,∠AOB=110°,∴∠BOC=110°﹣20°=90°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=55°,∠AOE=10°,∴∠DOE=55°﹣10°=45°;故答案为:90,45;(2)∵∠AOC=m°,∠AOB=n°,∴∠BOC=n°﹣m°=(n﹣m)°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=n°,∠AOE=m°,∴∠DOE=∠AOD﹣∠AOE=(n﹣m)°;故答案为:(n﹣m),(n﹣m);(3)∠DOE=∠BOC.证明:∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=∠AOB,∠AOE=∠AOC,∴∠DOE=∠AOD﹣∠AOE=(∠AOB﹣∠AOC)=∠BOC.【点评】本题考查了角的平分线定义和角的有关计算的应用,主要考查学生计算能力和推理能力,求解过程类似.27.(12分)如图,已知数轴上点A表示的数为10,点B在点A左边,且AB=18.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.①问点P运动多少秒时追上点Q?②问点P运动多少秒时与点Q相距4个单位长度?并求出此时点P表示的数;(3)若点P、Q以(2)中的速度同时分别从点A、B向右运动,同时点R从原点O以每秒7个单位的速度向右运动,是否存在常数m,使得2QR+3OP﹣mOR为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.【分析】(1)根据两点间的距离公式,以及路程=速度×时间即可求解;(2)①根据时间=路程差÷速度差,列出算式计算即可求解;②分两种情况:相遇前相距4个单位长度;相遇后相距4个单位长度;进行讨论可求点P表示的数;(3)表示出2QR+3OP﹣mOR,求得m值以及2QR+3OP﹣mOR的定值.【解答】解:(1)数轴上点B表示的数为10﹣18=﹣8,点P表示的数为10﹣5t;(2)①18÷(5﹣3)=9(秒).故点P运动9秒时追上点Q;②相遇前相距4个单位长度,(18﹣4)÷(5﹣3)=7(秒),10﹣7×5=﹣25,则点P表示的数为﹣25;相遇后相距4个单位长度,(18+4)÷(5﹣3)=11(秒),10﹣11×5=﹣45,则点P表示的数为﹣45;(3)设t秒后2QR+3OP﹣mOR为定值,由题意得,2QR+3OP﹣mOR=2×[7t﹣(3t﹣8)]+3(10+5t)﹣7mt=(23﹣7m)t+46,∴当m=时,2QR+3OP﹣mOR为定值46.【点评】本题考查的是一元一次方程的应用、数轴的应用,根据题意正确列出一元一次方程、灵活运用分情况讨论思想是解题的关键.。
七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。
1个B。
2个C。
3个D。
4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。
原点B。
x轴上C。
y轴上D。
x轴上或y轴上3.不等式组2x-1>1。
4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。
图形的平移是指把图形沿水平方向移动B。
“相等的角是对顶角”是一个真命题C。
平移前后图形的形状和大小都没有发生改变D。
“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。
1500B。
1000C。
150D。
5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。
①③④B。
①②③C。
①②④D。
②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。
8.-364的绝对值等于______。
9.不等式组{x-2≤x-1>的整数解是______。
10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。
11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。
某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。
12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。
则老师知道XXX与XXX之间的距离是______。
13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
长春外国语学校2017-2018学年第一学期期末考试初一年级数学试卷本试卷包括三道大题,24道小题,共6页.全卷满分120分.考试时间为90分钟.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(每小题3分,共24分)1.5-的绝对值为( )A . 1 5B .5C .- 15 D .-52.如图所示的几何体的主视图是( )3.长春第四届“交通之声年末百姓购车节”于12月11日——13日在长春国际会展中心举行,据统计,这三天共销售各种车辆约3500台,数据3500用科学记数法表示为( ) A .3.5×104 B .3.5×103 C .35×102 D .0.35×104 4.已知1-=x ,则代数式423+-x x 的值为( )A .2B .2-C .4D .4- 5.若∠1=25°,则∠1的余角的大小是( ) A .55° B .65° C .75° D .155° 6.方程3x =15﹣2x 的解是( )A .x =3B .x =4C .x =5D .x =67.如图,若点A 在点O 北偏西60°的方向上,点B 在点O 的南偏东25°的方向上,则 ∠AOB (小于平角)的度数等于( )A .55°B .95°C .125°D .145°8.如图,AE 平分∠CAB ,CD ∥AB 交AE 于点D ,若∠C =120°,则∠EAB 的大小为( ) A .30º B .35º C .40º D .45º第7题 第8题 二、填空题(每小题3分,共18分)9.当k = _______时,kyx 323 与624y x 是同类项.10.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B 内的数为 ____________.11.已知,点A 、点B 在数轴上对应的实数为a ,b 如图所示,则线段AB 的长度可以用代数 式表示为 .12.为了帮助地震灾区重建家园,某班全体师生积极捐款,捐款金额共3150元,其中5名教师人均捐款a 元,则该班学生共捐款____________元(用含有a 的代数式表示).13.如图,C 、D 是线段AB 上两点,D 是AC 的中点,若CB =3,DB =7,则AC 的长___.第10题 第11题 第13题BA O 西DCBA ba0B A14.如图,a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为 __________度.第14题三、解答题(本大题共10小题,共78分)15.(8分)计算:(1)3235+-; (2))3(2--; (3)623⨯-; (4)()42-÷-. 16.(6分)计算:(1)()()20162112322--÷⨯+- ; (2)()()42a b a b ---.17.(6分)解方程:(1)()()11223=++-x x ; (2)1613=--x x .18.(7分)先化简,再求值:(5a 2+2a +1)﹣4(3﹣8a +2a 2)+(3a 2﹣a ),其中a =. 19.(7分)有20筐苹果,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) ﹣3﹣2 ﹣1.5 0 1 2.5 筐 数142328(1)在这20筐苹果中,最重的一筐比最轻的一筐重多少千克? (2)求这20筐苹果的总质量.20.(8分)如图,点C 、D 是线段AB 上两点,AC :CD =1:3,点D 是线段CB 的中点,AD = 12. (1)求线段AC 的长; (2)求线段AB 的长.21. (8分)探究:如图①,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若 ∠ABC =40°,求∠DEF 的度数.请将下面的解答过程补充完整,并填空(理由或数学式) 解:∵DE ∥BC ,BDCAb12∴∠DEF = .( ) ∵EF ∥AB ,∴ =∠ABC .( ) ∴∠DEF =∠ABC .(等量代换) ∵∠ABC =40°,∴∠DEF = °.应用:如图②,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 的延长线上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若∠ABC =60°,则∠DEF = °.22. (8分)如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.若∠AOB =100°,求∠DOE 的度数.23.(8分)某班准备买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副68元,乒乓球每盒12元.经商谈后,甲商店每买一副乒乓球拍赠一盒乒乓球,乙商店全部按定价的9折优惠.这个班级需要球拍5副,乒乓球x 盒(5≥x ).(1)分别求甲、乙两家商店购买这些商品所需的费用(用含x 的代数式表示). (2)当40=x 时,购买所需商品去哪家商店合算?请通过计算说明理由.BA F CE图 1BDA FE图 2CDBA24.(12分)在直角三角形ABC中,若AB=16cm,AC=12 cm,BC=20 cm.点P从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A →B的方向移动,如果点P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,请用含t的代数式表示,①当点Q在AC上时,CQ= ;②当点Q在AB上时,AQ= ;③当点P在AB上时,BP= ;④当点P在BC上时,BP= .(2)如图2,若点P在线段AB上运动,点Q在线段CA上运动,当QA=AP时,试求出t的值.(3)如图3,当P点到达C点时,P、Q两点都停止运动,当AQ=BP时,试求出t的值.图1 图2 图3长春外国语学校2017-2018学年第一学期期末考试初一年级数学试卷答案本试卷包括三道大题,24道小题,共6页.全卷满分120分.考试时间为90分钟.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(每小题3分,共24分)1.5-的绝对值为( B )A . 1 5B .5C .- 15 D .-52.如图所示的几何体的主视图是( D )3.长春第四届“交通之声年末百姓购车节”于12月11日——13日在长春国际会展中心举行,据统计,这三天共销售各种车辆约3500台,数据3500用科学记数法表示为( B ) A .3.5×104 B .3.5×103 C .35×102 D .0.35×104 4.已知1-=x ,则代数式423+-x x 的值为(A )A .2B .2-C .4D .4- 5.若∠1=25°,则∠1的余角的大小是( B ) A .55° B .65° C .75° D .155° 6.方程3x =15﹣2x 的解是(A )A .x =3B .x =4C .x =5D .x =67.如图,若点A 在点O 北偏西60°的方向上,点B 在点O 的南偏东25°的方向上,则 ∠AOB (小于平角)的度数等于(D ) A .55° B .95° C .125° D .145°8.如图,AE 平分∠CAB ,CD ∥AB 交AE 于点D ,若∠C =120°,则∠EAB 的大小为(A ) A .30º B .35º C .40º D .45º第7题 第8题二、填空题(每小题3分,共18分)9.当k = 2_______时,kyx 323 与624y x 是同类项.10.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B 内的数为 _2___________.11.已知,点A 、点B 在数轴上对应的实数为a ,b 如图所示,则线段AB 的长度可以用代数 式表示为 b-a .12.为了帮助地震灾区重建家园,某班全体师生积极捐款,捐款金额共3150元,其中5名教师人均捐款a 元,则该班学生共捐款_(3150-5a)____元(用含有a 的代数式表示).13.如图,C 、D 是线段AB 上两点,D 是AC 的中点,若CB =3,DB =7,则AC 的长8___.第10题 第11题 第13题14.如图,a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为 __55__度.第14题BA O 西DCBA ba0B A ba12三、解答题(本大题共10小题,共78分)15.(8分)计算:(1)3235+-=-1; (2))3(2--=5; (3)623⨯-=-9; (4)()42-÷-=2. 16.(6分)计算:(1)()()20162112322--÷⨯+-=-7 ; (2)()()42a b a b ---=2a-3b .17.(6分)解方程:(1)()()11223=++-x x ;x=1 (2)1613=--x x .x=518.(7分)先化简,再求值:(5a 2+2a +1)﹣4(3﹣8a +2a 2)+(3a 2﹣a ),其中a =.33a-11=019.(7分)有20筐苹果,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) ﹣3﹣2 ﹣1.5 0 1 2.5 筐 数142328(1)在这20筐苹果中,最重的一筐比最轻的一筐重多少千克? (2)求这20筐苹果的总质量. 2.5-(-3)=5.5(千克)20*25+(-3)+(-8)+(-3)+0+2+20=508(千克)20.(8分)如图,点C 、D 是线段AB 上两点,AC :CD =1:3,点D 是线段CB 的中点,AD = 12. (1)求线段AC 的长;3 (2)求线段AB 的长.2121. (8分)探究:如图①,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若 ∠ABC =40°,求∠DEF 的度数.请将下面的解答过程补充完整,并填空(理由或数学式) 解:∵DE ∥BC ,∴∠DEF = ∠EFC .( 两直线平行内错角相等 ) ∵EF ∥AB ,∴ ∠EFC =∠ABC .( 两直线平行,同位角相等 )BDCA∴∠DEF =∠ABC .(等量代换) ∵∠ABC =40°, ∴∠DEF = 40 °.应用:如图②,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 的延长线上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若∠ABC =60°,则∠DEF = 120 °.22. (8分)如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.若∠AOB =100°,求∠DOE 的度数.∠DOE=50°23.(8分)某班准备买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副68元,乒乓球每盒12元.经商谈后,甲商店每买一副乒乓球拍赠一盒乒乓球,乙商店全部按定价的9折优惠.这个班级需要球拍5副,乒乓球x 盒(5≥x ).(1)分别求甲、乙两家商店购买这些商品所需的费用(用含x 的代数式表示). (2)当40=x 时,购买所需商品去哪家商店合算?请通过计算说明理由. (1)甲:68*5+12(x-5)=12x+280 乙:68*5*0.9+0.9*12x=306+10.8x (2)当x=40时,12*40+280=760(元) 当x=40时,306+10.8*40=738(元)24.(12分)在直角三角形ABC 中,若AB =16cm ,AC =12 cm ,BC =20 cm . 点P 从点A 开始BA F CE图 1BDA FE图 2CDBA以2厘米/秒的速度沿A →B →C 的方向移动,点Q 从点C 开始以1厘米/秒的速度沿C →A →B 的方向移动,如果点P 、Q 同时出发,用t (秒)表示移动时间,那么:(1)如图1,请用含t 的代数式表示,①当点Q 在AC 上时,CQ = t ;②当点Q 在AB 上时,AQ = 12-t ; ③当点P 在AB 上时,BP = 16-2t ; ④当点P 在BC 上时,BP = 2t-16 . (2)如图2,若点P 在线段AB 上运动,点Q 在线段CA 上运动,当QA =AP 时,试求出t 的值.t=4 (3)如图3,当P 点到达C 点时,P 、Q 两点都停止运动,当AQ =BP 时,试求出t 的值.图1 图2 图3t= 4, 28/3高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………………密………………………………….封……………………….线…………………………………………………………………………..细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
江苏省徐州市2017-2018学年度第二学期期末考试七年级数学试题(提醒:本卷共4页,满分为140分,考试时间为90分钟:答案全部涂、写在答题卡上,写在本卷上无效.)一、选择题(每小题3分,共24分)1.方程组⎩⎨⎧+-=+5211y x x 的解是A ·⎩⎨⎧=-=31y x ,B ·⎩⎨⎧=-=32y x , C.⎩⎨⎧==12y x D ·⎩⎨⎧-==12y x 2.人体中成熟红细胞的平均直径为0.0000077m ,用科学记数法可表示为A .7.7×510-mB .7.7×106-mC .77×106-mD .77x106-m3.下列计算正确的是A .4a 2一2a 2=2B .(a 2)3=a 5C . a 3.a 6=a 9D .(2a 2)33=6a 64.三角形的两边长分别为3和4,其第三条边的长度可能是A .5B .7C .9D .105.若a <b ,则下列不等式正确的是A .a —2<b —2B .a —b >0C .2a >2b D .—2a <—2b 6.下列命题中,假命题是A .直角三角形的两个锐角互余 ’B .平行于同一条直线的两条直线平行C .平移前后的两图形中,两组对应点的连线平行D .平移前后的两图形中,两组对应点的连线相等7.如图,下列条件:①∠B+∠BCD =180°;②∠1=∠2; ③∠3=∠4; ④∠B =∠5. 其中,能判定AB ∥CD 的条件有A .1个B .2个C .3个D .4个8.某校组织21名教师外出培训,宾馆可选2人间或3人间租住,若所租房间均需住满, 则不同的租房方案共有A .5种B .4种C .3种D .2种七年级数学试题 第1页(共4页)七年级数学试题 第1页(共4页)二、填空题(每小题4分,共32分)9.不等式x -3≤2的解集是__________.10.在同一平面内,若a_⊥b ,b ⊥c ,则a 与c 的位置关系是__________·11.若x m =4,y m =8,则(xy)m =____________·12.命题:“若两直线平行,则同旁内角互补”的逆命题是_________·13.若n 边形的内角和为540°,则n =__________·14.已知⎩⎨⎧=-=21y x 是二元一次方程m x +2y =1的解,则m =____________·15.若(a+b)2=16,(a 一b)2=14,则代数式a 2b 2的值为__________·16.如图,在△ABC 中,点D 、E 分别为BC 、AD 的中点,EF =2FC ,若△ABC 的面积为12cm2,则△BEF 的面积为_____________cm2.三、解答题(共84分)(第16题) 17.(本题8分)计算:(1)-12018+(π—3)0+(21)1-;( 2)9a ·a 2·a 3+ (一2a 2)3一a 8÷a 2.18.(本题8分)把下列各式分解因式:(1)2x 2—4x +2;(2)a 4一16.19. (本题8分)先化简,再求值:(a+3)(a 一3) +(a+2)2一4(a 一1),其中a =-21.20. (本题10分)(1)解方程组:⎩⎨⎧=-=+124y x y x ;(2)解不等式组:1213143 ⎪⎩⎪⎨⎧--+≥+x x xx .七年级数学试题 第2页(共4页)21. (本题6分)完成下面的证明.已知:如图,∠1=∠ACB ,∠2=∠3,FH ⊥AB 于H求证:CD ⊥AB .证明:∵FH ⊥AB(已知),∴ ∠BHF =_______°(垂直的定义).∵∠1=∠ACB (已知),∴DE ∥BC (_________).∵∠2=∠BCD (_________).∵∠2=∠3 (已知),∴∠3=__________ (__________).∴CD ∥FH(__________).∴∠BDC =∠BHF =90°(两直线平行,同位角相等).∴CD ⊥AB(垂直的定义).22.(本题12分’已知关于x 、y 的方程组⎩⎨⎧-=-+=+5412k y x k y x(1)求方程组的解(用含k 的代数式表示); ·(2)若方程组的解满足:x <0.且y >0,求k 的取值范围.23.(本题8分)如图,已知AB ∥DE ,∠ABC 、∠CED 的平分线交于点F .探究∠BFE 与 ∠BCE 之间的数量关系,并证明你的结论·(第23题)七年级数学试题 第3页(共4页)24.(本题12分)某公司有A、,B两种型号的客车11辆;它们的载客量(不含司机)、日租金、车辆数如下表所示.已知这11辆客车满载时可搭载乘客350人.A型客车B型客车载客量(人/辆) 40 25日租金(元/辆) 320 200车辆数(辆) a b(1)求a、b的值;(2)某校七年级师生周日集体参加社会实践,计划租用A、B两种型号的客车共6辆,且租车总费用不超过1700元.、’①最多能租用A型客车多少辆? 。
七年级下期数学练习
(考试时间:120分钟 满分:120分)
学号: 姓名: 分数: 一、选择题:(本大题8个小题,每小题3分,共24分) 每个小题都给出了代号为 A 、B 、C 、D 的四个答案,其中只 有一个是正确的,请将正确答案的代号填入题后的括号中. 1.计算3
2
a a ⋅的结果是( )
A .a
B .5a
C .6a
D .9a
2.将一张长方形纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你见到的图形可能
是( )
3.以下列各组线段长为边,能组成三角形的是( )
A .2cm ,2cm ,4cm
B .8cm ,6cm ,4cm
C .12cm ,5cm ,6cm
D .2cm ,3cm ,6cm 4.计算)132(2
-+x x x 的结果是( )
A .1323
-+x x B .1322
3
-+x x C .x x x --2
2
32 D. x x x -+2
3
32
5.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )
A .∠1=∠3
B .∠2+∠4=180°
C .∠1=∠4
D .∠3=∠4
6.如图,已知点 B 、E 、C 、F 在同一直线上,且△ABC ≌△DEF ,则以下结论中,错误..的是( ) A .AB=DF B .AB ∥DE C .∠A=∠D D .BE=CF
7.如图,三角形被遮住的两个角不可能...
是( ) A .两个钝角 B .一个锐角,一个钝角 C .两个锐角 D .一个锐角,一个直角 8.已知2=m
a ,8=n
a ,则m n a -的值是( )
A .16
B .10 C
.
1
4
D .6- 9.如图,∠1=∠2,AD 平分∠BAC 交直线a 于点D ,若∠ABD=100°,则∠BDA 的度数为( )
A .55°
B .50°
C .45°
D .40°
10.探究小组的同学在做“测量小车从不同高度下滑的时间”的实验时,得到如下数据:
支撑物高度(单位:厘米) 10
20
30
40
50
60
70
80
90
小车下滑时间(单位:秒) 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 根据实验数据,判断下列说法正确..
的是( ) A .当支撑物的高度为100cm 时,小车下滑的时间可能为1.45秒 B .支撑物的高度每增加10cm ,小车下滑的时间都将减少0.09秒 C .当支撑物的高度为100cm 时,小车下滑的时间可能为1.35秒 D .当支撑物的高度为100cm 时,小车下滑的时间可能为1.30秒 二、填空题:(本大题8个小题,每小题3分,共24分)
11.某种细胞的直径是1.24微米,即0.000 001 24米,用科学记数法表示0.000 001 24
为________________________.
12.计算:=-+)2)(2(a a _____________.
13.已知等腰三角形的一边为5cm ,另一边为6cm ,那么这个三角形的周长为_________. 14.计算:12x3y2z ÷(﹣4xy )= .
15.某市出租车价格是这样规定的:不超过2千米,付车费5元,超过的部分按每千米1.8元收费,已知李老师乘出租车行驶了x (x >2)千米,付车费y 元,则所付车费y 元与出租车行驶的路程x 千米之间的关系为 .
16.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个
图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正
方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为 个.
D.
C.
B.
A.
F
D
A
B
C E
三、解答题:(72分)解答时每小题必须给出必要的演算过程或推理步骤.
17.(6分)计算:2
201
021
2+(1)
+4( 3.1415)()2
π----⨯---.
18.(6分)尺规作图:(要求:在下面右边的空白处作图,不写作法,保留作图痕迹)
已知:线段a 及α∠(如图).
求作:△ABC ,使ABC α∠=∠,BC a =,BA a =.
19.(6分)先化简,再求值:x y x y y x y x y x 3)]52()2)(2()2[(2
÷+--+--,
其中1=x ,2
1
-=y .
20.(6分)如右图,AB //CD ,AD // BE ,试说明:∠ABE=∠D.
解:∵ AB ∥CD (已知)
∴ ∠ABE=___________(两直线平行,内错角相等) ∵ AD ∥BE (已知)
∴ ∠D=_________ ( ) ∴∠ABE=∠D ( 等量代换)
21(6分).如图,CD ∥AB ,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF 与AB 有怎样的位置关系,
为什么?
a
α
22.(6分)如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)
23.(8分)如图,点M、N在线段AC上,AM=CN,AB∥CD,AB=CD.
(1)请说明△ABN≌△CDM的理由;
(2)线段BM与DN平行吗?说明理由.24.(8分)小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:
(1)小红家到舅舅家的路程是
米,小红在商店停留了分钟;
(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?
(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?
N
M
D C
B
A
25.(10分)我们学过的乘法公式可以借助于图形来帮助解释、理解、记忆. (1)请写出图1、图2、图3分别能解释的乘法公式;
(2)请用两种不同的方法探究代数式2
)(b a +、2
)(b a -、ab 的数量关系. 方法一:代数方法.
方法二:拼图的方法.(用4个全等的长和宽分别为a 、b 的长方形拼摆成一个正方形,画出你拼摆过程中能说明这几个式子数量关系的草图.)
(3)利用(2)中结论,当5=+b a ,6-=ab 时, 求
a b -2
() 的值.
26.(10分)我国古代数学的许多发现都曾位居世界前列,其中"杨辉三角"就是一例。
如图是这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(α+b)n(n 为正整数)的展开式(按α的次数由大到小的顺序排列)的系数规律。
例如,在三角形中第三行的三个数1,2,1,恰好对应(α+b)
2=α2 +2αb+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(α+ b)3=α3 +3a 2b + 3αb 2+b 2展开式中的系数等.
(1)根据上面的规律,写出(α+b)5的展开式;
(2)利用上面的规律计算: 25 -5×24 + 10×23 -10×22+5×2-1.
a
b
a b
a
b
a
b
b
a
a
a-b
a
b
a a-b
b a
b。