说《探索三角形全等的条件》(第一课时)_3
- 格式:doc
- 大小:445.50 KB
- 文档页数:5
精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最||新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最||正确选择 .§3.3.1 探索三角形全等的条件●教学目标(一)教学知识点1.三角形全等的"边边边〞的条件.2.了解三角形的稳定性.(二)能力训练要求1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握三角形全等的"边边边〞条件.了解三角形的稳定性.3.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.(三)情感与价值观要求1.使学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.2.让学生体验数学来源于生活,效劳于生活的辩证思想.●教学重点三角形全等的条件.●教学难点三角形全等的条件.●教学方法讨论、引导教学法.●教具准备投影片五张第|一张:复习练习(记作投影片§3.3.1 A )第二张:做一做(记作投影片§3.4.1 B )第三张:议一议(记作投影片§3.3.1 C )第四张:做一做(记作投影片§3.3.1 D )第五张:实验(记作投影片§3.3.1 E )木条或细硬纸条数根.●教学过程Ⅰ.巧设现实情景,引入新课[师]前面我们研究了全等三角形.现在我们来回忆一下:(出示投影片§3.3.1 A )如图图:△ABC≌△DEF.找出其中相等的边与角.[生]图中相等的边是:AB=DE、BC=EF、AC=DF.相等的角是:∠A=∠D、∠B=∠E、∠C=∠F.[师]很好.我这里有一个三角形纸片,你能画一个三角形与它全等吗?如何画?[生]能,先量出这个三角形纸片的每边的长,各个角的度数,然后作出一个三角形,使它的每边长,每个角的度数分别等于三角形纸片的每边长,每个角,这样作出的三角形一定与三角形纸片全等.[师]噢,这位同学他利用了两个三角形全等的定义来作图.但是,是否一定需要六个条件呢?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?我们这节课就来探索三角形全等的条件.Ⅱ.讲授新课[师]下面我们来做一做(出示投影片§3.3.1 B ).1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1 )三角形的一个内角为30° ,一条边为3 cm.(2 )三角形的两个内角分别为30°和50°.(3 )三角形的两条边分别为4 cm、6 cm.[师]只给一个条件,怎么样呢?想一想.[生]不能.[师]对,只给定一条边时(如图的实线)图由图可知:这三个三角形不全等.只给定一个角时夹角(如图中的实线).图由画图可知:这三个三角形也不全等.因此,只给出一个条件....所画出的三角形一定全等.....时,不能保证接下来我们探索:给出两个条件时,所画的三角形一定全等吗?大家动手画:三角形的一个内角为30° ,一条边为3厘米.[生甲]我们画出的三角形几乎都不一样,如图.图这三个三角形不全等.[师]好,那如果三角形的两个内角分别是30°和50°时,所画的三角形又如何呢?[生乙]我画的三角形和他们画的形状一样,但大小不一样.如图.图这两个三角形不能重合,即不全等.[师]很好.如果给定三角形的两边分别为4 cm、6 cm ,那么所画出的三角形全等吗?[生丙]也不全等.如图5-103.图[师]很好,我们通过画图、观察、比较知道,只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那给出三个条件时,又怎样呢?大家来议一议(出示投影片§3.3.1 C ).如果给出三个条件画三角形,你能说出有哪几种可能的情况?[生丁]有四种可能.即:三条边,三个角,两边一角和两角一边.[师]对,下面我们来逐一探索(出示投影片§3.3.1 D )做一做:(1 )一个三角形的三个内角分别为40° ,60° ,80°.你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?(2 )一个三角形的三条边分别为4 cm、5 cm和7 cm ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?[生甲]一个三角形的三个内角分别为40°、60°、80°.能画出这个三角形,但与同伴画的进行比较时,有的能完全重合,有的不重合,所以它们不一定重合.如图.图[师]通过比较得知:给出三角形的三个内角,得到的三角形不一定全等.那给出三角形的三条边又如何呢?[生乙]一个三角形的三条边分别是4 cm ,5 cm和7 cm ,我能画出这个三角形.与同伴们进行比较可知:这样的所有三角形都是全等的.如图.图[生丙]我画的三角形也和别人画的全等.由此可知:三角形的三边,那么画出的所有三角形都全等.[师]是吗?我们来验证:画一个三角形,使它的三边分别等于8 cm、6 cm、10 cm.画出图形后与同伴的进行比较.[生丁]我画出的三角形与其他人的全等.[师]是吗?大家来重叠一下.[生齐声]都能够重合.[师]好,由此我们知道:三角形的三条边画三角形,那么画出的所有三角形全等 (电脑演示重合过程 ).这样就得到了三角形全等的条件:三边对应相等的两个三角形全等. 简写为: "边边边〞或 "SSS 〞 如图.图⎪⎩⎪⎨⎧=−→−==EF BC DF AC DE AB △ABC ≌△DEF . 注意:三边对应相等是前提条件 ,三角形全等是结论. 下面我们来做一个实验 (出示投影片§3.3.1 E )取三根长度适当的木条 ,用钉子钉成一个三角形的框架 ,你所得到的框架的形状固定吗 ?用四根木条钉成的框架的形状固定吗 ?[师]做实验时 ,可用细纸条代替木条.实验后分组讨论.[生]用三根木条钉成的三角形框架是固定的 ,用四根木条钉成的框架 ,它的形状是可以改变的.[师]很好 ,看屏幕 (演示图 ).图图 (1 )是用三根木条钉成的三角形框架 ,它的大小和形状是固定不变的 ,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中是很有用的.如:房屋的人字梁具有三角形的结构 ,它就稳固和稳定.图(2 )的形状是可以改变的,它不具有稳定性.大家想一想,如何才能使图(2 )的框架不能活动?[生]在相对的顶点上钉一根木条,使它变为两个三角形框架即可.[师]对,在生活中经常会看到采用三角形的结构去建筑.就是用到了它的稳定性.同学们能举出一些生活中应用三角形的稳定性的例子吗?[生]能.如:大桥钢架、索道支架、输电线支架等等.[师]很好,下面我们来做一练习以熟悉掌握本节内容.Ⅲ.课堂练习(一)课本习题3.6 1、21.准备几根硬纸条(1 )取出三根硬纸条钉成一个三角形,你能拉动其中两边,使这个三角形的形状发生变化吗?(2 )取出四根硬纸条钉成一个四边形,拉动其中两边,这个四边形的形状改变了吗?钉成一个五边形,又会怎么样?(3 )上面的现象说明了什么?解:(1 )三角形的形状不会发生变化.(2 )四边形,五边形的形状发生了变化.(3 )说明了三角形具有稳定性,而四边形、五边形不具有稳定性.2.两个锐角对应相等的两个直角三角形全等吗?为什么?解:不一定全等.如图.图Rt△ABC与Rt△A′B′C′不全等.(二)看课本然后小结.Ⅳ.课时小结本节课我们重点探索了三角形全等的条件 ,还了解了三角形的稳定性. 三角形全等的条件:三边对应相等的两个三角形全等. 如图.图−→−⎪⎭⎪⎬⎫===DF AC EF BC DE AB △ABC ≌△DEF . Ⅴ.课后作业(一 )课本习题3.6 3 (二 )1.预习内容 2.预习提纲三角形全等的条件是什么 ? Ⅵ.活动与探究图一个六边形钢架ABCDEF .由6条钢管连接而成 (如下列图 ) ,为使这一钢架稳固 ,请你用三条钢管连接使它不能活动 ,你能找出几种方法 ?过程:让学生思考、探索 ,进一步理解三角形的稳定性在现实生活中的应用. 结果: (1 )可从这六个顶点中的任意一个作对角线 ,把这个六边形划分成四个三角形.如图(1 )为其中的一种.(2 )也可以把这个六边形划分成四个三角形.如图(2 ).图●板书设计§3.3.1 探索三角形全等的条件一、三角形全等的条件:三边对应相等的两个三角形全等. "SSS〞二、三角形的稳定性.三、课堂练习四、课时小结五、课后作业以下为赠送内容别想一下造出大海,必须先由小河川开始 .成功不是只有将来才有,而是从决定做的那一刻起,持续积累而成!人假设软弱就是自己最||大的敌人,人假设勇敢就是自己最||好的朋友 . 成功就是每天进步一点点!如果要挖井,就要挖到水出为止 .即使爬到最||高的山上,一次也只能脚踏实地地迈一步 .今天拼搏努力,他日谁与争锋 .在你不害怕的时候去斗牛,这不算什么;在你害怕的时候不去斗牛,这没什么了不起;只有在你害怕的时候还去斗牛才是真正的了不起 .行动不一定带来快乐,但无行动决无快乐 .只有一条路不能选择- -那就是放弃之路;只有一条路不能拒绝|| - -那就是成长之路 .坚韧是成功的一大要素,只要在门上敲得够久够大声,终会把人唤醒的 .只要我努力过,尽力过,哪怕我失败了,我也能拍着胸膛说:"我问心无愧 ."用今天的泪播种,收获明天的微笑 .人生重要的不是所站的位置,而是所朝的方向 .弱者只有千难万难,而勇者那么能披荆斩棘;愚者只有声声哀叹,智者却有千路万路 .坚持不懈,直到成功!最||淡的墨水也胜过最||强的记忆 .凑合凑合,自己负责 .有志者自有千计万计,无志者只感千难万难 .我中|考,我自信!我尽力我无悔!听从命运安排的是凡人;主宰自己命运的才是强者;没有主见的是盲从,三思而行的是智者 .相信自己能突破重围 .努力造就实力,态度决定高度 .把自己当傻瓜,不懂就问,你会学的更多 .人的活动如果没有理想的鼓舞,就会变得空虚而渺小 .安乐给人予舒适,却又给人予早逝;劳作给人予磨砺,却能给人予长久 .眉毛上的汗水和眉毛下的泪水,你必须选择一样!假设不给自己设限,那么人生中就没有限制你发挥的藩篱 .公众号:惟微小筑相信自己我能行!任何业绩的质变都来自于量变的积累 .明天的希望,让我们忘了今天的痛苦 .世|界上最||重要的事情,不在于我们身在何处,而在于我们朝着什么方向走 . 爱拼才会赢努力拼搏,青春无悔!。
七(下)第三章三角形3探索三角形全等的条件(第1课时)九江市鹤湖学校(李江飞、袁唐民、帅启凤、李广义)一、学生知识状况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等和全等三角形等,对本节课要学习的三角形的稳定性和三角形全等条件中的“边边边”来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形的全等和全等三角形的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生对三角形全等的认识,提出了本课的具体学习任务:了解三角形的稳定性和经历探索三角形全等条件的过程,掌握三角形全等“边边边”的条件,并能应用这一条件解决一些实际的问题。
但这仅仅是这堂课外显的具体教学目标,本课内容从属于“空间与图形”这一数学学习领域,因而务必服务于“空间与图形”的总体目标:“学生将探索基本图形的基本性质及其相互关系,进一步丰富对空间图形的认识和感受”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标是:(1)知识与技能:了解三角形的稳定性,三角形全等“边边边”的条件,经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;(2)过程与方法:使学生在自主探索三角形全等的过程中,经历画图、观察、比较、交流等过程,从而获得正确的学习方式和良好的情感体验。
(3)情感与态度:培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
三、教学过程分析本节课设计了七个教学环节:课前准备、情境引入、合作学习、课内链接、课堂小结、问题解决、布置作业。
第一环节课前准备活动内容:动手操作(前一个双休日布置。
苏科版数学八年级上册1.3《探索三角形全等的条件》教学设计3一. 教材分析《探索三角形全等的条件》是苏科版数学八年级上册1.3节的内容,本节课的主要任务是让学生通过探究活动,了解三角形全等的条件,并学会运用这些条件判断两个三角形是否全等。
教材中提供了丰富的图片和实例,帮助学生直观地理解全等三角形的概念和性质。
此外,教材还设计了多个探究活动,让学生通过合作交流,发现三角形全等的条件。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,如三角形的内角和、三角形的边长关系等。
此外,学生还学习了用SSS、SAS、ASA、AAS判定两个三角形全等。
因此,学生具备了一定的基础知识,能够参与本节课的探究活动。
但部分学生对全等三角形的概念和性质理解不深,容易与相似三角形混淆。
三. 教学目标1.了解三角形全等的条件,能运用这些条件判断两个三角形是否全等。
2.培养学生的合作交流能力,提高学生的探究能力。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:三角形全等的条件。
2.教学难点:如何判断两个三角形是否全等,以及全等三角形的性质。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究三角形全等的条件。
2.运用多媒体辅助教学,展示三角形全等的实例,提高学生的直观认识。
3.学生进行小组讨论,培养学生的合作交流能力。
4.通过练习题巩固所学知识,及时反馈学生的学习情况。
六. 教学准备1.教学课件:制作涵盖全等三角形概念、性质和判断方法的课件。
2.教学素材:准备一些三角形图片和实例,用于引导学生探究。
3.练习题:设计一些判断三角形全等的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形图片,引导学生关注三角形的全等现象。
提问:你们能找出这些图片中全等的三角形吗?为什么?2.呈现(10分钟)介绍三角形全等的概念,引导学生通过观察和分析,发现三角形全等的条件。
北师大版七年级下册数学说课稿:4.3.1《探索三角形全等的条件》一. 教材分析《探索三角形全等的条件》这一节内容是北师大版七年级下册数学的一个重要部分。
在此之前,学生已经学习了三角形的性质、三角形的分类以及三角形的判定等知识。
本节课通过探索三角形全等的条件,让学生掌握三角形全等的判定方法,为后续学习三角形相似、解三角形等知识打下基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,能够通过观察、操作、猜想、验证等方法探索数学问题。
但部分学生对几何图形的认识还不够清晰,对全等三角形的概念及判定方法的理解可能存在困难。
因此,在教学过程中,要关注学生的认知水平,引导学生逐步理解全等三角形的判定条件。
三. 说教学目标1.知识与技能:让学生掌握三角形全等的判定方法,能够运用这些方法判断两个三角形是否全等。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生探索几何问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:三角形全等的判定方法。
2.教学难点:如何引导学生理解并掌握三角形全等的判定条件,以及如何运用这些判定方法解决实际问题。
五. 说教学方法与手段本节课采用讲授法、问答法、讨论法、操作活动法等教学方法。
利用多媒体课件、几何画板等教学手段,帮助学生直观地理解全等三角形的判定条件。
六. 说教学过程1.导入新课:通过复习三角形的相关知识,引导学生回顾已学过的三角形性质,为新课的学习做好铺垫。
2.探索全等三角形的判定条件:(1)让学生观察两个形状相同的三角形,引导学生发现全等三角形的特征。
(2)引导学生通过操作,尝试将一个三角形变换成另一个三角形,从而探索全等三角形的判定条件。
(3)学生进行讨论,总结全等三角形的判定方法。
3.讲解判定方法:(1)边边边(SSS)判定法:引导学生理解并掌握三角形三边分别相等,则两个三角形全等。
《探索三角形全等的条件》(第一课时)说课稿的说明新课标下的数学教学,既要为学生的今天的学习服务,又要为学生明天的学习奠基。
改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知的能力、分析和解决问题的能力,以及合作与交流的能力。
坚持“以学生发展为本”的教学设计理念,把学生的起点作为教师的起点,把传授知识服务于学生有个性、可持续、全面和谐的发展,使每一堂课都成为不可重复的激情与智慧综合的过程。
基于上述认识,在本节课的设计中力求突出以下特点:一、设置问题,引导思维。
一个好的数学问题,既能揭示课堂的教学内容,又能充分调动学生的积极性。
本节设置了一个个的问题,把知识串联起来,以引导学生的思维。
学生在思考问题的过程中,掌握了全等三角形的判别条件及三角形的稳定性,从而完成了本节的教学目标。
二、自主探究,训练思维。
新课程标准强调教学不能把知识的结果强加给学生,而应重视获取知识的过程。
因此,在本节教学设计中,突出了学生的自主探究的特点。
尤其在难点的突破过程中,一方面体会分类讨论方法,确定探究的方向,另一方面设计学生动手画图、剪切等活动,训练了学生思维的多样性。
三、合作交流,激活思维。
合作学习是新课程所倡导的,引导学生交流是学生获取知识的有效途径。
所以在本节课的设计中两次组织学生分组学习,相互交流,使学生的参与热情更高,思维更活。
5、1 探索三角形全等的条件(第一课时)说课稿各位领导,老师:大家好!今天我说课的题目是《探索三角形全等的条件》(第一课时),下面我将从四个方面汇报我的认识和教学过程的设计。
一、说教材1、教材地位和前后联系《探索三角形全等的条件》是北师大版试验教科书七年级下册第五章第五节的内容。
它是在学生学习了三角形的有关要素和性质、全等图形的特征的基础上,进一步研究三角形全等的条件,它与前面学习的全等三角形的特征及后面将要学习的三角形全等的(“ASA”、“AAS”、“SAS”)判别方法作为探索三角形全等的核心内容,为后面学习奠定基础,也是初中数学的重要内容。
《1.3 探索三角形全等的条件(1)》评课1.本节课的教学目标明晰,层层递进,过渡自然.本节课是在学生学习了全等图形,对于全等三角形的概念及性质有了一定的了解后,探索三角形全等条件的第1课时.本节课的教学目标明确,重点突出,引导学生经历了从特殊到一般的研究过程,在实践中得到“SAS”的基本事实,帮助学生积累分析问题的方法和数学活动的经验.本节课的各环节的设计层次分明,环环相扣,使学生从知识到能力逐步得到发展.学生活动充分、有效.2.重视知识的生成过程及应用过程,有效诠释了新教材的设计意图.(1)教师从一个简单的动画演示——“图形的旋转”入手,唤起学生对全等的定义及性质的回忆,承上启下的引导学生从“形”的重合到“量”的思考,提出本节课所要探究的问题.教师将新知的探究在3个活动中循序渐进地铺开,活动一:通过任意剪——剪得的直角三角形不全等;再动手——组内寻找统一的参考量,在对比与思考中,确定直角三角形全等的条件.活动二:在活动一的基础上,将三角形的形状一般化,既而得出猜想,从而引发出本节课的第3个活动:由学生利用尺规作图的方法,亲历实验操作过程,验证“两边及其夹角相等的两个三角形全等”这个猜想的正确性.知识的生成过程看似花去了很多时间,但无论是隐形思维还是显性活动,学生始终处于活跃积极的氛围中,消除了课堂上学生被动接受的静止状态.(2)锻炼学生几何说理的同时,培养学生几何直观的能力.本节课的重点与难点便是利用“SAS”进行几何说理,对于刚刚步入八年级的学生而言,演绎推理的能力还很薄弱,教师在教学过程中,反复强调并规范说理的书写过程,将书写过程归纳为“指明图形,列出条件,得出结论”,特别强调写出每一步的说理依据,并将对应字母写在对应位置上,努力培养学生良好的几何素养和严谨的逻辑表达.教师能深刻领悟教材,除几何说理外,还引导学生用“运动变换”的观点看待问题,直观地理解数学.这也正是新教材的“出新”之处,平面几何教材经历了重演绎推理、重直观感悟到现在的“并举”——用“运动变换”来研究、揭示图形的性质,发展学生几何直观能力,用几何说理发展逻辑思维推理能力.教师在今后的图形与几何的教学中,要研究教材设计意图,充分体现出“几何直观”与“推理能力”密不可分的关系.3.注重引导学生自主探究,发挥小组合作的优势.(1)《新课程标准》将培养学生自主探究能力作为一项重要的教学策略,本节课教师在新知的生成环节上尽量的放手,让学生亲历探究过程.在整个探究过程中,教师充分扮演了组织者与引导者的角色,从提出问题到指导探索,凸显学生的主体地位,外国语学校的小组合作的学习模式使本节课的探究得以顺利进行,学生的活动平等而自由,知识的“再生成”毫无造作生硬和预设,完全是学生思维的真实流露和智慧碰撞.(2)本节课教师的站位不是在学生之间,而是站在教学设计的制高点:将待解决的问题设置成一个个任务,通过“课堂活动单”布置学习任务,既有学生的独立思维,又有组内的交流讨论,整节课教师对学生活动的节奏调控较好.4.发展学生提出问题的意识与解决问题的能力.本节课的“开放思维”环节,设计大胆,对学生而言具有一定的挑战性.要求借助适当的图形运动,利用组内的全等三角形进行拼图,对拼图合理设计问题,并且能够利用本节课所学知识解决问题.这样的设计十分符合当下“发展学生自己发现和提出问题的能力”的教学理念.本节课上学生呈现出的拼图各式各样,设计的问题多元灵活,反映出学生对本节课的知识有了很好的理解并能灵活运用,由于课堂时间有限,不能一一解决各个小组设计的问题,所以教师将没有完成的问题布置学生课后继续完成,这其中还有几个设计的问题不能用本节课的知识加以解决,本节课的“不能解决”就成为了后续知识的生长点,不失为延伸课堂的一种好做法.5.本节课中还有一些值得探讨的地方.(1)在第一次动手剪直角三角形后,回答问题的学生没有指出隐含的直角相等的条件,教师是否一定要及时追问?待到一般形状的三角形研究过后,再通过对比,将隐含的条件挖掘出来,使得条件在层层深入中不断得以完善,更为符合学生的认知规律,体会从特殊到一般的必要性与合理性.(2)最后一个拼图环节,学生展示后,可由小组派出代表,指明拼图所含有的图形运动,再次体会“几何直观”与“推理能力”的关系.最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改。
知识点解读:快速判定三角形全等全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。
判断三角形全等公理有SAS 、ASA 、AAS 、SSS 和HL ,如果能够直接证明三角形的全等的条件,则比较简单,直接根据相应的公理就可以证明,但是如果给出的条件不全面,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。
一、已知一边及与其相邻的一个内角对应相等判断三角形全等的公理中边和角相邻的有SAS 、ASA 、AAS ,所以可以从三个方面进行考虑:例1、如图1,点C 、D 在线段AB 上,AC=DB ,AE=BF ,∠A=∠B 。
说明△ABF≌△DCE 的理由。
分析:本题是根据SAS 来判断两个三角形全等,应该首先推导这个内角的另一条边也是对应相等的,也就是AD =BC ,然后再证明三角形全等。
解:因为AC =DB (已知)所以AC +CD=BD +CD ,即 AD =BC 在△ABF 和△DCE 中,AE BFA B AD BC =⎧⎪∠=∠⎨⎪=⎩∴ △ABF≌△DCE(SAS )。
例2、如图2,F 是△ABC 的边AB 上一点,DF 交AC 于点E ,DE=FE ,DC∥AB。
说明△AFE≌△CDE 的理由。
分析:本题是在两个三角形有对顶角的情况下进行考虑的,根据ASA 来判断两个三角形全等,应该首先推导以DE 、FE 为一边的另一个角也是对应相等的,也就是∠AFE=∠CDE,然后再证明三角形全等。
CBA D 图1解:应为 FC∥AB(已知)所以∠AFE=∠CDE(两直线平行,内错角相等) 在△ADE 和△CFE 中,AFE CDE DE FEAEF CED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFE≌△CDE(ASA )。
例3、题目同例2,在DE=FE 的情况下也可以根据FC∥AB,证明AFE CDE ∠=∠和EAF ECD ∠=∠,然后根据AAS 公理来说明△AFE≌△CDE。
江苏省盐城中学(教育集团)备课笔记备课时间:2019年5月日课题 1.3探索三角形全等的条件(3)课型新授课课时 1教学设想教学目标1. 经历探索三角形全等的“ASA”条件的过程,体会分析问题的方法,积累数学活动的经验.2.掌握基本事实:两角及其夹边分别相等的两个三角形全等;会利用基本作图作三角形:已知两角及其夹边作三角形.3.体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式的数学活动中,发展合情推理与演绎推理的能力.教学重点掌握基本事实:两角及其夹边分别相等的两个三角形全等.并会运用这个基本事实说明两个三角形全等.教学难点如何找出符合基本事实三个的条件说明两个三角形全等.教学准备多媒体课件教学过程一次备课教学内容三次备课【问题导学预学清单】具备两角及其夹边分别相等的两个三角形全等吗?为什么?【教学过程】一、情境创设:调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?如果能,你画的三角形与其他同学画的三角形能完全重合吗?【学生活动】问题1:你能画出两个三角形吗?问题2:你画的三角形与其他同学画的三角形能完全重合吗?【活动意图】给予学生探索、思考时间,能准确画出图形,让学生感受三角形的两角和夹边确定,这个三角形的形状和大小就唯一确定。
通过情境引导学生主动地观察、思考和讨论,从而激发学生探索三角形全等的又一个条件的好奇心和积极性.教学过程一次备课二、探索活动:1、在下图中,△ABC与△PQR、△DEF能完全重合吗?【学生活动】问题:哪两个三角形全等?2、按下列作法,用直尺和圆规作△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.△ABC就是所作的三角形.【学生活动】问题1:你作的三角形与其他同学作的三角形能完全重合吗?问题2:从以上活动中,你得到什么启发?【活动意图】让学生再次感受三角形的两角和夹边确定,这个三角形的形状和大小就唯一确定并归纳出“角边角”的结论。
《探索三角形全等的条件》——精品教案省市县名称黑龙江省大庆市肇源县网络班级数学53班任职学校头台中学姓名范明双作业内容《探索三角形全等的条件》教学设计教学内容:北师大版数学七年级下册第五章《三角形》第四节《探索三角形全等的条件》第一课时。
教学目标:1、经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。
2、在探索三角形全等条件的过程中,体验分类讨论的数学思想,体会利用操作、归纳获得数学知识;让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力,发展学生的空间观念。
3、培养学生敢于实践、勇于发现、大胆探索、合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。
教学重点、难点:重点:三角形全等条件的探索和应用。
难点:探究全等三角形条件的过程及其准确的分类。
教法学法:教法:启发、组织、引导、演示作业内容学法:自主探究、合作交流教学准备:教具:相关多媒体课件;学具:剪刀、纸片、直尺、一副三角板、木条、钉子等。
教学过程:(一)创设情境,引入新课首先,出示一个实际问题:小明不小心打破了一块三角形玻璃,碎片如图所示(课件出示):问能不能带图中某一块到商店做一块与原来三角形玻璃一样的玻璃?【设计意图:新课初始设计生活问题引发学生思考,激发学生的学习兴趣,又把数学与生活紧密相联系,引导学生学有用的数学。
】接着,教师组织学生讨论,分析,引导学生进入主题:探索三角形全等的条件。
(板书课题)(二)引导探究,实验操作,归纳总结。
活动一:让学生通过动手操作,只给一个条件,即一条边或一个角不能判断两个三角形全等并在黑板上展示。
师通过几何画板演示。
活动二:只给两个条件,先让学生展开讨论,分析有几种情况:即边边、边角、角角,再由各小组自行探索。
同样让学生通过动手操作,师进行指导,在黑板上展示,作业内容再观察几何画板动画,最终得到只给两个条件不能判断两个三角形全等。
课题第11章图形的全等课时分配本课(章节)需 5 课时本节课为第 1 课时为本学期总第课时11.3探索三角形全等的条件(1)教学目标(1)知识与技能目标:让学生懂得三角形全等必须具备三个条件;理解“边角边”公理,学会用它来判定两个三角形全等。
(2)数学思想方法和数学思维能力发展目标:让学生学会有条理地思考、分析、解决问题的能力,培养学生推理、应用能力和空间想象能力。
(3)数学品质与数学素养培养目标:让学生学会大胆探索、善于归纳、应用、培养学生个性,优化学生数学思维品质。
重点掌握三角形全等的“边角边”条件。
难点正确运用“边角边”条件判定三角形全等,解决实际问题。
教学方法讲练结合、探索交流课型新授课教具投影仪教师活动学生活动复习引入:前面我们已经学习了什么是全等三角形,掌握了全等三角形的性质——对应边相等、对应角相等,现在又有一个新的问题。
要想画出一个与下图全等的三角形,你准备怎么做?新课讲解:同学们会说这需要量一下这个三角形的边长和内角的度数,那么请问:你准备量哪几条边长,哪几个内角的度数?能尽量少吗?学生回答由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.B CA我们一起来分析: 只知道一个条件(一条边或一个角)画三角形,能保证画出的三角形与△ABC 全等吗?知道两个条件画三角形,有几种可能的情况?(两条边或两个角或一条边和一个角)每种情况下作出的三角形一定与△ABC 全等吗?我们来试一次。
量得△ABC 中,BC=3cm ,∠B=50°,画画看。
还是不行,当然如果我们只知道△ABC 中其它两个条件,例如只知道两个角的度数,也还是不能保证作出的三角形与△ABC 全等。
有兴趣的话可以课后试试。
如果知道三个条件画三角形,你能说出有哪几种可能的情况?(有四种可能:三条边、三个角、两边一角和两角一边) 做一做:在△ABC 中,已知∠A=70°,∠B=50°,∠C=60°,你能画出一个与△ABC 全等的三角形吗?(不能,因此三个内角对应相等的两个三角形不一定全等) 在△ABC 中,已知AB=2.8cm ,∠A=70°,AC=2.5cm ,你能画出一个与△ABC 全等的三角形吗?两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”。
说《探索三角形全等的条件》(第一课时)
一、教材分析
1、教学内容
《探索三角形全等的条件》是北师大版初中数学七年级下册第五章第五节的内容。
本节共三课时,我所说的第一课时的内容包括(1)经历探索三角形全等的条件归纳总结出“边边边”定理(2)“边边边”定理的运用,(3)三角形的稳定性及应用。
2、教学内容的地位及作用
(1)三角形全等的判定是中学数学十分重要内容之一,是证明线段相等、角相等的重要方法,是今后几何学习的基础。
本节课是探索三角形全等条件的第一课时,学好了将为下节课探索三角形全等的其他条件打下坚实的基础;同时为今后探索直角三角形全等的条件以及三角形相似的条件提供很好模式和方法,由于几何证明在新课标中要求不同,本内容在学生学习证明的思想方法中显出更加重要的作用。
(2)通过探索三角形全等的“边边边”条件,可以让学生经历和体验知识的形成过程,了解数学研究问题的方法,领会数学思想,获得数学活动的经验;同时发展学生的空间观念,培养学生推理意识和对推理过程的理解,发展推理能力。
3、教学目标
由于我的学生是初一的孩子,对几何的认识还很限,这是第一次系统的学习三角形,所以根据我所教的学生已有的认知基础,以及教学内容的地位和作用,我拟定以下教学目标:
(1)知识目标:经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。
(2)能力目标:在探索三角形全等条件的过程中,让学生体验分类的思想有条理地思考、分析、表达、解决问题的能力,逐步培养学生推理意识和能力。
(3)情感目标:鼓励学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣。
4、教学重点:
经历探索三角形全等条件的过程。
掌握三角形全等的“边边边”条件并初步学会运用。
5、教学难点:
对三角形全等条件的分析和探索。
二、教学方法:
初一的孩子不喜欢古板式的教学,他们好奇心强喜欢有兴趣的事物,根据孩子的特点我的这节课以“问题情景——建立模型——探索、归纳——应用与拓展”的教学模式进行,主要采用“探索式教学”、“启导式教学”。
并以小组讨论法、实验法相结合,充分利用教具,多媒体,通过创设具有现实性、趣味性和挑战性的情境,增强学生学习数学的兴趣。
为突破难点,我利用分类思想引导孩子通过画图、观察、比较、推理、交流,在条件由少到多的过程中逐步探索出最后结论。
为突出重点,我安排了具有一定挑战性的分析、表达题,引导学生熟练掌握角形全等的“边边边”条件。
三、学习方法:
新课改倡导积极主动,勇于探索的学习方式,把学习的主动权还给学生;因此本节课主要采用动手实践,自主探索、合作交流的学习方法。
四、教学程序:
1、教学过程:
2、如图,D、BC上的两点,
活动四:
2、四边形ABCD中,AB=CD
AD=BC。
△ABC和△CDA
否全等?∠A=∠C吗?说
学生自我小结后,再由多
媒体展示本课知识精要3、板书设计:
五、设计说明
本节课,我是基于以下四方面进行设计的:
1、数学教学要让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,引导学生捕捉生活中的数学现象,挖掘数学知识的生活内涵。
2、数学教学要从学生已有的生活经验出发,向他们提供充分从事数学活动的机会,真正体现学生是主体,老师是主导。
3、本节课始终关注学生能否在老师的引导下积极主动地按所给的条件进行探索,能否在活动中大胆尝试并表达自己的想法从而发现结论。
本节课我选择教师评价、自我评价、学生评价等多元化评价,对不同的学生有不同的评价标准,尊重学生的个体差异,把评价贯穿于探索活动的全过程,发挥评价的功能,以帮助学生认识自我,建立信心。
4、前面的教学设计是“备课”、“实践”、“反思”,“再设计”、“再实践”、“再反思”多次活动的结果,更是“专家引领、同伴互助”共同作用的结果,正是这些活动,促进教师的发展,也促进学生的发展。