2016年数学中考复习第33讲变换专题一(共23张ppt)
- 格式:ppt
- 大小:711.00 KB
- 文档页数:23
中考数学《图形变换》讲座王友新知识回顾1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为平移,它是由移动的方向和距离所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段相等,对应角相等,图形的大小与形状都没有发生变化,即平移前后的两个图形全等;且对应点所连的线段平行.3. 如果一个图形沿一条直线对折,对折后的两部分能互相重合,那么这个图形就是轴对称图形,这条直线就是它的对称轴 .4. 如果一个图形沿一条直线折叠,如果它能与另一个图形重合,那么这两个图形成轴对称,这条直线就是对称轴,折叠后重合的对应点就是对应点 .5. 如果两个图形关于轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线.6. 图形旋转的定义:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角7、旋转图形性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.8、把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点9、中心对称图形的性质:1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.10、关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P′(-x,-y).典例精析一、平移问题例1、两个直角边为6的全等的等腰直角三角形AOB和CED按图6所示的位置放置,A 与C重合,O与E重合.(1)求图6中,A B D,,三点的坐标.(2)Rt AOB△沿x轴以每秒2个单位长的速度向右运动,当D △固定不动,Rt CED点运动到与B点重合时停止,设运动x秒后Rt CED△和Rt AOB△重叠部分面积为y,求y与x之间的函数关系式.(3)当Rt CED△以(2)中的速度和方向运动,运动时间4△运动x 秒时Rt CED到如图7所示的位置,求经过A G C,,三点的抛物线的解析式.例2、如图15,矩形ABCD中,3BC=,将矩形ABCD沿对角线AC平移,平AB=,4移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,S'表示矩形NFQC的面积.(1)S与S'相等吗?请说明理由.(2)设AE x=,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?(3)如图16,连结BE,当AE为何值时,ABE△是等腰三角形.二、轴对称问题例1. 把一个矩形纸片如图折叠,使顶点B和D重合,折痕为EF。
第32讲几何三大变换之旋转旋转的性质【例题讲解】例题1.如图所示,将一副三角板的直角顶点重合摆放在桌面上,若145AOD ∠=︒,则BOC ∠=度.【解答】解:由图145AOD ∠=︒ ,1459055AOC AOD COD ∴∠=∠-∠=︒-︒=︒,则905535BOC ∠=︒-︒=度.故答案为:35.例题2.如图,ABC ∆中,90ACB ∠=︒,30A ∠=︒,将ABC ∆绕C 点按逆时针方向旋转α角(090)α︒<<︒得到DEC ∆,设CD 交AB 于F ,连接AD ,当旋转角α度数为,ADF ∆是等腰三角形.旋转中心:O旋转角:∠AOA'=∠BOB'=∠COC'性质:OA=OA'、OB=OB'、OC=OC'旋转中心:B旋转角:∠ABA'=∠CBC'性质:AB=A'B 、CB=C'B 连接AA'、CC'△ABA'∽△CBC',且均为等腰三角形【解答】解:ABC ∆ 绕C 点按逆时针方向旋转α角(090)α︒<<︒得到DEC ∆,DCA α∴∠=,CD CA =,11(180)9022CDA CAD αα∴∠=∠=︒-=︒-,ADF ∆ 是等腰三角形,30DFA α∠=︒+,①CD CA =,则CDA CAD ∠=∠,当FD FA =,则FDA FAD ∠=∠,这不合题意舍去,②当AF AD =,ADF AFD ∴∠=∠,190302αα∴︒-=︒+,解得40α=︒;③当DF DA =,DFA DAF ∴∠=∠,13090302αα∴︒+=︒--︒,解得20α=︒.故答案为40︒或20︒.【旋转60°】得等边例题3.如图,在直角坐标系中,点A 在y 轴上,△AOE 是等边三角形,点P 为x 轴正半轴上任意一点,连接AP ,将线段AP 绕点A 逆时针60°得到线段AQ ,连接QE 并延长交x 轴于点F .(1)问∠QFP 角度是否发生变化,若不变,请说明理由;(2)若AO =,OP =x ,请表示出点Q 的坐标(用含x 的代数式表示)【解答】(1)不变(2)【旋转90°】构造全等例题4.如图,在平面直角坐标系中,点(,)A a b 为第一象限内一点,且a b <.连结OA ,并以点A 为旋转中心把OA 逆时针转90︒后得线段BA .若点A 、B 恰好都在同一反比例函数的图象上,则b a的值等于多少?【解答】解:过A 作AE x ⊥轴,过B 作BD AE ⊥,90OAB ∠=︒ ,90OAE BAD ∴∠+∠=︒,90AOE OAE ∠+∠=︒ ,BAD AOE ∴∠=∠,在AOE ∆和BAD ∆中,90AOE BAD AEO BDA AO BA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AOE BAD AAS ∴∆≅∆,AE BD b ∴==,OE AD a ==,DE AE AD b a ∴=-=-,OE BD a b +=+,则(,)B a b b a +-;A 与B 都在反比例图象上,得到()()ab a b b a =+-,整理得:22b a ab -=,即2(10b b a a--=, △145=+=,∴152b a ±=, 点(,)A a b 为第一象限内一点,0a ∴>,0b >,则152b a +=.故答案为152+.【旋转180°】由中心对称得平行四边形例题5.如图所示,抛物线2:(0,0)m y ax b a b =+<>与x 轴于点A 、B (点A 在点B 的左侧),与y 轴交于点C .将抛物线m 绕点B 旋转180︒,得到新的抛物线n ,它的顶点为1C ,与x 轴的另一个交点为1A .(1)四边形11AC A C 是什么特殊四边形,请写出结果并说明理由;(2)若四边形11AC A C 为矩形,请求出a ,b 应满足的关系式.【解答】解:(1)当1a =-,1b =时,抛物线m 的解析式为:21y x =-+.令0x =,得:1y =.(0,1)C ∴.令0y =,得:1x =±.(1,0)A ∴-,(1,0)B ,C 与1C 关于点B 中心对称,∴抛物线n 的解析式为:22(2)143y x x x =--=-+;四边形11AC A C 是平行四边形.理由:连接AC ,1AC ,11A C ,C 与1C 、A 与1A 都关于点B 中心对称,1AB BA ∴=,1BC BC =,∴四边形11AC A C 是平行四边形.(2)令0x =,得:y b =.(0,)C b ∴.令0y =,得:20ax b +=,∴x =∴(A B ,∴AB BC ===.要使平行四边形11AC A C 是矩形,必须满足AB BC =,∴=,∴24(b b b a a⨯-=-,3ab ∴=-.a ∴,b 应满足关系式3ab =-.例题6.如图1,抛物线23y ax ax b =-+经过(1,0)A -,(3,2)C 两点,与y 轴交于点D ,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)如图2,过点(1,1)E -作EF x ⊥轴于点F ,将AEF ∆绕平面内某点旋转180︒后得MNQ ∆(点M ,N ,Q 分别与点A ,E ,F 对应),使点M ,N 在抛物线上,求点M ,N 的坐标.【解答】解:(1) 抛物线23y ax ax b =-+过(1,0)A -、(3,2)C ,03a a b ∴=++,299a a b =-+.解得12a =-,2b =,∴抛物线解析式213222y x x =-++.(2)如图2,由题意知,AEF ∆ 绕平面内某点旋转180︒后得MNQ ∆,∴设绕点I 旋转,联结AI ,NI ,MI ,EI ,AI MI = ,NI EI =,∴四边形AEMN 为平行四边形,//AN EM ∴且AN EM =.(1,1)E - 、(1,0)A -,∴设(,)M m n ,则(2,1)N m n -+M 、N 在抛物线上,213222n m m ∴=-++,2131(2)(2)222n m m +=--+-+,解得3m =,2n =.(3,2)M ∴,(1,3)N .【旋转过后落点问题】例题7.如图,Rt ABC ∆中,已知90C ∠=︒,48B ∠=︒,点D 在边BC 上,2BD CD =,把Rt ABC ∆绕点D 逆时针旋转(0180)m m ︒<<︒度后,如果点B 恰好落在初始Rt ABC ∆的边上,那么m =.【解答】解:当旋转后点B 的对应点B '落在AB 边上,如图1,Rt ABC ∆ 绕点D 逆时针旋转(0180)m m ︒<<︒度得到Rt △A B C ''',DB DB ∴'=,B DB m ∠'=,48DB B B ∴∠'=∠=︒,18084B DB DB B B ∴∠'=︒-∠'-∠=︒,即84m =︒;当点B 的对应点B '落在AB 边上,如图2,Rt ABC ∆ 绕点D 逆时针旋转(0180)m m ︒<<︒度得到Rt △A B C ''',DB DB ∴'=,B DB m ∠'=,2BD CD = ,2DB CD ∴'=,90C ∠=︒ ,30CB D ∴∠'=︒,60CDB ∴∠'=︒,18060120B DB ∴∠'=︒-︒=︒,即120m =︒,综上所述,m 的值为84︒或120︒.故答案为84︒或120︒.例题8.如图,在Rt ACB ∆中,90ACB ∠=︒,点O 在AB 上,且6CA CO ==,1cos 3CAB ∠=,若将ACB ∆绕点A 顺时针旋转得到Rt △AC B '',且C '落在CO 的延长线上,连接BB '交CO 的延长线于点F ,则BF =.【解答】解:过C 作CD AB ⊥于点D ,CA CO = ,AD DO ∴=,在Rt ACB ∆中,16cos 3AC CAB AB AB∠===,318AB AC ∴==,在Rt ADC ∆中:1cos 3AD CAB AC ∠==,123AD AC ∴==,24AO AD ∴==,18414BO AB AO ∴=-=-=,△AC B ''是由ACB ∆旋转得到,AC AC ∴=',AB AB =',CAC BAB ∠'=∠',1(180)2ACC CAC ∠'=︒-∠' ,1(180)2ABB BAB ∠'=︒-∠',ABB ACC ∴∠'=∠',∴在CAO ∆和BFO ∆中,BFO CAO ∠=∠,CA CO = ,COA CAO ∴∠=∠,又COA BOF ∠=∠ (对顶角相等),BOF BFO ∴∠=∠,14BF BO ∴==.故答案为:14.例题9.在平面直角坐标系xOy 中,抛物线26(0)y mx mx n m =++>与x 轴交于A ,B 两点(点A 在点B 左侧),顶点为C ,抛物线与y 轴交于点D ,直线BC 交y 轴于E ,且ABC ∆与AEC ∆这两个三角形的面积之比为2:3.(1)求点A 的坐标;(2)将ACO ∆绕点C 顺时针旋转一定角度后,点A 与B 重合,此时点O 的对应点O '恰好也在y 轴上,求抛物线的解析式.【解答】解:(1)如图1,抛物线26(0)y mx mx n m =++>∴对称轴3x =-,当:2:3ABC AEC S S ∆∆=时,:2:1ABC AEB S S ∆∆∴=,过点C 作CF x ⊥轴于F ,:2:1CF OE ∴=易知,BFC BOE ∆∆∽,::2:1BF OB CF OE ∴==,1OB ∴=,2BF =,5OA ∴=,(5,0)A ∴-,(1,0)B -;(2)(1,0)B - ,06m m n ∴=-+,5n m ∴=,(3,4)C m ∴--,如图2,作CF AB ⊥于F ,CP OD ⊥于P ,则四边形CFOP 是矩形,4OP CF m ∴==,3CP OF ==,OP O P '=,28OO OP m'∴==由旋转知,5OA BO '==,在Rt BOO '∆中,1OB =,根据勾股定理得,2285126m =-=,64m ∴=263656424y x x ∴=++【旋转+“恰好”问题】例题10.如图,在直角坐标系中,直线4y =+分别与x 轴、y 轴交于点M 、N ,点A 、B 分别在y 轴、x 轴上,且30B ∠=︒,4AB =,将ABO ∆绕原点O 顺时针转动一周,当AB 与直线MN 平行时点A 的坐标.【另外再可思考,当“AB 所在直线与MN 垂直时点A 的坐标”】【解答】解:①4AB = ,30ABO ∠=︒,122OA AB ∴==,903060BAO ∠=︒-︒=︒,120OAD ∴∠=︒,直线MN 的解析式为43y x =-+,30NMO ∴∠=︒,//AB MN ,30ADO NMD ∴∠=∠=︒,30AOC ∴∠=︒,112AC OA ∴==,OC ∴==∴点A 的坐标为,1);② 图②中的点A 与图①中的点A 关于原点对称,∴点A 的坐标为:(,1)-,故答案为:,1)、(1)-.例题11.在平面直角坐标系中,已知O 为坐标原点,点(3,0)A ,(0,4)B ,以点A 为旋转中心,把ABO ∆顺时针旋转,得ACD ∆.记旋转角为α.ABO ∠为β.(Ⅰ)如图①,当旋转后点D 恰好落在AB 边上时,求点D 的坐标;(Ⅱ)如图②,当旋转后满足//BC x 轴时,求α与β之间的数量关系:(Ⅲ)当旋转后满足AOD β∠=时,求直线CD 的解析式(直接写出结果即可).【解答】解:(1) 点(3,0)A ,(0,4)B ,得3OA =,4OB =,∴在Rt AOB ∆中,由勾股定理,得225AB OA OB =+=,根据题意,有3DA OA ==.如图①,过点D 作DM x ⊥轴于点M ,则//MD OB ,ADM ABO ∴∆∆∽.有AD AM DM AB AO BO==,得39355AD AM AO AB ==⨯= ,65OM ∴=,∴125MD =,∴点D 的坐标为6(5,12)5.(2)如图②,由已知,得CAB α∠=,AC AB =,ABC ACB ∴∠=∠,∴在ABC ∆中,1802ABC α∴=︒-∠,//BC x 轴,得90OBC ∠=︒,9090ABC ABO β∴∠=︒-∠=︒-,2αβ∴=;(3)若顺时针旋转,如图,过点D 作DE OA ⊥于E ,过点C 作CF OA ⊥于F ,AOD ABO β∠=∠= ,3tan 4DE AOD OE ∴∠==,设3DE x =,4OE x =,则43AE x =-,在Rt ADE ∆中,222AD AE DE =+,2299(43)x x ∴=+-,2425x ∴=,96(25D ∴,72)25,∴直线AD 的解析式为:247277y x =-, 直线CD 与直线AD 垂直,且过点D ,∴设724y x b =-+,把96(25D ,72)25代入得,72796252425b =-⨯+,解得4b =,互相垂直的两条直线的斜率的积等于1-,∴直线CD 的解析式为7424y x =-+.同理可得直线CD的另一个解析式为7424y x=-.【巩固练习】1.如图,在等边ABC ∆中,D 是边AC 上一点,连接BD .将BCD ∆绕点B 逆时针旋转60︒得到BAE ∆,连接ED .若10BC =,9BD =,则AED ∆的周长是.2.如图一段抛物线:(3)(03)y x x x =--,记为1C ,它与x 轴交于点O 和1A ;将1C 绕1A 旋转180︒得到2C ,交x 轴于2A ;将2C 绕2A 旋转180︒得到3C ,交x 轴于3A ,如此进行下去,直至得到10C ,若点(28,)P m 在第10段抛物线10C 上,则m 的值为.3.如图,Rt ABC ∆中,90C ∠=︒,30ABC ∠=︒,2AC =,ABC ∆绕点C 顺时针旋转得△11A B C ,当1A 落在AB 边上时,连接1B B ,取1BB 的中点D ,连接1A D ,则1A D 的长度是.4.如图,AOB ∆中,90AOB ∠=︒,3AO =,6BO =,AOB ∆绕点O 逆时针旋转到△A OB ''处,此时线段A B ''与BO 的交点E 为BO 的中点,求线段B E '的值.5.如图,在直角坐标系中,直线14:83l y x =+与y 轴交于点A ,与x 轴交于点B ,将直线1l 绕着点A 顺时针旋转45︒得到2l .求2l 的函数表达式.6.如图,四边形ABCO 是平行四边形,2OA =,6AB =,点C 在x 轴的负半轴上,将ABCO 绕点A 逆时针旋转得到ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上,若点D 在反比例函数(0)k y x x =<的图象上,则k 的值为.7.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(8,0)-,直线BC 经过点(8,6)B -,(0,6)C ,将四边形OABC 绕点O 按顺时针方向旋转a 度得到四边形OA B C ''',此时直线OA '、直线B C ''分别与直线BC 相交于点P 、Q .在四边形OABC 旋转过程中,若使12BP BQ =?则点P 的坐标为.8.如图,在BDE ∆中,90BDE ∠=︒,BD =,点D 的坐标为(5,0),15BDO ∠=︒,将BDE∆旋转到ABC ∆的位置,点C 在BD 上,则旋转中心的坐标为.9.已知正方形ABCD 的边长为5,E 在BC 边上运动,DE 的中点G ,EG 绕E 顺时针旋转90︒得EF ,问CE =时,A 、C 、F 在一条直线上.10.如图,一次函数1(0)2y x m m =-+>的图象与x 轴、y 轴分别交于点A 、B ,点C 在线段OA 上,点C 的横坐标为n ,点D 在线段AB 上,且2AD BD =,将ACD ∆绕点D 旋转180︒后得到△11A C D .(1)若点1C 恰好落在y 轴上,试求n m的值;(2)当4n =时,若△11A C D 被y 轴分得两部分图形的面积比为3:5,求该一次函数的解析式.11.在ABC ∆中,5AB AC ==,3cos 5ABC ∠=,将ABC ∆绕点C 顺时针旋转,得到△11A B C .(1)如图①,当点1B 在线段BA 延长线上时.①求证:11//BB CA ;②求△1AB C 的面积;(2)如图②,点E 是BC 边的中点,点F 为线段AB 上的动点,在ABC 绕点C 顺时针旋转过程中,点F 的对应点是1F ,求线段1EF 长度的最大值与最小值的差.12.如图(1),在ABC=,动点P在线段AC上以5/cm s的速度从=,3BC cmAB cmC∆中,90∠=︒,5点A运动到点C,过点P作PD AB',设点P的⊥于点D,将APD∆绕PD的中点旋转180︒得到△A DP 运动时间为()x s.(1)当点A'落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A BC'是以A B'为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5/cm s的速度从点B运动到点C,过点Q 作QE AB⊥于点E,将BQE',连结A B'',当直线A B''与ABC∆绕QE的中点旋转180︒得到△B EQ∆的一边垂直时,求线段A B''的长.13.如图,(0,2)A ,(1,0)B ,点C 为线段AB 的中点,将线段BA 绕点B 按顺时针方向旋转90︒得到线段BD ,抛物线2(0)y ax bx c a =++≠经过点D .(1)若该抛物线经过原点O ,且13a =-,求该抛物线的解析式;(2)在(1)的条件下,点(,)P m n 在抛物线上,且POB ∠锐角,满足90POB BCD ∠+∠<︒,求m 的取值范围.14.如图1,抛物线210y ax ax c =-+经过ABC ∆的三个顶点,已知//BC x 轴,点A 在x 轴上,点C 在y 轴上35OA BC =,且AC BC =.(1)求抛物线的解析式;(2)如图2,将AOC ∆沿x 轴对折得到1AOC ∆,再将1AOC ∆绕平面内某点旋转180︒后得△112(A O C A ,O ,1C 分别与点1A ,1O ,2C 对应)使点1A 、2C 在抛物线_P 上,求点1A 、2C 的坐标;15.点P为图①中抛物线22m>上任一点,将抛物线绕顶点G逆时针旋转90︒=-+为常数,0)y x mx m m2(后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.(1)若点Q的坐标为(-,求该抛物线的函数关系式;(2)如图②,若原抛物线恰好也经过A点,点Q在第一象限内,是否存在这样的点P使得AGQ∆是以AG 为底的等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.【解答】解:ABC ∆ 是等边三角形,10AC AB BC ∴===,BAE ∆ 由BCD ∆逆时针旋旋转60︒得出,AE CD ∴=,BD BE =,60EBD ∠=︒,10AE AD AD CD AC ∴+=+==,60EBD ∠=︒ ,BE BD =,BDE ∴∆是等边三角形,9DE BD ∴==,AED ∴∆的周长19AE AD DE AC BD =++=+=.故答案为:19.2.【解答】解:令0y =,则(3)0x x --=,解得10x =,23x =,1(3,0)A ∴,由图可知,抛物线10C 在x 轴下方,相当于抛物线1C 向右平移3927⨯=个单位,再沿x 轴翻折得到,∴抛物线10C 的解析式为(27)(273)(27)(30)y x x x x =---=--,(28,)P m 在第10段抛物线10C 上,(2827)(2830)2m ∴=--=-.3.【解答】解:90ACB ∠=︒ ,30ABC ∠=︒,2AC =,9060A ABC ∴∠=︒-∠=︒,4AB =,BC =,1CA CA = ,1ACA ∴∆是等边三角形,112AA AC BA ===,1160BCB ACA ∴∠=∠=︒,1CB CB = ,1BCB ∴∆是等边三角形,1BB ∴=,12BA =,1190A BB ∠=︒,1BD DB ∴==,1A D ∴==,.4.【解答】解:90AOB ∠=︒ ,3AO =,6BO =,AB ∴==AOB ∆ 绕顶点O 逆时针旋转到△A OB ''处,3AO A O ∴='=,A B AB ''==,点E 为BO 的中点,116322OE BO ∴==⨯=,OE A O ∴=',过点O 作OF A B ⊥''于F ,1362A OB S OF ''=⨯=⨯⨯ ,解得655OF =,在Rt EOF ∆中,5EF ==,OE A O =' ,OF A B ⊥'',22A E EF ∴'==(等腰三角形三线合一),B E A B A E ∴'=''-'=5.【解答】解: 直线483y x =+与y 轴交于点A ,与x 轴交于点B ,(0,8)A ∴、(6,0)B -,如图2,过点B 做BC AB ⊥交直线2l 于点C ,过点C 作CD x ⊥轴,在BDC ∆和AOB ∆中,CBD BAO CDB AOB BC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDC AOB AAS ∴∆≅∆,6CD BO ∴==,8BD AO ==,6814OD OB BD ∴=+=+=,C ∴点坐标为(14,6)-,设2l 的解析式为y kx b =+,将A ,C 点坐标代入,得1468k b b -+=⎧⎨=⎩,解得178k b ⎧=⎪⎨⎪=⎩,2l ∴的函数表达式为187y x =+;6.【解答】解:如图所示:过点D 作DM x ⊥轴于点M ,由题意可得:BAO OAF ∠=∠,AO AF =,//AB OC ,则BAO AOF AFO OAF ∠=∠=∠=∠,故60AOF DOM ∠=︒=∠,624OD AD OA AB OA =-=-=-= ,2MO ∴=,MD =,(2,D ∴--,2(k ∴=-⨯-=.故答案为:.7.【解答】解:存在这样的点P 和点Q ,使12BP BQ =.理由如下:过点Q 画QH OA ⊥'于H ,连接OQ ,则QH OC OC ='=,12POQ S PQ OC ∆= ,12POQ S OP QH ∆= ,PQ OP ∴=.设BP x =,12BP BQ =,2BQ x ∴=,如图4,当点P 在点B 左侧时,3OP PQ BQ BP x ==+=,在Rt PCO ∆中,222(8)6(3)x x ++=,解得13612x =+,23612x =-,(不符实际,舍去).3692PC BC BP ∴=+=+,1(92P ∴--,6),如图5,当点P 在点B 右侧时,OP PQ BQ BP x ∴==-=,8PC x =-.在Rt PCO ∆中,222(8)6x x -+=,解得254x =,257844PC BC BP ∴=-=-=,27(4P ∴-,6),综上可知,存在点136(92P --,6),27(4P -,6)使12BP BQ =.8.【解答】解:如图,AB 与BD 的垂直平分线的交点即为旋转中心P ,连接PD ,过P 作PF x ⊥轴于F .点C 在BD 上,∴点P 到AB 、BD 的距离相等,都是12BD ,即12⨯=45PDB ∴∠=︒,4PD ==,15BDO ∠=︒ ,451560PDO ∴∠=︒+︒=︒,30DPF ∴∠=︒,114222DF PD ∴==⨯=, 点D 的坐标是(5,0),523OF OD DF ∴=-=-=,由勾股定理得,PF ===∴旋转中心的坐标为(3,.故答案为:(3,.9.【解答】解:过F 作FN BC ⊥,交BC 延长线于N 点,连接AC ,90DCE ENF ∠=∠=︒ ,90DEC NEF ∠+∠=︒,90NEF EFN ∠+∠=︒,DEC EFN ∴∠=∠,Rt FNE Rt ECD ∴∆∆∽,DE 的中点G ,EG 绕E 顺时针旋转90︒得EF ,:2:1DE EF ∴=,:::2:1CE FN DE EF DC NE ∴===,2CE NF ∴=,1522NE CD ==.45ACB ∠=︒ ,∴当45NCF ∠=︒时,A 、C 、F 在一条直线上.则CNF ∆是等腰直角三角形,CN NF ∴=,2CE CN ∴=,22553323CE NE ∴==⨯=.53CE ∴=时,A 、C 、F 在一条直线上.故答案为:53.10.【解答】解:(1)由题意,得(0,)B m ,(2,0)A m ,如图,过点D 作x 轴的垂线,交x 轴于点E ,交直线11A C 于点F ,易知:23DE m =,2(3D m ,2)3m ,14(3C m n -,4)3m ,∴403m n -=,∴43n m =;(2)由(1)得,当3m >时,点1C 在y 轴右侧;当23m <<时,点1C 在y 轴左侧.①当3m >时,设11A C 与y 轴交于点P ,连接1C B ,由△11A C D 被y 轴分得两部分图形的面积比为3:5,S ∴△1:BA P S △13:1BC P =,11:3A P C P ∴=,∴,185m ∴=,11825y x ∴=-+;②当23m <<时,同理可得:11827y x =-+;综上所述,11827y x =-+或11825y x =-+.11.【解答】解:(1)①证明:AB AC = ,1B C BC =,1AB C B ∴∠=∠,B ACB ∠=∠,1AB C ACB ∠=∠ (旋转角相等),111B CA AB C ∴∠=∠,11//BB CA ∴;②过A 作AF BC ⊥于F ,过C 作CE AB ⊥于E ,如图①:AB AC = ,AF BC ⊥,BF CF ∴=,3cos 5ABC ∠=,5AB =,3BF ∴=,6BC ∴=,16B C BC ∴==,1318655BE B E ∴==⨯=,1365BB ∴=,424655CE =⨯=,13611555AB ∴=-=,∴△1AB C 的面积为:1112413225525⨯⨯=;(2)如图2,过C 作CF AB ⊥于F ,以C 为圆心CF 为半径画圆交BC 于1F ,1EF 有最小值,此时在Rt BFC ∆中,245CF =,1245CF ∴=,1EF ∴的最小值为249355-=;如图,以C 为圆心BC 为半径画圆交BC 的延长线于1F ,1EF 有最大值;此时11369EF EC CF =+=+=,∴线段1EF 的最大值与最小值的差为936955-=.12.【解答】解:(1)如图1, 在ABC ∆中,90C ∠=︒,5AB cm =,3BC cm =,4AC cm ∴=,当点A '落在边BC 上时,由题意得,四边形APA D '为平行四边形,PD AB ⊥ ,90ADP C ∴∠=∠=︒,APD ABC ∴∆∆∽,5AP x = ,4A P AD x ∴'==,45PC x =-,A PD ADP ∠'=∠ ,//A P AB ∴',∴△A PC ABC '∆∽,∴PC A P AC AB '=,即45445x x -=,解得:2041x =,∴当点A '落在边BC 上时,2041x =;(2)当A B BC '=时,222(58)(3)3x x -+=,解得:4012373x ±=.45x ,∴4073x -=;当A B A C '='时,58x =.(3)Ⅰ、当A B AB ''⊥时,如图6,DH PA AD '∴==,HE B Q EB ='=,2224235AB AD EB x x =+=⨯+⨯= ,514x ∴=,514A B QE PD x ∴''=-==;Ⅱ、当A B BC ''⊥时,如图7,5B E x ∴'=,57DE x =-,53cos 575x B x ∴==-,1546x ∴=,2523A B B D A D ∴''='-'=;Ⅲ、当A B AC ''⊥时,如图8,由(1)有,2041x =,12sin 41A B PA A ∴''='=;当A B AB ''⊥时,514x =,514A B ''=;当A B BC ''⊥时,1546x =,2546A B ''=;当A B AC ''⊥时,2053x =,2553A B ''=.13.【解答】解:(1)过点D 作DF x ⊥轴,垂足为F .90ABD ∠=︒ ,90DBF ABO ∴∠+∠=︒.又90OAB ABO ∠+∠=︒ ,DBF OAB ∴∠=∠.由旋转的性质可知AB BD =.在AOB ∆和BFD ∆中DBF OAB AOB BFD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AOB BFD ∴∆≅∆.1DF OB ∴==,2AO BF ==.(3,1)D ∴.把点D 和点O 的坐标代入213y x bx c =-++得:1300b c c -++=⎧⎨=⎩,解得:43b =,0c =.∴抛物线的解析式为21433y x x =-+.(2)如图2所示:点(0,2)A ,(1,0)B ,C 为线段AB 的中点,1(2C ∴,1).C 、D 两点的纵坐标为1,//CD x ∴轴.BCD ABD ∴∠=∠.∴当POB BAO ∠=∠时,恰好90POB BCD ∠+∠=︒.设点P 的坐标为214(,)33m m m -+.当点P 在x 轴上且POB BAO ∠=∠时,则1tan tan 2POB BAO ∠=∠=,即2141332m m m -+=,解得:52m =或0m =(舍去).当点P 位于x 轴的下方,点P '处时,且POB BAO ∠=∠时,则1tan tan 2POB BAO ∠=∠=,即2141332m m m -=,解得:112m =或0m =(舍去).POB ∠ 为锐角,4m ∴≠.由图形可知:当点P 在抛物线上P 与P '之间移动时,90POB BCD ∠+∠<︒.m ∴的取值范围是:51122m <<且4m ≠.14.【解答】解:(1)35OA BC = ,AC BC =∴设3OA k =,5(0)AC BC k k ==>4OC k∴= 当0x =时,210y ax ax c c=-+=(0,)C c ∴,即4OC c k==4c k ∴=3(4c A ∴-,50)(4c B ,)c 抛物线经过点A 、B ∴2233()10()04455(1044c c a a c c c a a c c ⎧---+=⎪⎪⎨⎪-+=⎪⎩解得:1128a c ⎧=-⎪⎨⎪=⎩∴抛物线解析式为:2158126y x x =-++(2)如图1,1AOC ∆旋转后得到△112A O C 的位置如图所示116O A OA ∴==,128O C OC ==,11//O A x 轴,12O C x ⊥轴设2C 坐标为215(,8)126t t t -++,则2115(6,)126A t t t +-+221515(6)(6)8126126t t t t ∴-++++=-+解得:10t =1A ∴坐标为(16,0),2C 坐标为(10,8).15.【解答】解:(1) 对于222y x mx m =-+,当0y =时,x m =,OG m ∴=,点Q 为点P 绕顶点G 逆时针旋转90︒后的对应点,P m ∴,2)m +,把P m +,2)m +代入222y x mx m =-+中,得222)2)m m m m m +=-+,4m ∴=,∴该抛物线的函数关系式为;2816y x x =-+;(2)存在,点Q 在第一象限内,AQ GQ =,如图2中,由题意可知OA OG =,∴m =,1m ∴=,∴点(0,1)A ,点A 的对应点(2,1)C ,(1,0)G ,∴直线CG 解析式为1y x =-,线段CG 的中垂线MN 解析式为2y x =-+,由2221y x y x x =-+⎧⎨=-+⎩解得15232x y ⎧=⎪⎪⎨⎪=⎪⎩或15232x y ⎧=⎪⎪⎨⎪=⎪⎩, 点P 在第一象限,∴点P坐标1(2+,32-.。