选择题(本大题共12小题
- 格式:doc
- 大小:305.50 KB
- 文档页数:6
2022年西藏中考数学试卷和答案解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项最符合题目要求,不选、错选或多选均不得分.1.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣2.(3分)下列图形中是轴对称图形的是()A.B.C.D.3.(3分)我国神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间.从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里.将数据232000000用科学记数法表示为()A.0.232×109B.2.32×109C.2.32×108D.23.2×108 4.(3分)在一次中学生运动会上,参加男子跳高的8名运动员的成绩分别为(单位:m):1.75 1.80 1.75 1.70 1.70 1.65 1.75 1.60本组数据的众数是()A.1.65B.1.70C.1.75D.1.805.(3分)下列计算正确的是()A.2ab﹣ab=ab B.2ab+ab=2a2b2C.4a3b2﹣2a=2a2b D.﹣2ab2﹣a2b=﹣3a2b2 6.(3分)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°7.(3分)已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠18.(3分)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.﹣5B.4C.7D.89.(3分)如图,AB是⊙O的弦,OC⊥AB,垂足为C,OD∥AB,OC=OD,则∠ABD的度数为()A.90°B.95°C.100°D.105°10.(3分)在同一平面直角坐标系中,函数y=ax+b与y=(其中a,b是常数,ab≠0)的大致图象是()A.B.C.D.11.(3分)如图,在菱形纸片ABCD中,E是BC边上一点,将△ABE沿直线AE翻折,使点B落在B'上,连接DB'.已知∠C=120°,∠BAE=50°,则∠AB'D的度数为()A.50°B.60°C.80°D.90°12.(3分)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是()A.﹣B.C.﹣D.二、填空题:本大题共6小题,每小题3分,共18分.请在每小题的空格中填上正确答案,错填、不填均不得分.13.(3分)比较大小:3.(选填“>”“<”“=”中的一个)14.(3分)如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为米.15.(3分)已知a,b都是实数,若|a+1|+(b﹣2022)2=0,则a b =.16.(3分)已知Rt△ABC的两直角边AC=8,BC=6,将Rt△ABC 绕AC所在的直线旋转一周形成的立体图形的侧面积为(结果保留π).17.(3分)周末时,达瓦在体育公园骑自行车锻炼身体,他匀速骑行了一段时间后停车休息,之后继续以原来的速度骑行.路程s (单位:千米)与时间t(单位:分钟)的关系如图所示,则图中的a=.18.(3分)如图,依下列步骤尺规作图,并保留作图痕迹:(1)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于E,F两点,作直线EF;(2)以点A为圆心,适当长为半径画弧,分别交AB,AC于点G,H,再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠BAC的内部相交于点O,画射线AO,交直线EF于点M.已知线段AB=6,∠BAC=60°,则点M到射线AC的距离为.三、参考答案题:本大题共9小题,共66分.参考答案应写出文字说明、证明过程或演算步骤.19.(5分)计算:|﹣|+()0﹣+tan45°.20.(5分)计算:•﹣.21.(5分)如图,已知AD平分∠BAC,AB=AC.求证:△ABD ≌△ACD.22.(7分)教育部在《大中小学劳动教育指导纲要(试行)》中明确要求:初中生每周课外生活和家庭生活中,劳动时间不少于3小时.某走读制初级中学为了解学生劳动时间的情况,对学生进行了随机抽样调查,并将调查结果制成不完整的统计图表,如图:平均每周劳动时间的频数统计表频数劳动时间/小时t<393≤t<4a4≤t<566t≥515请根据图表信息,回答下列问题.(1)参加此次调查的总人数是人,频数统计表中a =;(2)在扇形统计图中,D组所在扇形的圆心角度数是°;(3)该校准备开展以“劳动美”为主题的教育活动,要从报名的2男2女中随机挑选2人在活动中分享劳动心得,请用树状图或列表法求恰好抽到一名男生和一名女生的概率.23.(8分)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本和钢笔作为纪念品.已知每本笔记本比每支钢笔多2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?24.(8分)如图,在矩形ABCD中,AB=BC,点F在BC边的延长线上,点P是线段BC上一点(与点B,C不重合),连接AP 并延长,过点C作CG⊥AP,垂足为E.(1)若CG为∠DCF的平分线.请判断BP与CP的数量关系,并证明;(2)若AB=3,△ABP≌△CEP,求BP的长.25.(7分)某班同学在一次综合实践课上,测量校园内一棵树的高度.如图,测量仪在A处测得树顶D的仰角为45°,C处测得树顶D的仰角为37°(点A,B,C在一条水平直线上),已知测量仪高度AE=CF=1.6米,AC=28米,求树BD的高度(结果保留小数点后一位.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).26.(9分)如图,已知BC为⊙O的直径,点D为的中点,过点D作DG∥CE,交BC的延长线于点A,连接BD,交CE于点F.(1)求证:AD是⊙O的切线;(2)若EF=3,CF=5,tan∠GDB=2,求AC的长.27.(12分)在平面直角坐标系中,抛物线y=﹣x2+(m﹣1)x+2m与x轴交于A,B(4,0)两点,与y轴交于点C,点P是抛物线在第一象限内的一个动点.(1)求抛物线的解析式,并直接写出点A,C的坐标;(2)如图甲,点M是直线BC上的一个动点,连接AM,OM,是否存在点M使AM+OM最小,若存在,请求出点M的坐标,若不存在,请说明理由;(3)如图乙,过点P作PF⊥BC,垂足为F,过点C作CD⊥BC,交x轴于点D,连接DP交BC于点E,连接CP.设△PEF的面积为S1,△PEC的面积为S2,是否存在点P,使得最大,若存在,请求出点P的坐标,若不存在,请说明理由.参考答案与解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项最符合题目要求,不选、错选或多选均不得分.1.【参考答案】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选:D.【解析】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【参考答案】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.【解析】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【参考答案】解:232000000=2.32×108.故选:C.【解析】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【参考答案】解:参加男子跳高的8名运动员的成绩出现次数最多的是1.75,共出现3次,因此众数是1.75,故选:C.【解析】本题考查众数,掌握“一组数据中出现次数最多的数是众数”是正确判断的关键.5.【参考答案】解:A、2ab﹣ab=(2﹣1)ab=ab,计算正确,符合题意;B、2ab+ab=(2+1)ab=3ab,计算不正确,不符合题意;C、4a3b2与﹣2a不是同类项,不能合并,计算不正确,不符合题意;D、﹣2ab2与﹣a2b不是同类项,不能合并,计算不正确,不符合题意.故选:A.【解析】本题主要考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.6.【参考答案】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.【解析】此题考查了平行线的性质,熟记“两直线平行,同旁内角互补”是解题的关键.7.【参考答案】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.【解析】本题主要考查了一元二次方程的根的判别式,利用已知条件得到关于m的不等式组是解题的关键.8.【参考答案】解:由题意知,该三角形的两边长分别为3、4.不妨设第三边长为a,则4﹣3<a<4+3,即1<a<7.观察选项,只有选项B符合题意.故选:B.【解析】本题主要考查了三角形三边关系,绝对值,实数与数轴,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边,9.【参考答案】解:如图:连接OB,则OB=OD,∵OC=OD,∴OC=OB,∵OC⊥AB,∴∠OBC=30°,∵OD∥AB,∴∠BOD=∠OBC=30°,∴∠OBD=∠ODB=75°,∠ABD=30°+75°=105°.故选:D.【解析】本题考查了圆,平行线的性质,解直角三角形,等腰三角形的有关知识;正确作出辅助线、利用圆的半径相等是解题的关键.10.【参考答案】解:若a>0,b>0,则y=ax+b经过一、二、三象限,反比例函数y=(ab≠0)位于一、三象限,若a>0,b<0,则y=ax+b经过一、三、四象限,反比例函数数y=(ab≠0)位于二、四象限,若a<0,b>0,则y=ax+b经过一、二、四象限,反比例函数y=(ab≠0)位于二、四象限,若a<0,b<0,则y=ax+b经过二、三、四象限,反比例函数y=(ab≠0)位于一、三象限,故选:A.【解析】本题主要考查了一次函数和反比例函数的图象,熟知一次函数、反比例函数的性质是解题的关键.11.【参考答案】解:∵四边形ABCD是菱形,∠C=120°,∴∠BAD=∠C=120°,AB=AD,∵将△ABE沿直线AE翻折,使点B落在B'上,∴∠BAE=∠B'AE=50°,AB'=AB,∴∠BAB'=100°,AB'=AD,∴∠DAB'=20°,∴∠AB'D=∠ADB'=(180°﹣20°)÷2=80°,故选:C.【解析】本题主要考查了菱形的性质,翻折的性质,三角形内角和定理等知识,求出∠DAB'=20°是解题的关键.12.【参考答案】解:原数据可转化为:,﹣,,﹣,,﹣,…,∴=(﹣1)1+1×,﹣=(﹣1)2+1×,=(﹣1)3+1×,...∴第n个数为:(﹣1)n+1,∴第10个数为:(﹣1)10+1×=﹣.故选:A.【解析】本题主要考查数字的变化规律,参考答案的关键是由所给的数总结出存在的规律.二、填空题:本大题共6小题,每小题3分,共18分.请在每小题的空格中填上正确答案,错填、不填均不得分.13.【参考答案】解:∵4<7<9,∴<<,即2<<3,故答案为:<.【解析】本题考查估算无理数的大小,理解算术平方根的定义是正确参考答案的前提.14.【参考答案】解:∵D,E分别是AC,BC的中点,∴DE是△ABC的中位线.∴AB=2DE=2×25=50(米).故答案为:50.【解析】本题考查了三角形的中位线,掌握“三角形的中位线平行于第三边,并且等于第三边的一半”是解决本题的关键.15.【参考答案】解:∵|a+1|+(b﹣2022)2=0,∴a+1=0,b﹣2022=0,即a=﹣1,b=2022,∴a b=(﹣1)2022=1,故答案为:1.【解析】本题考查绝对值、偶次幂的非负性,求出a、b的值是正确参考答案的前提.16.【参考答案】解:由勾股定理得AB=10,∵BC=6,∴圆锥的底面周长=12π,旋转体的侧面积=×12π×10=60π,故答案为:60π.【解析】本题考查了勾股定理,圆的周长公式和扇形面积公式求解,熟练掌握公式是解题的关键.17.【参考答案】解:由达瓦20分钟所走的路程为6千米,可得速度为6÷20=0.3(千米/分钟),休息15分钟后又骑行了9千米所用时间为9÷0.3=30(分钟),∴a=35+30=65.故答案为:65.【解析】本题考查了函数图象,解决本题的关键是读懂函数图象,利用数形结合的思想方法参考答案.18.【参考答案】解:如图所示:根据题意可知:EF是线段AB的垂直平分线,AO是∠BAC的平分线,∵AB=6,∠BAC=60°,∴∠BAO=∠CAO=∠BAC=30°,AD=AB=3,∴AM=2MD,在Rt△ADM中,(2MD)2=MD2+AD2,即4MD2=MD2+32,∴MD=,∵AM是∠AOB的平分线,MD⊥AB,∴点M到射线AC的距离为.故答案为:.【解析】本题考查作图﹣基本作图,线段的垂直平分线的性质,角平分线的性质等知识,解题的关键是理解题意灵活运用基本作图的知识解决问题.三、参考答案题:本大题共9小题,共66分.参考答案应写出文字说明、证明过程或演算步骤.19.【参考答案】解:原式=﹣2+1=2﹣.【解析】此题考查了实数的运算,熟练掌握运算法则和方法是解本题的关键.20.【参考答案】解:原式=•﹣=﹣=1.【解析】本题考查了分式的混合运算,准确熟练地进行计算和计算顺序是解题的关键.21.【参考答案】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【解析】本题主要考查了全等三角形的判定,角平分线的定义等知识,熟练掌握全等三角形的判定定理是解题的关键.22.【参考答案】解:(1)参加此次调查的总人数是:9÷6%=150(人),频数统计表中a=150×40%=60,故答案为:150,60;(2)D组所在扇形的圆心角度数是:360°×=36°,故答案为:36;(3)画树状图如下:共有12种等可能的结果,其中恰好抽到一名男生和一名女生的结果有8种,∴恰好抽到一名男生和一名女生的概率为=.【解析】此题考查的是用树状图法求概率以及频数分布表和扇形统计图.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.23.【参考答案】解:(1)设每支钢笔x元,依题意得:,解得:x=10,经检验:x=10是原方程的解,故笔记本的单价为:10+2=12(元),答:笔记本每本12元,钢笔每支10元;(2)设购买y本笔记本,则购买钢笔(50﹣y)支,依题意得:12y+10(50﹣y)≤540,解得:y≤20,故最多购买笔记本20本.【解析】本题主要考查一元一次不等式的应用,分式方程的应用,参考答案的关键是理解清楚题意,找到等量关系.24.【参考答案】解:(1)BP=CP,理由如下:∵CG为∠DCF的平分线,∴∠DCG=∠FCG=45°,∴∠PCE=45°,∵CG⊥AP,∴∠E=∠B=90°,∴∠CPE=45°=∠APB,∴∠BAP=∠APB=45°,∴AB=BP,∵AB=BC,∴BC=2AB,∴BP=PC;(2)∵△ABP≌△CEP,∴AP=CP,∵AB=3,∵BC=2AB=6,∵AP2=AB2+BP2,∴(6﹣BP)2=9+BP2,∴BP=.【解析】本题考查了矩形的性质,全等三角形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.25.【参考答案】解:连接EF,交BD于点M,则EF⊥BD,AE=BM=CF=1.6米,在Rt△DEM中,∠DEM=45°,∴EM=DM,设DM=x米,则EM=AB=x米,FM=BC=AC﹣AB=(28﹣x)米,在Rt△DFM中,tan37°=,即≈0.75,解得x=12,经检验,x=12是原方程的根,即DM=12米,∴DB=12+1.6=13.6(米),答:树BD的高度为13.6米.【解析】本题考查解直角三角形的应用,掌握直角三角形的边角关系是解决问题的前提,构造直角三角形是解决问题的关键.26.【参考答案】(1)证明:如图,连接OD,BE,∵点D为的中点,∴=,∴∠CBD=∠EBD,∵OB=OD,∴∠ODB=∠CBD,∴∠ODB=∠EBD,∴OD∥BE,∵BC为⊙O的直径,∴∠CEB=90°,∴CE⊥BE,∴OD⊥CE,∵AD∥CE,∴AD⊥OD,∵OD是⊙O的半径,∴AD是⊙O的切线;(2)解:∵DG∥CE,∴∠BFE=∠GDB,∠A=∠ECB,∵tan∠GDB=2,∴tan∠BFE=2,在Rt△BEF中,EF=3,tan∠BFE=,∴BE=6,∵EF=3,CF=5,∴CE=EF+CF=8,∴BC==10,∴OD=OC=5,在Rt△BCE中,sin∠ECB===,∴sinA=sin∠ECB=,在Rt△AOD中,sinA==,OD=5,∴OA=,∴AC=OA﹣OC=.【解析】此题是圆的综合题,考查了平行线的性质、切线的判定、圆周角定理、等腰三角形的性质、解直角三角形等知识,熟练掌握切线的判定、圆周角定理并作出合理的辅助线是解题的关键.27.【参考答案】解:(1)将B(4,0)代入y=﹣x2+(m﹣1)x+2m,∴﹣8+4(m﹣1)+2m=0,解得m=2,∴y=﹣x2+x+4,令x=0,则y=4,∴C(0,4),令y=0,则﹣x2+x+4=0,解得x=4或x=﹣2,∴A(﹣2,0);(2)存在点M使AM+OM最小,理由如下:作O点关于BC的对称点O',连接AO'交BC于点M,连接BO',由对称性可知,OM=O'M,∴AM+OM=AM+O'M≥AO',当A、M、O'三点共线时,AM+OM有最小值,∵B(4,0),C(0,4),∴OB=OC,∴∠CBO=45°,由对称性可知∠O'BM=45°,∴BO'⊥BO,∴O'(4,4),设直线AO'的解析式为y=kx+b,∴,解得,∴y=x+,设直线BC的解析式为y=k'x+4,∴4k'+4=0,∴k'=﹣1,∴y=﹣x+4,联立方程组,解得,∴M(,);(3)在点P,使得最大,理由如下:连接PB,过P点作PG∥y轴交CB于点G,设P(t,﹣t2+t+4),则G(t,﹣t+4),∴PG=﹣t2+2t,∵OB=OC=4,∴BC=4,∴S△BCP=×4×(﹣t2+2t)=﹣t2+4t=×4×PF,∴PF=﹣t2+t,∵CD⊥BC,PF⊥BC,∴PF∥CD,∴=,∵=,∴=,∵B、D两点关于y轴对称,∴CD=4,∴=﹣(t2﹣4t)=﹣(t﹣2)2+,∵P点在第一象限内,∴0<t<4,∴当t=2时,有最大值,此时P(2,4).【解析】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,轴对称求最短距离的方法,平行线的性质是解题的关键.。
山东省泰安市2021年中考数学试卷一、选择题(本大题共12小题,每小题选对得4分.)(共12题;共48分)1.下列各数:﹣4,﹣2.8,0,|﹣4|,其中比﹣3小的数是()A. ﹣4B. |﹣4|C. 0D. ﹣2.82.下列运算正确的是()A. 2x2+3x3=5x5B. (﹣2x)3=﹣6x3C. (x+y)2=x2+y2D. (3x+2)(2﹣3x)=4﹣9x23.如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A. B. C. D.4.如图,直线m∥n,三角尺的直角顶点在直线m上,且三角尺的直角被直线m平分,若∠1=60°,则下列结论错误的是()A. ∠2=75°B. ∠3=45°C. ∠4=105°D. ∠5=130°5.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A. 7h,7hB. 8h,7.5hC. 7h,7.5hD. 8h,8h6.如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是优弧GE上一点,∠CDE=18°,则∠GFE的度数是()A. 50°B. 48°C. 45°D. 36°7.已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是()A. k>﹣14B. k<14C. k>﹣14且k≠0 D. k<14且k≠08.将抛物线y=﹣x2﹣2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过()A. (﹣2,2)B. (﹣1,1)C. (0,6)D. (1,﹣3)9.如图,四边形ABCD是⊙O的内接四边形,∠B=90°,∠BCD=120°,AB=2,CD=1,则AD的长为()A. 2 √3﹣2B. 3﹣√3C. 4﹣√3D. 210.如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:①AM=CN;②若MD=AM,∠A=90°,则BM=CM;③若MD=2AM,则S△MNC=S△BNE;④若AB=MN,则△MFN与△DFC全等.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 4个11.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:√3≈1.732)()A. 136.6米B. 86.7米C. 186.7米D. 86.6米12.如图,在矩形ABCD中,AB=5,BC=5 √3,点P在线段BC上运动(含B、C两点),连接AP,以点A为中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为()A. 52B. 5√2 C. 5√33D. 3二、填空题(本大题共6小题,满分18分。
中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。
)1.(3分)﹣8的相反数是()A.﹣8 B.8 C.D.2.(3分)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣63.(3分)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.64.(3分)已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°5.(3分)下列各式计算正确的是()A.a+2a=3a B.x4•x3=x12C.()﹣1=﹣D.(x2)3=x56.(3分)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2) C.(2,0) D.(2,2)7.(3分)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF 对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30°B.35°C.40°D.45°8.(3分)一组数据:3,4,5,x,8的众数是5,则这组数据的方差是()A.2 B.2.4 C.2.8 D.39.(3分)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A.B.C.D.10.(3分)九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.l1人C.12人D.15人11.(3分)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:512.(3分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999 B.10000 C.10001 D.10002二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)式子在实数范围内有意义,则x的取值范围是.14.(3分)如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.15.(3分)已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是.16.(3分)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=度.17.(3分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.18.(3分)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则的值为.三、解答题(本大题共8小题,满分66分,)19.(6分)计算:﹣25÷23+|﹣1|×5﹣(π﹣3.14)020.(6分)解方程:2x2﹣4x﹣30=0.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.23.(8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)24.(10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?25.(10分)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.26.(12分)如图,抛物线y=ax2+bx﹣与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长DA交抛物线于点E.(1)求此抛物线的解析式;(2)若E点在第一象限,过点E作EF⊥x轴于点F,△ADO与△AEF的面积比为=,求出点E的坐标;(3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M、N两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。
八年级上册数学第六章综合素质评价一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.小铭某周每天的睡眠时间(单位:小时)为8,9,9,7,7,8,8.则小铭该周每天的平均睡眠时间是()A.7小时B.7.5小时C.8小时D.9小时2.一次演讲比赛中,评委从演讲内容、演讲能力、演讲效果三个方面为选手打分,已知某位选手三项得分依次为88,72,50,若将演讲内容、演讲能力、演讲效果三项得分按1:4:3的比例确定各人的最终成绩,则这位选手的最终成绩为()A.68.24 B.64.56 C.65.75 D.67.32 3.某校举办“体育艺术节”比赛,有16名学生参加,规定前8名的学生进入决赛,某选手知道自己的成绩,他想知道自己能否进入决赛,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数4.在对一组数据进行分析时,小华列出了方差的计算公式:s2=15[(5-͞x)2+(4-͞x)2+(4-͞x)2+(3-͞x)2+(3-͞x)2],对于这组数据,下列说法错误的是()A.方差是0.56 B.中位数是4C.平均数是3.8 D.众数是45.已知甲样本的平均数͞x甲=50,方差s2甲=0.06,乙样本的平均数͞x乙=50,方差s2乙=0.1,那么()A.甲、乙两个样本的波动一样大B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大D.无法比较甲、乙两个样本波动的大小6.某校八年级的8个班级向“希望工程”捐献图书的本数如下表:班级一班二班三班四班五班六班七班八班本数50 96 100 90 90 120 500 90这组数据的中位数和众数分别是()A.93,90 B.93,500 C.90,90 D.90,500 7.某年广州5月8日~14日的气温折线统计图如图所示,这一周中温差最大的是()A.5月9日B.5月11日C.5月12日D.5月14日(第7题)(第12题)(第13题)8.某篮球队5名场上队员的身高(单位:cm)为183,185,188,190,194.现用一名身高为190 cm的队员换下场上身高为185 cm的队员,与换人前相比,场上队员身高的()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大9.某制鞋厂准备生产一批成人男鞋,随机调查了120名成年男子,得到所需鞋号和人数如下表:鞋号/ cm 24 24.5 25 25.5 26 26.5 27人数8 15 20 25 30 20 2,下列说法正确的是()A.因为所需鞋号为27 cm的人数太少,所以27 cm的鞋可以不生产B.因为平均数约是25.5 cm,所以这批男鞋可以一律按25.5 cm的鞋号生产C.因为中位数是25.5 cm,所以25.5 cm的鞋的生产量应占首位D.因为众数是26 cm,所以26 cm的鞋的生产量应占首位10.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中三天的个数被墨汁覆盖了,但小强已经分析出这组数据的唯一众数是13,平均数是12,那么这组数据的方差是()A.107B.97C.87D.111.在一次歌咏比赛中,五位评委给参赛的A班打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.z>y>x B.x>z>y C.y>x>z D.y>z>x 12.10个人围成一圈做游戏,游戏的规则如下:每个人心里都想一个数,并把自己想的数告诉相邻的两个人,然后每个人将与自己相邻的两个人告诉自己的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.-2 C.4 D.-4二、填空题:本大题共6小题,每小题4分,共24分.13.某广场便民服务站统计了某月1至6日每天的用水量,并绘制了如图所示的统计图,那么这6天用水量的中位数是__________.14.某校运动会入场式的得分是由各班入场时,评委从服装、动作和口号三个方面分别给分,三项得分按3:3:4的比例计算得到的.若8(1)班服装、动作、口号三项得分分别是90分,92分,86分,则该班的入场式的得分是________分.15.甲、乙、丙三个旅游团的游客的年龄的方差分别是s2甲=1.4,s2乙=18.8,s2丙=2.5,导游小爽最喜欢带游客年龄相近的旅游团,若在这三个旅游团中选择一个,则他会选________旅游团.16.某校组织了一分钟跳绳比赛活动,体育老师随机抽取了10名参赛学生的成绩,将这组数据整理后制成如下统计表:一分钟跳绳个数(个) 172 175 178 182学生人数(名) 2 5 2 1则这10名参赛学生的成绩的众数是________.17.对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数.现抽取8个排球,通过检测所得数据如下(单位:g):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__________.18.已知一组数据x1,x2,x3,x4,x5的平均数是3,方差是4,那么另一组数据3x1-4,3x2-4,3x3-4,3x4-4,3x5-4的平均数和方差的和为________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.某区教育局为了了解初三男生引体向上的成绩情况,随机抽测了该区部分学校的初三男生,并将测试成绩绘制成了如下两幅不完整的统计图.请你根据图中的信息,解答下列问题:(1)扇形统计图中a=________,并补全条形统计图.(2)在这次抽测中,测试成绩的众数和中位数分别是多少?20.2021年9月17日,神舟十二号载人飞船返回舱在东风着陆场成功着陆,中国空间站阶段首次载人飞行任务取得圆满成功.某校组织了“中国梦·航天情”系列活动.下面是八年级创新、实验两个班各项目的成绩(单位:分):知识竞赛演讲比赛版面创作创新班85 91 88实验班90 84 87(1)如果将各个班三个项目成绩的平均数作为其最后成绩,那么哪个班将获胜?(2)如果将知识竞赛、演讲比赛、版面创作三个项目的成绩按532的比例确定各个班的最后成绩,那么哪个班将获胜?四、解答题(二):本大题共2小题,每小题10分,共20分.21.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,两人的射击成绩如图所示.(1)甲的射击成绩的平均数是________环,乙的射击成绩的中位数是__________环;(2)请分别计算甲、乙两名射击运动员射击成绩的方差,并根据计算结果判断谁的射击成绩更稳定.22.某数学小组对当地甲、乙两家网约车公司司机的月收入进行了抽样调查.从甲、乙两家公司各随机抽取10名司机,他们的月收入情况如图所示.根据以上信息,整理分析数据如下表:平均数/千元中位数/千元众数/千元方差甲公司a7 c d乙公司7 b 5 7.6(1)(2)某人打算从甲、乙两家公司中选择一家做网约车司机,你建议他选哪家公司?说明理由.五、解答题(三):本大题共2小题,每小题12分,共24分.23.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩如图所示.(1)请根据图中信息填写下表.平均数/环中位数/环命中9环及以上的次数甲____ 7 ____乙7 ____ ____(2)②从平均数和命中9环及以上的次数看,谁的成绩好一些?③从折线图上两人成绩的走势看,谁更有潜力?24.某企业对每个员工在当月生产某种产品的件数统计如图,设产品件数为x,该企业规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25时为称职;当x≥25时为优秀.根据统计图解答下列问题:(1)试求出优秀员工人数所占百分比;(2)求优秀和称职的员工的月产品件数的中位数和众数;(3)为了调动员工的工作积极性,该企业决定制定月产品件数奖励标准,凡达到或超过这个标准的员工将得到奖励.要使优秀和称职的员工中至少有一半得到奖励,你认为月产品件数奖励标准应定为多少?请简述理由.答案一、1.C2.C3.A4.D5.C6.A7.D8.C 9.D10.C11.D12.B二、13.31.5 L14.8915.甲16.175个17.2.5点拨:这组数据的平均数=1-2+1+0+2-3+0+18=0(g),则方差=18[(1-0)2+(-2-0)2+(1-0)2+…+(1-0)2]=2.5.18.41点拨:因为数据x1,x2,x3,x4,x5的平均数是3,方差是4,所以数据3x1-4,3x2-4,3x3-4,3x4-4,3x5-4的平均数是3×3-4=5,方差是4×32=36.所以数据3x1-4,3x2-4,3x3-4,3x4-4,3x5-4的平均数和方差的和为5+36=41.三、19.解:(1)25补全条形统计图如图:(2)测试成绩的众数是5个,中位数是5个.20.解:(1)创新班的最后成绩是13×(85+91+88)=88(分),实验班的最后成绩是13×(90+84+87)=87(分),因为87<88,所以创新班将获胜.(2)创新班的最后成绩是85×5+91×3+88×25+3+2=87.4(分),实验班的最后成绩是90×5+84×3+87×25+3+2=87.6(分),因为87.6>87.4,所以实验班将获胜.四、21.解:(1)8;7.5(2)s2甲=110×[(6-8)2+3×(7-8)2+3×(8-8)2+(9-8)2+2×(10-8)2]=1.6.x乙=110×(7×5+3×9+8+10)=8(环),s2乙=110×[5×(7-8)2+(8-8)2+3×(9-8)2+(10-8)2]=1.2,因为s2甲>s2乙,所以乙的射击成绩更稳定.22.解:(1)7.3;5.5;7;1.41(2)选甲公司.理由如下:因为甲公司司机的月收入的平均数、中位数、众数均大于乙公司,且甲公司司机的月收入的方差小于乙公司,更稳定.(理由合理即可)五、23.解:(1)(从上到下,从左到右)7;1;7.5;3(2)①从平均数和中位数看,乙的成绩好一些,因为甲、乙两人成绩的平均数相同,乙的成绩的中位数比甲大.②从平均数和命中9环及以上的次数看,乙的成绩好一些,因为甲、乙两人成绩的平均数相同,乙命中9环及以上的次数比甲多.③由折线图可知,乙的成绩呈上升趋势,而甲的成绩在平均数的上下波动,所以乙更有潜力.24.解:(1)根据条形统计图可知,优秀员工人数为3,总人数为30,则优秀员工人数所占百分比为330×100%=10%.(2)优秀和称职的员工的月产品件数的中位数为22,众数为20.(3)月产品件数奖励标准应定为22.由(2)知,优秀和称职的员工的月产品件数的中位数为22,即优秀和称职的员工中至少有一半的月产品件数大于或等于22,所以月产品件数奖励标准应定为22.。
2022年天津中考数学一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 计算(-3)+(-2)的结果等于 ( )A.-5B.-1C.5D.12. tan 45°的值等于 ( )A.2B.1C.√22D.√333. 将290 000用科学记数法表示应为 ( )A.0.29×106B.2.9×105C.29×104D.290×1034. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A B C D5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )AB C D6. 估计√29的值在 ( )A.3和4之间B.4和5之间C.5和6之间D.6和7之间7. 计算a+1a+2+1a+2的结果是( )A.1B.2a+2C.a+2 D.aa+28.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是() A.x1<x2<x3 B.x2<x3<x1C.x1<x3<x2D.x2<x1<x39.方程x2+4x+3=0的两个根为()A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-310.如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)11.如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A 逆时针旋转得到△ACN,点M的对应点为N,连接MN,则下列结论一定正确的是()A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC12.已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(大题共6小题,每小题3分,共18分)13.计算m·m7的结果等于.14.计算(√19+1)(√19-1)的结果等于.15.不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别。
2022年四川省泸州市中考数学试卷和答案解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣=()A.﹣2B.C.D.22.(3分)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107 3.(3分)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.4.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,点B 在直线b上,AB⊥AC,若∠1=130°,则∠2的度数是()A.30°B.40°C.50°D.70°5.(3分)下列运算正确的是()A.a2•a3=a6B.3a﹣2a=1C.(﹣2a2)3=﹣8a6D.a6÷a2=a36.(3分)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,34 7.(3分)与2+最接近的整数是()A.4B.5C.6D.78.(3分)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是()A.y=﹣x2+x B.y=﹣x2﹣4C.y=﹣x2+2021x﹣2022D.y=﹣x2+x+19.(3分)已知关于x的方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,若(x1+1)(x2+1)=3,则m的值为()A.﹣3B.﹣1C.﹣3或1D.﹣1或3 10.(3分)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO 的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是()A.1B.C.2D.411.(3分)如图,在平面直角坐标系xOy中,矩形OABC的顶点B 的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为()A.y=3x B.y=﹣x+C.y=﹣2x+11D.y=﹣2x+12 12.(3分)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG 的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)点(﹣2,3)关于原点的对称点的坐标为.14.(3分)若(a﹣2)2+|b+3|=0,则ab=.15.(3分)若方程+1=的解使关于x的不等式(2﹣a)x﹣3>0成立,则实数a的取值范围是.16.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,半径为1的⊙O在Rt△ABC内平移(⊙O可以与该三角形的边相切),则点A到⊙O上的点的距离的最大值为.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:()0+2﹣1+cos45°﹣|﹣|.18.(6分)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.19.(6分)化简:(+1)÷.四、本大题共2个小题,每小题7分,共14分.20.(7分)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,参考答案下列问题:频数劳动时间t(单位:小时)0.5≤t<1121≤t<1.5a1.5≤t<2282≤t<2.5162.5≤t≤34(1)m=,a=;(2)若该校学生有640人,试估计劳动时间在2≤t≤3范围的学生有多少人?(3)劳动时间在2.5≤t≤3范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.21.(7分)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.(1)求b的值;(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.23.(8分)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,点C在以AB为直径的⊙O上,CD平分∠ACB 交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.(1)求证:FD∥AB;(2)若AC=2,BC=,求FD的长.25.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c 经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【参考答案】解:.故选:A.【解析】本题考查了算术平方根,掌握算术平方根的定义是参考答案本题的关键.2.【参考答案】解:75500000=7.55×107,故选:C.【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【参考答案】解:从物体上面看,底层有一个正方形,上层有四个正方形.故选:C.【解析】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,参考答案时学生易将三种视图混淆而错误地选其它选项.4.【参考答案】解:如图所示,∵直线a∥b,∴∠1=∠DAC,∵∠1=130°,∴∠DAC=130°,又∵AB⊥AC,∴∠BAC=90°,∴∠2=∠DAC﹣∠BAC=130°﹣90°=40°.故选:B.【解析】本题考查平行线的性质,参考答案本题的关键是明确平行线的性质,求出∠DAC的度数.5.【参考答案】解:A.a2•a3=a5,故本选项不合题意;B.3a﹣2a=a,故本选项不合题意;C.(﹣2a2)3=﹣8a6,故本选项符合题意;D.a6÷a2=a4,故本选项不合题意;故选:C.【解析】本题考查了同底数幂的乘除法,幂的乘方与积的乘方以及合并同类项,掌握相关运算法则是参考答案本题的关键.6.【参考答案】解:∵35出现的次数最多,∴这组数据的众数是35,把这些数从小到大排列,排在中间的两个数分别为33、35,故中位数为,故选:D.【解析】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【参考答案】解:∵3<<4,而15﹣9>16﹣15,∴更接近4,∴2+更接近6,故选:C.【解析】本题考查估算无理数的大小,理解算术平方根的定义以及数的大小关系是正确参考答案的前提.8.【参考答案】解:∵将抛物线y=﹣x2+x+1经过平移后开口方向不变,开口大小也不变,∴抛物线y=﹣x2+x+1经过平移后不可能得到的抛物线是y=﹣x2+x+1.故选:D.【解析】本题考查了二次函数图象与几何变换,由平移规律得出a 不变是解题的关键.9.【参考答案】解:∵方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2,∵(x1+1)(x2+1)=x1x2+x1+x2+1=3,∴m2+2m﹣1+1=3,解得:m1=1,m2=﹣3,∵方程有两实数根,∴Δ=(2m﹣1)2﹣4m2≥0,即m≤,∴m2=1(不合题意,舍去),∴m=﹣3;故选:A.【解析】本题考查了根与系数的关系及根的判别式,难度适中,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.10.【参考答案】解:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥AC,∴点D是AC的中点,∴OD是△ABC的中位线,∴OD∥BC,且OD=BC,设OD=x,则BC=2x,∵DE=4,∴OE=4﹣x,∴AB=2OE=8﹣2x,在Rt△ABC中,由勾股定理可得,AB2=AC2+BC2,∴(8﹣2x)2=(4)2+(2x)2,解得x=1.∴BC=2x=2.故选:C.【解析】本题主要考查中位线的性质与判定,垂径定理,勾股定理等知识,设出参数,根据勾股定理得出方程是解题关键.11.【参考答案】解:连接OB,AC,它们交于点M,连接AE,BF,它们交于点N,则直线MN为符合条件的直线l,如图,∵四边形OABC是矩形,∴OM=BM.∵B的坐标为(10,4),∴M(5,2),AB=10,BC=4.∵四边形ABEF为菱形,BE=AB=10.过点E作EG⊥AB于点G,在Rt△BEG中,∵tan∠ABE=,∴,设EG=4k,则BG=3k,∴BE==5k,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4.∴E(4,12).∵B的坐标为(10,4),AB∥x轴,∴A(0,4).∵点N为AE的中点,∴N(2,8).设直线l的解析式为y=ax+b,∴,解得:,∴直线l的解析式为y=﹣2x+12,故选:D.【解析】本题主要考查了矩形和菱形的性质,中点坐标的特征,直角三角形的边角关系定理,利用待定系数法确定函数的解析式是解题的关键.12.【参考答案】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴四边形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FM⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.【解析】本题考查正方形的性质、相似三角形的判定和性质,参考答案本题的关键是明确题意,利用数形结合的思想参考答案.二、填空题(本大题共4个小题,每小题3分,共12分).13.【参考答案】解:∵点M(﹣2,3)关于原点对称,∴点M(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案为(2,﹣3).【解析】本题考查关于原点对称的点的坐标特征,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.14.【参考答案】解:由题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,ab=2×(﹣3)=﹣6.故答案为:﹣6.【解析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.【参考答案】解:+1=,+=,=0,解得:x=1,∵x﹣2≠0,2﹣x≠0,∴x=1是分式方程的解,将x=1代入不等式(2﹣a)x﹣3>0,得:2﹣a﹣3>0,解得:a<﹣1,∴实数a的取值范围是a<﹣1,故答案为:a<﹣1.【解析】本题考查分式方程的解,不等式的解集,解题的关键是正确求出分式方程的解,要注意分母不能为0.16.【参考答案】解:当⊙O与BC、BA都相切时,连接AO并延长交⊙O于点D,则AD为点A到⊙O上的点的距离的最大值,设⊙O与BC、BA的切点分别为E、F,连接OE、OF,则OE⊥BC,OF⊥AB,∵AC=6,BC=2,∴tan∠ABC==,AB==4,∴∠ABC=60°,∴∠OBF=30°,∴BF==,∴AF=AB﹣BF=3,∴OA==2,∴AD=2+1,故答案为:2+1.【解析】本题考查的是切线的性质、直角三角形的性质、切线长定理,根据题意得出AD为点A到⊙O上的点的距离的最大值是解题的关键.三、本大题共3个小题,每小题6分,共18分.17.【参考答案】解:原式=1++×﹣=1++1﹣=1+1=2.【解析】本题考查实数的运算,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值,解题的关键是熟练掌握知识点,正确计算.18.【参考答案】证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴DE=BF.【解析】本题考查平行四边形的性质、全等三角形的判定与性质,参考答案本题的关键是证明△ADE和△CBF全等.19.【参考答案】解:原式====.【解析】本题考查了分式的混合运算,掌握分式的通分以及相关乘法公式是参考答案本题的关键.四、本大题共2个小题,每小题7分,共14分.20.【参考答案】解:(1)m=12÷15%=80,a=80﹣12﹣28﹣16﹣4=20;故答案为:80;20;(2)640×=160(人),所以估计劳动时间在2≤t≤3范围的学生有160人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率==.【解析】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.21.【参考答案】解:(1)设每件A种农产品的价格是x元,每件B 种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B 种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.【解析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.五、本大题共2个小题,每小题8分,共16分.22.【参考答案】解:(1)∵点A在反比例函数y=上,且A的纵坐标为6,∴点A(2,6),∵直线y=﹣x+b经过点A,∴6=﹣×2+b,∴b=9;(2)如图,设直线AB与x轴的交点为D,设点C(a,0),∵直线AB与x轴的交点为D,∴点D(6,0),由题意可得:,∴,,∴点B(4,3),∵S△ACB=S△ACD﹣S△BCD,∴3=×CD×(6﹣3),∴CD=2,∴点C(4,0)或(8,0).【解析】本题是反比例函数综合题,考查一次函数的应用、反比例函数的应用等知识,解题的关键是灵活运用所学知识解决问题,学会分割法求三角形的面积.23.【参考答案】解:由题意得,∠CAB=∠ABC=45°,BC=8nmile.∴∠C=90°,∴AB==BC=8=16(nmile),过D作DH⊥AB于H,则∠AHD=∠BHD=90°,在Rt△ADH中,∠ADH=30°,AD=10nmile,cos∠ADH=,∴AH=AD=5nmile,DH=10•cos30°=10×=5,∴BH=AB﹣AH=11nmile,在Rt△BDH中,BD===14(nmile),答:B,D间的距离是14nmile.【解析】本题主要考查了解直角三角形的应用,正确作出辅助线构造出直角三角形是解决问题的关键.六、本大题共2个小题,每小题12分,共24分.24.【参考答案】(1)证明:连接OD.∵DF是⊙O的切线,∴OD⊥DF,∵CD平分∠ACB,∴=,∴OD⊥AB,∴AB∥DF;(2)解:过点C作CH⊥AB于点H.∵AB是直径,∴∠ACB=90°,∵BC=,AC=2,∴AB===5,∵S△ABC=•AC•BC=•AB•CH,∴CH==2,∴BH==1,∴OH=OB﹣BH=﹣1=,∵DF∥AB,∴∠COH=∠F,∵∠CHO=∠ODF=90°,∴△CHO∽△ODF,∴=,∴=,∴DF=.【解析】本题属于圆综合题,考查了垂径定理,圆周角定理,平行线的判定,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.25.【参考答案】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:解得:;(2)由(1)知:抛物线解析式为:y=﹣x2+x+4,设直线AB的解析式为:y=kx+b,则,解得:,∴AB的解析式为:y=2x+4,设直线DE的解析式为:y=mx,∴2x+4=mx,∴x=,当x=3时,y=3m,∴E(3,3m),∵△BDO与△OCE的面积相等,CE⊥OC,∴•3•(﹣3m)=•4•,∴9m2﹣18m﹣16=0,∴(3m+2)(3m﹣8)=0,∴m1=﹣,m2=(舍),∴直线DE的解析式为:y=﹣x;(3)存在,B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:设P(t,﹣t2+t+4),①如图1,过点P作PH⊥y轴于H,∵四边形BPGF是矩形,∴BP=FG,∠PBF=∠BFG=90°,∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,∴∠PBH=∠OFB=∠CGF,∵∠PHB=∠FCG=90°,∴△PHB≌△FCG(AAS),∴PH=CF,∴CF=PH=t,OF=3﹣t,∵∠PBH=∠OFB,∴=,即=,解得:t1=0(舍),t2=1,∴F(2,0);②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,同①可得:NG=FM=3,OF=t﹣3,∵∠OFB=∠FPM,∴tan∠OFB=tan∠FPM,∴=,即=,解得:t1=,t2=(舍),∴F(,0);综上,点F的坐标为(2,0)或(,0).【解析】本题是二次函数的综合题,考查了二次函数的相关性质,一次函数的相关性质,矩形的性质和判定,三角形全等的性质和判定,三角函数,解一元二次方程等知识,第三问有难度,正确作辅助线构建直角三角形是解本题的关键.。
八年级上册数学第七章综合素质评价一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.下列选项中,是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗C.延长线段AO到点C,使OC=OAD.两直线平行,内错角相等2.【2022•广东佛山南海区模拟】如图,a∥b,∠1=120°,则∠2等于() A.30°B.90°C.60°D.50°(第2题) (第3题)3.如图,下列条件中,能判定AD∥BC的有()①∠1=∠4;②∠2=∠3;③∠1+∠2=∠3+∠4;④∠A+∠C=180°;⑤∠A+∠ABC=180°;⑥∠A+∠ADC=180°.A.1个B.2个C.3个D.4个4.下列命题中,是假命题的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.等腰三角形的两底角相等D.三个角都相等的三角形是等边三角形5.某学员在驾校练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向左拐45°,第二次向左拐45°C.第一次向左拐60°,第二次向右拐120°D.第一次向左拐53°,第二次向左拐127°6.已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是() A.如果a∥b,a⊥c,那么b⊥cB.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥cD.如果b⊥a,c⊥a,那么b∥c7.下列说法正确的是()A.命题一定是定理,但定理不一定是命题B.公理和定理都是真命题C.定理和命题一样,有真有假D.“取线段AB的中点C”是一个真命题8.如图,F是△ABC的角平分线CD和BE的交点,CG⊥AB于点G.若∠ACG=36°,则∠DFE的度数是()A.117°B.108°C.144°D.148°(第8题) (第9题)9.如图,在△ABC中,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于()A.10°B.15°C.20°D.30°10.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°(第10题) (第11题)11.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=45°,∠C =73°,则∠DAE的度数是()A.14°B.24°C.19°D.9°12.如图,AD∥BC,∠D=∠ABC,点E是DC上一点,连接AE并延长,交BC的延长线于点H.点F是AB上一点,且∠FBE=∠FEB,∠FEH的平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°(第12题) (第14题)二、填空题:本大题共6小题,每小题4分,共24分.13.将命题“等角的余角相等”写成“如果…,那么…”的形式为__________________________________________________________________.14.三角板是我们学习数学的好工具,将一副直角三角板按如图所示的方式摆放,点C在FD的延长线上,点B在DE上,AB∥CF,∠EFD=∠A=90°,∠E =30°,∠ABC=45°,则∠CBD=__________°.15.要说明命题“若a<b,c<d,则a-c<b-d”是假命题,可以举反例:a=4,b=5,c=________,d=________.16.如图,在△ABC中,点D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC =66°,则∠DAC的度数是________.(第16题) (第17题) (第18题)17.如图,在△ABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.18.如图,将一张三角形纸片ABC沿DE折叠,使点A落在四边形BCDE外部的点A′处,且点A′与点C在直线AB的异侧,已知∠C=90°,∠A=30°.若△A′DE 的一边与BC平行,则∠ADE的度数是____________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.如图,∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M,BC∥EF,求∠BMD的度数.20.如图,已知AB∥CD,E是直线AB上的一点,CE平分∠ACD,CF⊥CE,∠1=32°.(1)求∠ACE的度数;(2)若∠2=58°,求证:CF∥AG.四、解答题(二):本大题共2小题,每小题10分,共20分.21.如图,把△ABC沿EF折叠,使点A落在点D处.(1)若DE∥AC,试判断∠1与∠2的数量关系,并说明理由;(2)若∠B+∠C=130°,求∠1+∠2的度数.22.如图,在四边形ABCD中,CE⊥AD于点E.若(),(),则().(1)从①CB=CD,②∠D+∠ABC=180°,③AC平分∠DAB中选择两个作为条件,剩下的一个作为结论,构成一个真命题,并说明理由,条件:________,________,结论:________.(2)在(1)的条件下,若AD=8,DE=2,CE=3,求△ABC的面积.五、解答题(三):本大题共2小题,每小题12分,共24分.23.已知直线a∥b,直线c和直线a,b分别相交于A,B两点,直线d和直线a,b分别相交于C,D两点.(1)如图①,当点P在线段AB上(点P不与点A,B重合)运动时,猜测∠1,∠2,∠3之间的数量关系,并说明理由;(2)如图②,当点P在线段AB的延长线上运动时,∠1,∠2,∠3之间的数量关系为________;(3)如图③,当点P在线段BA的延长线上运动时,∠1,∠2,∠3之间的数量关系为________.24.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一盏探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射出的光束自AM顺时针旋转至AN便立即回转,灯B射出的光束自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A射出的光束转动的速度是a°/秒,灯B射出的光束转动的速度是b°/秒,且a,b满足|a-3b|+(a+b-4)2=0.假设钱塘江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a,b的值;(2)若灯B射出的光束先转动30秒,灯A射出的光束才开始转动,在灯B射出的光束到达BQ之前,灯A射出的光束转动几秒,两灯射出的光束互相平行?(3)两灯射出的光束同时转动,在灯A射出的光束到达AN之前,若与灯B射出的光束交于点C,过点C作CD⊥AC交PQ于点D,则两灯射出的光束在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.答案一、1.D2.C3.B4.B5.D6.C7.B8.A点拨:因为CG⊥AB,∠ACG=36°,所以∠A=90°-∠ACG=54°.所以∠ABC +∠ACB =180°-∠A =126°.因为CD 和BE 是△ABC 的角平分线,所以∠BCD =12∠ACB ,∠CBE =12∠ABC ,所以∠BCD +∠CBE =12(∠ACB +∠ABC )=63°.所以∠BFC =180°-(∠BCD +∠CBE )=117°.又因为∠DFE =∠BFC ,所以∠DFE =117°.9.B 点拨:因为BD ,CD 分别为∠ABC ,∠ACE 的平分线, 所以∠DBC =∠ABD ,∠DCE =∠ACD .因为∠ACE =∠A +∠ABC ,所以∠DCE +∠ACD =∠DBC +∠ABD +∠A .所以2∠DCE =2∠DBC +∠A .因为∠DCE =∠DBC +∠D ,所以2∠DBC +2∠D =2∠DBC +∠A .所以∠D =12∠A =12×30°=15°. 10.B 点拨:如图,连接AC 并延长,交EF 于点M .因为AB ∥CF ,所以∠3=∠1.因为AD ∥CE ,所以∠2=∠4. 所以∠BAD =∠3+∠4=∠1+∠2=∠FCE .因为∠FCE =180°-∠E -∠F =180°-80°-50°=50°.所以∠BAD =50°.故选B .11.A点拨:因为∠B=45°,∠C=73°,所以∠BAC=180°-∠B-∠C=62°.因为AE平分∠BAC,所以∠CAE=12∠BAC=31°.因为AD是BC边上的高,所以∠ADC=90°,所以∠CAD=180°-∠ADC-∠C=17°,所以∠DAE=∠CAE-∠CAD=31°-17°=14°.12.B点拨:设∠FBE=∠FEB=α,则∠AFE=∠FBE+∠FEB=2α.因为EG平分∠FEH,所以∠GEH=∠GEF.设∠GEH=∠GEF=β,则∠AEF=180°-∠GEF-∠GEH=180°-2β.因为AD∥BC,所以∠ABC+∠BAD=180°.又因为∠D=∠ABC,所以∠D+∠BAD=180°,所以AB∥CD,所以∠CEH=∠F AE.因为∠DEH=100°,所以∠CEH=180°-∠DEH=80°.所以∠F AE=80°.因为∠F AE+∠AFE+∠AEF=180°,所以80°+2α+180°-2β=180°,所以β-α=40°,所以∠BEG=∠GEF-∠FEB=β-α=40°.二、13.如果两个角相等,那么它们的余角相等14.1515.2;3(答案不唯一)16.28°17.25点拨:因为EF∥BC,所以∠EGB=∠CBG.因为BD平分∠ABC,所以∠EBG=∠CBG,所以∠EBG=∠EGB.因为∠BEG=130°,所以∠EGB=180°-130°2=25°,所以∠DGF=∠EGB=25°.18.45°或30°点拨:当A′D∥BC时,∠A′DA=∠C=90°.由折叠的性质得∠ADE=∠A′DE,所以∠ADE=12∠A′DA=45°;当A′E∥BC时,∠A′EF=∠ABC.因为∠C=90°,∠A=30°,所以∠A′EF=∠ABC=180°-∠C-∠A=60°. 所以∠A′EA=180°-∠A′EF=120°.由折叠的性质得∠A′ED=∠AED,所以∠AED=12(360°-∠A′EA)=120°.所以∠ADE=180°-∠A-∠AED=30°.综上所述,∠ADE的度数为45°或30°.三、19.解:因为∠BAC=90°,∠C=30°,所以∠B=180°-∠BAC-∠C=60°.因为∠EDF=90°,∠E=45°,所以∠F=180°-∠EDF-∠E=45°.因为BC∥EF,所以∠MDB=∠F=45°,所以∠BMD=180°-∠B-∠MDB=75°. 20.(1)解:因为AB∥CD,所以∠DCE=∠1=32°.因为CE平分∠ACD,所以∠ACE=∠DCE=32°.(2)证明:因为CF⊥CE,所以∠FCE=90°.又因为∠ACE=32°,所以∠FCH=∠FCE-∠ACE=58°.因为∠2=58°,所以∠FCH=∠2,所以CF∥AG.四、21.解:(1)∠1=∠2,理由如下:因为∠D是由∠A翻折得到的,所以∠D=∠A.因为DE∥AC,所以∠1=∠A,∠2=∠D,所以∠1=∠2.(2)因为∠A+∠B+∠C=180°,∠A+∠AEF+∠AFE=180°,所以∠AEF+∠AFE=∠B+∠C=130°.因为△DEF是由△AEF翻折得到的,所以∠AEF=∠DEF,∠AFE=∠DFE,所以∠AED=2∠AEF,∠AFD=2∠AFE,所以∠AED+∠AFD=2(∠AEF+∠AFE)=260°.因为∠1+∠AED+∠2+∠AFD=360°,所以∠1+∠2=100°.22.解:(1)②;③;①理由:如图,在AD上取一点T,使得AT=AB,连接TC.因为AC平分∠DAB,所以∠TAC=∠CAB.在△TAC 和△BAC 中,⎩⎨⎧AT =AB ,∠CAT =∠CAB ,AC =AC ,所以△TAC ≌△BAC ,所以CB =CT ,∠ABC =∠ATC .因为∠ABC +∠D =180°,∠ATC +∠CTD =180°,所以∠D =∠CTD ,易得CT =CD ,所以CB =CD .(答案不唯一)(2)由(1)可知,CT =CD ,因为CE ⊥DT ,所以DE =TE .因为△TAC ≌△BAC ,所以AB =AT =AD -2DE =8-4=4,所以S △ABC =S △ACT =12AT •CE =12×4×3=6.五、23.解:(1)∠3=∠1+∠2,理由如下:过点P 作PE ∥a 交CD 于点E ,如图.因为PE ∥a ,a ∥b ,所以PE ∥a ∥b ,所以∠1=∠CPE,∠2=∠DPE.因为∠3=∠CPE+∠DPE,所以∠3=∠1+∠2.(2)∠1=∠2+∠3(3)∠3=∠2-∠124.解:(1)因为|a-3b|+(a+b-4)2=0,|a-3b|≥0,(a+b-4)2≥0,所以a=3b,a+b=4,所以a=3,b=1.(2)设灯A射出的光束转动t秒,两灯射出的光束互相平行,①当0<t<60时,3t=(30+t)×1,解得t=15;②当60<t<120时,3t-3×60+(30+t)×1=180,解得t=82.5;③当120<t<150时,3t-180×2=(30+t)×1,解得t=195(不合题意,舍去).综上所述,灯A射出的光束转动15秒或82.5秒,两灯射出的光束互相平行.(3)不发生变化.设灯A射出的光束转动时间为x秒,因为∠CAN=180°-3°•x,所以∠BAC=45°-(180°-3°•x)=3°•x-135°.又因为PQ∥MN,所以易得∠BCA=∠CBD+∠CAN=1°•x+180°-3°•x=180°-2°•x.因为∠ACD=90°,所以∠BCD=90°-∠BCA=90°-(180°-2°•x)=2°•x-90°,2所以∠BCD=3∠BAC.。
绝密★启用前2022年华侨、港澳、台联考高考数学试卷数学试题第I卷(选择题)一、单选题(本大题共12小题,共60.0分。
在每小题列出的选项中,选出符合题目的一项)1.设集合A={1,2,3,4,5},B={x|x2∈A},则A∩B=( )A. {1}B. {1,2}C. {1,4}D. ⌀2.已知z=2+i1+i,则z+z−=( )A. 12B. 1 C. 32D. 33.已知向量a⃗=(x+2,1+x),b⃗ =(x−2,1−x).若a //b⃗,则( )A. x2=2B. |x|=2C. x2=3D. |x|=34.不等式1x2−2x−3<0的解集是( )A. (−1,0)∪(0,13) B. (−3,0)∪(0,1)C. (−∞,−1)∪(13,+∞) D. (−∞,−3)∪(1,+∞) 5.以(1,0)为焦点,y轴为准线的抛物线的方程是( )A. y2=x−12B. y2=x+12C. y2=2x−1D. y2=2x+16.底面积为2π,侧面积为6π的圆锥的体积是( )A. 8πB. 8π3C. 2π D. 4π37.设x1和x2是函数f(x)=x3+2ax2+x+1的两个极值点.若x2−x1=2,则a2=( )A. 0B. 1C. 2D. 38.已知函数f(x)=sin(2x+φ).若f(π3)=f(−π3)=12,则φ=( )A. 2kπ+π2(k∈Z) B. 2kπ+π3(k∈Z)C. 2kπ−π3(k∈Z) D. 2kπ−π2(k∈Z)9.函数y=21x(x>0)的反函数是( )A. y=1log2x (x>1) B. y=log21x(x>1)C. y=1log2x (0<x<1) D. y=log21x(0<x<1)10.设等比数列{a n}的首项为1,公比为q,前n项和为S n.令b n=S n+2,若{b n}也是等比数列,则q=( )A. 12B. 32C. 52D. 7211.若双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线与直线y=2x+1垂直,则C的离心率为( )A. 5B. √5C. 54D. √5212.在1,2,3,4,5,6,7,8,9中任取3个不同的数,则这3个数的和能被3整除的概率是( )A. 928B. 13C. 514D. 25第II卷(非选择题)二、填空题(本大题共6小题,共30.0分)13.曲线y=x⋅lnx在点(1,0)处的切线的方程为.14.已知O为坐标原点,点P在圆(x+1)2+y2=9上,则|OP|的最小值为______.15.若tanθ=3,则tan2θ=______.16.设函数f(x)=a x(a>0,且a≠1)是增函数,若f(1)−f(−1)f(2)−f(−2)=310,则a=______.17.在正三棱柱ABC−A1B1C1中,AB=1,AA1=√22,则异面直线AB1与BC1所成角的大小为______.18.设f(x)是定义域为R的奇函数,g(x)是定义域为R的偶函数.若f(x)+g(x)=2x,则g(2)=______.三、解答题(本大题共4小题,共60.0分。
二项分布及其应用一、选择题(本大题共12小题,共60分)1. 甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为A. B. C. D.(正确答案)B【分析】本题考查条件概率,考查相互独立事件概率公式,属于中档题.求出甲获得冠军的概率、比赛进行了3局的概率,即可得出结论.【解答】解:由题意,甲获得冠军的概率为,其中比赛进行了3局的概率为,所求概率为,故选B.2. 小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件“4 个人去的景点不相同”,事件“小赵独自去一个景点”,则A. B. C. D.(正确答案)A【分析】本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键这是求小赵独自去一个景点的前提下,4 个人去的景点不相同的概率,求出相应基本事件的个数,即可得出结论,属于中档题.【解答】解:小赵独自去一个景点,有4个景点可选,则其余3人只能在小赵剩下的3个景点中选择,可能性为种所以小赵独自去一个景点的可能性为种因为4 个人去的景点不相同的可能性为种,所以.故选A.3. 2016年鞍山地区空气质量的记录表明,一天的空气质量为优良的概率为,连续两天为优良的概率为,若今天的空气质量为优良,则明天空气质量为优良的概率是A. B. C. D.(正确答案)C解:一天的空气质量为优良的概率为,连续两天为优良的概率为,设随后一天空气质量为优良的概率为p,若今天的空气质量为优良,则明天空气质量为优良,则有,,故选:C.设随后一天的空气质量为优良的概率是p,利用相互独立事件概率乘法公式能求出结果.本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.4. 投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为A. B. C. D.(正确答案)A解:由题意可知:同学3次测试满足X∽,该同学通过测试的概率为.故选:A.判断该同学投篮投中是独立重复试验,然后求解概率即可.本题考查独立重复试验概率的求法,基本知识的考查.5. 设某种动物由出生算起活到10岁的概率为,活到15岁的概率为现有一个10岁的这种动物,它能活到15岁的概率是A. B. C. D.(正确答案)C解:记该动物从出生起活到10岁为事件A,从出生起活到15岁的为事件AB,而所求的事件为,由题意可得,,由条件概率公式可得,故选C.活到15岁的概率是在活到10岁的概率的情况下发生的,故可用条件概率来求解这个题.本题考点是条件概率,理清楚事件之间的关系是解决问题的关键,属中档题.6. 在10个球中有6个红球和4个白球各不相同,不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为A. B. C. D.(正确答案)D解:先求出“第一次摸到红球”的概率为:,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是再求“第一次摸到红球且第二次也摸到红球”的概率为,根据条件概率公式,得:,故选:D.事件“第一次摸到红球且第二次也摸到红球”的概率等于事件“第一次摸到红球”的概率乘以事件“在第一次摸出红球的条件下,第二次也摸到红球”的概率根据这个原理,可以分别求出“第一次摸到红球”的概率和“第一次摸到红球且第二次也摸到红球”的概率,再用公式可以求出要求的概率.本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键.7. 将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率是A. B. C. D.(正确答案)A解:根据题意,将4个不同的小球装入4个不同的盒子,有种不同的放法,若没有空盒,有种放法,有1个空盒的放法有种,有3个空盒的放法有种,则至少一个盒子为空的放法有种,故“至少一个盒子为空”的概率,恰好有两个盒子为空的放法有种,故“恰好有两个盒子为空”的概率,则则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率;故选:A.根据题意,由分步计数原理计算可得“将4个不同的小球装入4个不同的盒子”的放法数目,进而由排列、组合数公式计算“没有空盒”、“有1个空盒的放法”、“有3个空盒”的放法数目,由古典概型公式计算可得“至少一个盒子为空”以及“恰好有两个盒子为空”的概率,最后由条件概率的计算公式计算可得答案.本题考查条件概率的计算,涉及排列、组合的应用,关键是求出“至少一个盒子为空”以及“恰好有两个盒子为空”的概率.8. 在区间内随机投掷一个点其坐标为,若,则A. B. C. D.(正确答案)A解:根据题意,得,因此,事件AB对应的区间长度为,结合总的区间长度为1,可得又,同理可得因此,故选:A由题意,算出且,结合条件概率计算公式即可得到的值.本题给出投点问题,求事件A的条件下B发生的概率,着重考查了条件概率及其应用的知识,属于基础题.9. 九江气象台统计,5月1日浔阳区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设A为下雨,B为刮风,那么A. B. C. D.(正确答案)B解:由题意,,,,故选B.确定,,,再利用条件概率公式,即可求得结论.本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.10. 从混有5张假钞的20张一百元纸币中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率为A. B. C. D.(正确答案)D解:解:设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,则所求的概率即.又,,由公式.故选:D.设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,所求的概率即先求出和的值,再根据,运算求得结果.本题考查概率的求法,是中档题,解题时要认真审题,注意条件概率的合理运用.11. 如图,和都是圆内接正三角形,且,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在内”,B表示事件“豆子落在内”,则A.B.C.D.(正确答案)D解:如图所示,作三条辅助线,根据已知条件这些小三角形全等,所以,故选:D.作三条辅助线,根据已知条件这些小三角形全等,即可求出.本题考查概率的计算,考查学生的计算能力,正确作出图形是关键.12. 下列说法中正确的是设随机变量X服从二项分布,则已知随机变量X服从正态分布且,则;.A. B. C. D.(正确答案)A解:设随机变量X服从二项分布,则,正确;随机变量服从正态分布,正态曲线的对称轴是.,,,正确;利用积分的几何意义,可知,正确;故不正确.故选:A.分别对4个选项,分别求解,即可得出结论.考查二项分布、正态分布以及定积分的几何意义,考查学生的计算能力,知识综合性强.二、填空题(本大题共4小题,共20分)13. 如果,当取得最大值时, ______ .(正确答案)50解:,当,由组合数知,当时取到最大值.故答案为:50.根据变量符合二项分布,写出试验发生k次的概率的表示式,在表示式中,只有是一个变量,根据组合数的性质,当时,概率取到最大值.本题考查二项分布与n次独立重复试验的模型,考查概率的最值,考查组合数的性质,是一个比较简单的综合题目.14. 抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”则当已知蓝色骰子点数为3或6时,问两颗骰子的点数之和大于8的概率为______ .(正确答案)解:设x为掷红骰子得的点数,y为掷蓝骰子得的点数,则所有可能的事件与建立对应,显然:,,..故答案为:由题意知这是一个条件概率,做这种问题时,要从这样两步入手,一是做出蓝色骰子的点数为3或6的概率,二是两颗骰子的点数之和大于8的概率,再做出两颗骰子的点数之和大于8且蓝色骰子的点数为3或6的概率,根据条件概率的公式得到结果.本题考查条件概率,条件概率有两种做法,本题采用概率来解,还有一种做法是用事件发生所包含的事件数之比来解出结果,本题出现的不多,以这个题目为例,同学们要认真分析.15. 从标有1,2,3,4,5的五张卡片中,依次抽出2张,则在第一次抽到偶数的条件下,第二次抽到奇数的概率为______.(正确答案)解:在第一次抽到偶数时,还剩下1个偶数,3个奇数,在第一次抽到偶数的条件下,第二次抽到奇数的概率为.故答案为:.根据剩下4个数的奇偶性得出结论.本题考查了条件概率的计算,属于基础题.16. 若随机变量,且,则 ______ .(正确答案)解:随机变量,且,可得,正态分布曲线的图象关于直线对称.,,故答案为:.由条件求得,可得正态分布曲线的图象关于直线对称求得的值,再根据,求得的值.本题主要考查正态分布的性质,正态曲线的对称性,属于基础题.三、解答题(本大题共3小题,共40分)17. 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率,假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.Ⅰ求甲至少有1次未击中目标的概率;Ⅱ记甲击中目标的次数为,求的概率分布及数学期望;Ⅲ求甲恰好比乙多击中目标2次的概率.(正确答案)解:记“甲连续射击3次,至少1次未击中目标”为事件,由题意知两人射击是否击中目标,相互之间没有影响,射击3次,相当于3次独立重复试验,故.故甲至少有1次未击中目标的概率为;由题意知X的可能取值是0,1,2,3,,,,X的概率分布如下表:X 0 1 2 3P设甲恰比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件,甲恰击中目标 3次且乙恰击中目标 1次为事件,则,,为互斥事件甲恰好比乙多击中目标2次的概率为由题意知,两人射击是否击中目标,相互之间没有影响;甲每次击中目标的概率为,射击3次,相当于3次独立重复试验,根据独立重复试验概率公式得到结果.根据题意看出变量的可能取值,根据变量对应的事件和独立重复试验的概率公式,写出变量对应的概率,写出分布列,做出期望值.甲恰比乙多击中目标2次,包括甲恰击中目标2次且乙恰击中目标0次,甲恰击中目标3次且乙恰击中目标1次,这两种情况是互斥的,根据公式公式得到结果.本题考查离散型随机变量的分布列和期望,考查互斥事件的概率,是一个基础题,这种题目解题的关键是看清题目事件的特点,找出解题的规律,遇到类似的题目要求能做.18. 袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率是现从两个袋子中有放回的摸球从A中摸球,每次摸出一个,共摸5次求:恰好有3次摸到红球的概率;设摸得红球的次数为随机变量X,求X的期望;Ⅱ从A中摸出一个球,若是白球则继续在袋子A中摸球,若是红球则在袋子B中摸球,若从袋子B中摸出的是白球则继续在袋子B中摸球,若是红球则在袋子A中摸球,如此反复摸球3次,计摸出的红球的次数为Y,求Y的分布列以及随机变量Y的期望.(正确答案)解:Ⅰ由题意知本题是在相同的条件下进行的试验,且事件发生的概率相同,可以看作独立重复试验,根据独立重复试验公式得到,恰好有3次摸到红球的概率:.由题意知从A中有放回地摸球,每次摸出一个,是独立重复试验,根据独立重复试验公式得到:,.随机变量Y的取值为0,1,2,3;且:;;;;随机变量Y的分布列是:的数学期望是.由题意知本题是在相同的条件下进行的试验,且事件发生的概率相同,可以看作独立重复试验,根据独立重复试验公式得到结果.由题意知从A中有放回地摸球,每次摸出一个,是独立重复试验,根据独立重复试验公式得到答案.由题意知计摸出的红球的次数为Y,随机变量Y的取值为0,1,2,3;由独立试验概率公式得到概率,写出分布列和期望.解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.19. 某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为,在射击比武活动中每人射击发两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”;若,求该小组在一次检测中荣获“先进和谐组”的概率;计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数,如果,求的取值范围.(正确答案)解:,,根据“先进和谐组”的定义可得该小组在一次检测中荣获“先进和谐组”的包括两人两次都射中,两人恰好各射中一次,该小组在一次检测中荣获“先进和谐组”的概率该小组在一次检测中荣获先进和谐组”的概率而,所以由知,解得:根据甲的命中率为,乙的命中率为,两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”;我们可以求出该小组在一次检测中荣获“先进和谐组”的概率;由已知结合的结论,我们可以求出该小组在一次检测中荣获“先进和谐组”的概率含参数,由,可以构造一个关于的不等式,解不等式结合概率的含义即可得到的取值范围.本题考查的知识点是相互独立事件的概率乘法公式,二项分布与n次独立重复试验的模型,中关键是要列举出该小组在一次检测中荣获“先进和谐组”的所有可能性,的关键是要根据,可以构造一个关于的不等式.。
2022年山东省聊城市中考数学试卷一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.实数a的绝对值是54,a的值是( )A. 54B. −54C. ±45D. ±542.如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是( )A.B.C.D.3.下列运算正确的是( )A. (−3xy)2=3x2y2B. 3x2+4x2=7x4C. t(3t2−t+1)=3t3−t2+1D. (−a3)4÷(−a4)3=−14.要检验一个四边形的桌面是否为矩形,可行的测量方案是( )A. 测量两条对角线是否相等B. 度量两个角是否是90°C. 测量两条对角线的交点到四个顶点的距离是否相等D. 测量两组对边是否分别相等5. 射击时,子弹射出枪口时的速度可用公式v =√2as 进行计算,其中a 为子弹的加速度,s 为枪筒的长.如果a =5×105m/s 2,s =0.64m ,那么子弹射出枪口时的速度(用科学记数法表示)为( )A. 0.4×103m/sB. 0.8×103m/sC. 4×102m/sD. 8×102m/s6. 关于x ,y 的方程组{2x −y =2k −3,x −2y =k的解中x 与y 的和不小于5,则k 的取值范围为( )A. k ≥8B. k >8C. k ≤8D. k <87. 用配方法解一元二次方程3x 2+6x −1=0时,将它化为(x +a)2=b 的形式,则a +b 的值为( )A. 103B. 73C. 2D. 43 8. “俭以养德”是中华民族的优秀传统,时代中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:组别零花钱数额x/元 频数 一x ≤10 二10<x ≤15 12 三15<x ≤20 15 四20<x ≤25 a 五 x >25 5关于这次调查,下列说法正确的是( )A. 总体为50名学生一周的零花钱数额B. 五组对应扇形的圆心角度数为36°C. 在这次调查中,四组的频数为6D. 若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为1200人 9. 如图,AB ,CD 是⊙O 的弦,延长AB ,CD 相交于点P.已知∠P =30°,∠AOC =80°,则BD⏜的度数是( )A. 30°B. 25°C. 20°D. 10°10.如图,在直角坐标系中,线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,则点C的对应点C1的坐标是( )A. (−2,3)B. (−3,2)C. (−2,4)D. (−3,3)11.如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是( )A. ∠BAQ=40°BDB. DE=12C. AF=ACD. ∠EQF=25°12.如图,一次函数y=x+4的图象与x轴,y轴分别交于点A,B,点C(−2,0)是x轴上一点,点E,F分别为直线y=x+4和y轴上的两个动点,当△CEF周长最小时,点E,F的坐标分别为( )A. E(−52,32),F(0,2) B. E(−2,2),F(0,2)C. E(−52,32),F(0,23) D. E(−2,2),F(0,23)二、填空题(本大题共5小题,共15.0分)13.不等式组{x−6≤2−x,x−1>3x2的解集是______.14.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,−1;转盘B被四等分,分别标有数字3,2,−2,−3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是______.15.若一个圆锥体的底面积是其表面积的14,则其侧面展开图圆心角的度数为______.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为______元(利润=总销售额−总成本).17.如图,线段AB=2,以AB为直径画半圆,圆心为A1,以AA1为直径画半圆①;取A1B的中点A2,以A1A2为直径画半圆②;取A2B的中点A3,以A2A3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为______.三、解答题(本大题共8小题,共69.0分。
2022年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分。
每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑。
1.(3分)若24×22=2m,则m的值为()A.8B.6C.5D.22.(3分)若a,b互为相反数,c的倒数是4,则3a+3b﹣4c的值为()A.﹣8B.﹣5C.﹣1D.163.(3分)若m>n,则下列不等式中正确的是()A.m﹣2<n﹣2B.﹣m>﹣n C.n﹣m>0D.1﹣2m<1﹣2n 4.(3分)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.95.(3分)2022年2月20日北京冬奥会大幕落下,中国队在冰上、雪上项目中,共斩获9金4银2铜,创造中国队冬奥会历史最好成绩.某校为普及冬奥知识,开展了校内冬奥知识竞赛活动,并评出一等奖3人.现欲从小明等3名一等奖获得者中任选2名参加全市冬奥知识竞赛,则小明被选到的概率为()A.B.C.D.6.(3分)若x1,x2是方程x2﹣2x﹣3=0的两个实数根,则x1•x22的值为()A.3或﹣9B.﹣3或9C.3或﹣6D.﹣3或67.(3分)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC =22°,则∠CDE的度数为()A.22°B.32°C.34°D.44°8.(3分)在一次函数y=﹣5ax+b(a≠0)中,y的值随x值的增大而增大,且ab>0,则点A(a,b)在()A.第四象限B.第三象限C.第二象限D.第一象限9.(3分)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为()A.1:4B.4:1C.1:2D.2:110.(3分)已知实数a,b满足b﹣a=1,则代数式a2+2b﹣6a+7的最小值等于()A.5B.4C.3D.211.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C 顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.3B.2C.3D.212.(3分)如图,在矩形ABCD中,AD>AB,点E,F分别在AD,BC边上,EF∥AB,AE=AB,AF与BE相交于点O,连接OC.若BF=2CF,则OC与EF之间的数量关系正确的是()A.2OC=EF B.OC=2EF C.2OC=EF D.OC=EF二、填空题:本大题共有7小题,每小题3分,共21分。
财会专业510试题一、单项选择题(本大题共12小题,每小题2分,共24分。
)1、某企业资产总额为2000000元,现发生下列两笔经济业务:(1)收到某投资者投入机器设备一台,价值200000元;(2)以银行存款购入原材料一批80000元,料已入库。
此时企业的权益总额为:()A.2000000元B.2200000元C.2280000元D.2120000元2.以银行存款交纳税金,所引起的变动为()A.一项资产减少,一项所有者权益减少B.一项资产减少,一项负债减少C.一项所有者权益增加,一项负债减少D.一项资产增加,另一项资产减少3.下列属于会计要素的是()A.材料采购成本B.应收账款C.所有者权益D.累计折旧4.我国企业资产负债表必须采用的格式为()A.报告式 B.账户式 C.单步式 D.多步式5.企业通过生产而取得财产所有权的方式属于( )A.原始取得B.继受取得C.所有人取得D.非所有人取得6.根据合伙企业法规定,下列事项中,不必经普通合伙企业全体合伙人一致同意的是()。
A.处分合伙企业的不动产B.改变合伙企业的名称C.合伙人之间转让在合伙企业中的财产份额D.合伙人以合伙企业的财产份额出质7.根据《破产法》的规定,债权人会议应当以表决方式确定是否通过和解协议草案并形成决议。
债权人会议通过和解协议草案的法定条件是()A.出席会议的有表决权的债权人过半数通过,并且其所代表的债权额占无财产担保债权总额的1/2以上B.出席会议的有表决权的债权人过半数通过,并且其所代表的债权额占全部债权总额的1/2以上C.全体有表决权的债权人过半数通过,并且其所代表的债权额占无财产担保债权总额的1/2以上D.全体有表决权的债权人过半数通过,并且其所代表的债权额占全部债权总额的1/2以上8. 法的本质是()。
A、是国家制定和认可的行为规范B、是国家强制力保障实施的行为规范C、是以权利义务为内容的行为规范D、是统治阶级的国家意志9.仲裁委员会收到仲裁申请书后应在( )内决定是否受理。
内蒙古包头市乌兰察布市2022年中考数学试题(word版含解析)2022年内蒙古包头乌兰察布市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2022包头)在,0,﹣1,A.B.0C.﹣1D.这四个实数中,最大的是()2.(3分)(2022包头)2022年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国,将1280亿美元用科学记数法表示为()A.12.8某10美元B.1.28某10美元1213C.1.28某10美元D.0.128某10美元3.(3分)(2022包头)下列计算结果正确的是()A.2a+a=3aB.(﹣a)a=﹣aC.(﹣)=4D.(﹣2)=﹣14.(3分)(2022包头)在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A.B.3C.D.2336236﹣210115.(3分)(2022包头)一组数据5,2,某,6,4的平均数是4,这组数据的方差是()A.2B.C.10D.6.(3分)(2022包头)不等式组的最小整数解是()A.﹣1B.0C.1D.27.(3分)(2022包头)已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2B.3C.4D.68.(3分)(2022包头)下列说法中正确的是()A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C.“同位角相等”这一事件是不可能事件D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件9.(3分)(2022包头)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.10.(3分)(2022包头)观察下列各数:1,,,的第6个数为()A.B.C.D.,…,按你发现的规律计算这列数πB.πC.πD.π11.(3分)(2022包头)已知下列命题:①在Rt△ABC中,∠C=90°,若∠A>∠B,则in∠A>inB;②四条线段a,b,c,d中,若=,则ad=bc;③若a>b,则a(m+1)>b(m+1);④若|﹣某|=﹣某,则某≥0.其中原命题与逆命题均为真命题的是()A.①②③B.①②④C.①③④D.②③④12.(3分)(2022包头)如图,已知二次函数y=a某+b某+c(a≠0)的图象与某轴交于点A(﹣1,0),对称轴为直线某=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当某>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b>8a;其中正确的结论是()2222A.①③④B.①②③C.①②④D.①②③④二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2022包头)计算:(14.(3分)(2022包头)化简:(a﹣15.(3分)(2022包头)已知关于某的一元二次方程某+2﹣)某=.)÷=.某﹣1=0有两个不相等的实数根,则k的取值范围是.16.(3分)(2022包头)一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n=.17.(3分)(2022包头)已知点A(﹣2,y1),B(﹣1,y2)和C (3,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系为.(用“<”连接)18.(3分)(2022包头)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,inB=,则线段AC的长为.19.(3分)(2022包头)如图,在边长为+1的菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,则EG的长为.=,则3S△BDG=13S△DGF.其中正确的结论是.(填写所有正确结论的序号)三、解答题(本大题共6小题,共60分,请将必要的文字说明、计算过程或推理过程写出)21.(8分)(2022包头)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.22.(8分)(2022包头)为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.24.(10分)(2022包头)如图,AB是⊙O的直径,点D是BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE=DFDB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.2上一点,且∠BDE=∠CBE,25.(12分)(2022包头)如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD 方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).(1)求线段CD的长;(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.①t为何值时,l经过点C?②求当l经过点D时t的值,并求出此时刻线段PQ的长.26.(12分)(2022包头)已知抛物线y=某+b某+c经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.(1)求该抛物线的解析式及点D的坐标;(2)连接AC,CD,BD,BC,设△A OC,△BOC,△BCD的面积分别为S1,S2和S3,用等式表示S1,S2,S3之间的数量关系,并说明理由;(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.22022年内蒙古乌兰察布市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2022包头)在,0,﹣1,A.B.0C.﹣1D.这四个实数中,最大的是()考点:实数大小比较.分析:利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.解答:解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,0<<1,1<∴﹣1<0<<<2,,故选D.点评:本题主要考查了比较实数的大小,掌握任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,是解答此题的关键.2.(3分)(2022包头)2022年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国,将1280亿美元用科学记数法表示为()1011A.12.8某10美元B.1.28某10美元1213C.1.28某10美元D.0.128某10美元考点:科学记数法—表示较大的数.n分析:科学记数法的表示形式为a某10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.11解答:解:1280亿=128000000000=1.28某10,故选:B.n点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a 某10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2022包头)下列计算结果正确的是()A.2a+a=3aB.(﹣a)a=﹣aC.(﹣)=4D.(﹣2)=﹣1考点:同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.336236﹣20分析:根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、2a+a=3a,故错误;235B、(﹣a)a=a,故错误;C、正确;D、(﹣2)=1,故错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.4.(3分)(2022包头)在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A.B.3C.333D.2考点:锐角三角函数的定义;勾股定理.分析:设BC=某,则AB=3某,由勾股定理求出AC,根据三角函数的概念求出tanB.解答:解:设BC=某,则AB=3某,由勾股定理得,AC=2某,tanB===2,故选:D.点评:本题考查的是锐角三角函数的概念和勾股定理的应用,应用勾股定理求出直角三角形的边长、正确理解锐角三角函数的概念是解题的关键.5.(3分)(2022包头)一组数据5,2,某,6,4的平均数是4,这组数据的方差是()A.2B.C.10D.考点:方差;算术平均数.分析:根据平均数的公式求出某的值,根据方差公式求出方差.解答:解:由题意得,(5+2+某+6+4)=4,解得,某=3,=[(5﹣4)+(2﹣4)+(3﹣4)+(6﹣4)+(4﹣4)]=2,故选:A.点评:本题考查的是平均数和方差的计算,掌握平均数和方差的计算公式是解题的关键.方差S=[(某1﹣)+(某2﹣)+…+(某n﹣)].6.(3分)(2022包头)不等式组的最小整数解是()2222222222A.﹣1B.0C.1D.2考点:一元一次不等式组的整数解.分析:先解不等式组,求出解集,再找出最小的整数解即可.解答:解:,解①得某>﹣1,解②得某≤3,不等式组的解集为﹣1<某≤3,不等式组的最小整数解为0,故选B.点评:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(3分)(2022包头)已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2B.3C.4D.6考点:正多边形和圆.分析:作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,由等边三角形的性质得出BD=CD,∠OBD=∠ABC=30°,得出OA=OB=2OD,求出AD、BC,△ABC的面积=BCAD,即可得出结果.解答:解:如图所示:作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,∵△ABC是等边三角形,∴BD=CD,∠OBD=∠ABC=30°,∴OA=OB=2OD=2,∴AD=3,BD=∴BC=2,某3=3;,∴△ABC的面积=BCAD=某2故选:B.点评:本题考查了圆内接正三角形的性质、解直角三角形、三角形面积的计算;熟练掌握圆内接正三角形的性质,并能进行推理计算是解决问题的关键.8.(3分)(2022包头)下列说法中正确的是()A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C.“同位角相等”这一事件是不可能事件D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件考点:随机事件;列表法与树状图法.分析:根据概率的意义,可判断A;根据必然事件,可判断B、D;根据随机事件,可判断C.解答:解:A、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为,故A错误;B、“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件,故B正确;C、同位角相等是随机事件,故C错误;D、“钝角三角形三条高所在直线的交点在三角形外部”这一事件是必然事件,故D错误;故选:B.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)(2022包头)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.πB.πC.πD.π考点:扇形面积的计算;勾股定理的逆定理;旋转的性质.分析:根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.解答:解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==,故选:A.点评:本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.10.(3分)(2022包头)观察下列各数:1,,,的第6个数为()A.B.C.D.,…,按你发现的规律计算这列数考点:规律型:数字的变化类.分析:观察数据,发现第n个数为,再将n=6代入计算即可求解.解答:解:观察该组数发现:1,,,,…,第n个数为,当n=6时,==.故选C.点评:本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为11.(3分)(2022包头)已知下列命题:①在Rt△ABC中,∠C=90°,若∠A>∠B,则in∠A>inB;②四条线段a,b,c,d中,若=,则ad=bc;③若a>b,则a(m+1)>b(m+1);④若|﹣某|=﹣某,则某≥0.其中原命题与逆命题均为真命题的是()A.①②③B.①②④C.①③④D.②③④考点:命题与定理.分析:先对原命题进行判断,再根据互逆命题的定义写出逆命题,然后判断逆命题的真假即可..22解答:解:①在Rt△ABC中,∠C=90°,若∠A>∠B,则in∠A>inB,原命题为真命题,逆命题是:在Rt△ABC中,∠C=90°,若in∠A>inB,则∠A>∠B,逆命题为真命题;②四条线段a,b,c,d中,若=,则ad=bc,原命题为真命题,逆命题是:四条线段a,b,c,d中,若ad=bc,则=,逆命题为真命题;③若a>b,则a(m+1)>b(m+1),原命题为真命题,22逆命题是:若a(m+1)>b(m+1),则a>b,逆命题为真命题;④若|﹣某|=﹣某,则某≥0,原命题为假命题,逆命题是:若某≥0,则|﹣某|=﹣某,逆命题为假命题.故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.12.(3分)(2022包头)如图,已知二次函数y=a某+b某+c(a≠0)的图象与某轴交于点A(﹣1,0),对称轴为直线某=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当某>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b>8a;其中正确的结论是()2222A.①③④B.①②③C.①②④D.①②③④考点:二次函数图象与系数的关系.分析:①先由抛物线的对称性求得抛物线与某轴令一个交点的坐标为(3,0),从而可知当某>3时,y<0;②由抛物线开口向下可知a<0,然后根据某=﹣=1,可知:2a+b=0,从而可知3a+b=0+a=a<0;2③设抛物线的解析式为y=a(某+1)(某﹣3),则y=a某﹣2a某﹣3a,令某=0得:y=﹣3a.由抛2物线与y轴的交点B在(0,2)和(0,3)之间,可知2≤﹣3a≤3.④由4ac﹣b>8a得c﹣2<0与题意不符.解答:解:①由抛物线的对称性可求得抛物线与某轴令一个交点的坐标为(3,0),当某>3时,y<0,故①正确;②抛物线开口向下,故a<0,∵某=﹣=1,∴2a+b=0.∴3a+b=0+a=a<0,故②正确;③设抛物线的解析式为y=a(某+1)(某﹣3),则y=a某﹣2a某﹣3a,令某=0得:y=﹣3a.∵抛物线与y轴的交点B在(0,2)和(0,3)之间,∴2≤﹣3a≤3.解得:﹣1≤a≤﹣,故③正确;④.∵抛物线y轴的交点B在(0,2)和(0,3)之间,∴2≤c≤3,由4ac﹣b>8a得:4ac﹣8a>b,∵a<0,∴c﹣2<∴c﹣2<0∴c<2,与2≤c≤3矛盾,故④错误.故选:B.点评:本题主要考查的是二次函数的图象和性质,掌握抛物线的对称轴、开口方向与系数a、b、c之间的关系是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2022包头)计算:(﹣)某=8.222考点:二次根式的混合运算.专题:计算题.分析:原式利用乘法分配律及二次根式乘法法则计算即可得到结果.解答:解:原式=﹣=9﹣1=8,故答案为:8点评:此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.14.(3分)(2022包头)化简:(a﹣考点:分式的混合运算.专题:计算题.)÷=.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式===,故答案为:点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(3分)(2022包头)已知关于某的一元二次方程某+数根,则k的取值范围是k≥1.考点:根的判别式.2某﹣1=0有两个不相等的实分析:根据二次根式有意义的条件和△的意义得到到k的取值范围.解答:解:∵关于某的一元二次方程某+∴解得k≥1,∴k的取值范围是k≥1.,2,然后解不等式组即可得某﹣1=0有两个不相等的实数根,故答案为:k≥1.22点评:此题考查了一元二次方程a某+b某+c=0(a≠0,a,b,c为常数)的根的判别式△=b﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.也考查了二次根式有意义的条件.16.(3分)(2022包头)一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n=1.考点:概率公式.分析:由一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,即可得方程:=,解此分式方程即可求得答案.解答:解:根据题意得:=,解得:n=1,经检验:n=1是原分式方程的解.故答案为:1.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2022包头)已知点A(﹣2,y1),B(﹣1,y2)和C (3,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系为y2<y1<y3.(用“<”连接)考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解答:解:∵反比例函数y=中k=3>0,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随某的增大而减小.∵﹣2<﹣1<0,∴点A(﹣2,y1),B(﹣1,y2)位于第三象限,且0>y1>y2.∵3>0,∴点C(3,y3)位于第一象限,∴y3>0,∴y2<y1<y3.故答案为:y2<y1<y3.点评:本题考查的是反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.(3分)(2022包头)如图,⊙O是△ABC的外接圆,AD是⊙O 的直径,若⊙O的半径是4,inB=,则线段AC的长为2.考点:圆周角定理;解直角三角形.专题:计算题.分析:连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则inD=inB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.解答:解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴inD=inB=,在Rt△ACD中,∵inD=∴AC=AD=某8=2.故答案为2.=,点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.19.(3分)(2022包头)如图,在边长为+1的菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,则EG的长为.考点:翻折变换(折叠问题);菱形的性质.分析:首先连接AC,再根据余弦定理,求出AC的长度是多少;然后根据菱形的性质,判断出AC⊥BD,再根据EG⊥BD,可得EG∥AC,所以可.,据此求出EG的长为多少即解答:解:如图1,连接AC,∵菱形ABCD的边长是∴AC=∵沿EF折叠菱形,使点A落在BC边上的点G处,∴EG=AE,∵四边形ABCD是菱形,∴AC⊥BD,又∵EG⊥BD,∴EG∥AC,∴,,∠A=60°,,=3,又∵EG=AE,∴解得EG=∴EG的长为,.,故答案为:.点评:(1)此题主要考查了翻折变换问题,要熟练掌握,解答此题的关键是要明确:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.(2)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.=,则3S△BDG=13S△DGF.其中正确的结论是①③④.(填写所有正确结论的序号)考点:四边形综合题.分析:先求出∠BAE=45°,判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AB=BE,∠AEB=45°,从而得到BE=CD,故①正确;由于∠BGE=∠DGC,得到∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,故③正确;由△BGD是等腰直角三角形得到BD=过G作GM⊥CF于M,求得S△DGF=DFGM=解答:解:∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,=,求得S△BDG=某=,故④正确.=,∴AB=BE,∠AEB=45°,∵AB=CD,∴BE=CD,故①正确;,∴∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,故③正确;∵△DCG≌△BEG,∵∠BGE=∠DGC,BG=DG,∵∠EGC=90°,∴∠BGD=90°,∵BD=∴BG=DG=∴S△BDG=某∴3S△BDG=,,==,过G作GM⊥CF于M,∵CE=CF=BC﹣BE=BC﹣AB=1,∴GM=CF=,∴S△DGF=DFGM=∴13S△DGF=,=,∴3S△BDG=13S△DGF,故④正确.故答案为:①③④.点评:本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.三、解答题(本大题共6小题,共60分,请将必要的文字说明、计算过程或推理过程写出)21.(8分)(2022包头)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为40人,扇形统计图中“良好”所对应的圆心角的度数为162°;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)合格人数除以所占的百分比即可得出所调查的男生总人数,用良好的人数除以总人数再乘以360°即可得出“良好”所对应的圆心角的度数;(2)用40﹣2﹣8﹣18即可;(3)用480乘以良好所占的百分比即可.解答:解:(1)8÷20%=40(人),18÷40某360°=162°;(2)“优秀”的人数=40﹣2﹣8﹣18=12,如图,(3)“良好”的男生人数:某480=216(人),答:全年级男生体质健康状况达到“良好”的人数为216人.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(8分)(2022包头)为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据已知和tan∠ADC=﹣BC求出AB;(2)根据co∠ADC=,求出AC,根据∠BDC=45°,求出BC,根据AB=AC,求出AD,根据co∠BDC=,求出BD.解答:解:(1)在Rt△ADC中,∵∠ADC=60°,CD=3,∵tan∠ADC=,,∴AC=3tan60°=3在Rt△BDC中,∵∠BDC=45°,∴BC=CD=3,∴AB=AC﹣BC=(3﹣3)米.,(2)在Rt△ADC中,∵co∠ADC=∴AD===6米,在Rt△BDC中,∵co∠BDC=∴BD===3米.,(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设购买甲种鱼苗某尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设购买甲种鱼苗z尾,乙种鱼苗(700﹣z)尾,根据题意列不等式求出解集即可;(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与某之间的函数关系式,运用一次函数的性质解决问题.解答:解:(1)设购买甲种鱼苗某尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设购买甲种鱼苗z尾,乙种鱼苗(700﹣z)尾,列不等式得:85%z+90%(700﹣z)≥700某88%,解得:z≤280.答:甲种鱼苗至多购买280尾.(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2某280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.点评:本题主要考查了二元一次方程组、一元一次不等式以及一次函数应用问题,审清题意,找到等量或不等关系是解决问题的关键.24.(10分)(2022包头)如图,AB是⊙O的直径,点D是BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE=DFDB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.2上一点,且∠BDE=∠CBE,考点:切线的判定;相似三角形的判定与性质.分析:(1)根据圆周角定理即可得出∠EAB+∠EBA=90°,再由已知得出∠ABE+∠CBE=90°,则CB⊥AB,从而证得BC是⊙O的切线;(2)通过证得△DEF∽△DBE,得出相似三角形的对应边成比例即可证得结论.(3)连接DA、DO,先证得OD∥BE,得出求得PD=4,通过证得△PDA∽△POD,得出解得OA=2.==,然后根据已知条件得出===,=,,设OA=某,则PA=某,PO=2某,得出解答:(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠EDB=∠EAB,∠BDE=∠CBE,∴∠EAB=∠CBE,∴∠ABE+∠CBE=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,=,∴∠DEA=∠DBE,∵∠EDB=∠BDE,∴△DEF∽△DBE,∴=,∴DE2=DFDB;(3)解:连接DA、DO,∵OD=OB,∴∠ODB=∠OBD,∵∠EBD=∠OBD,∴∠EBD=∠ODB,∴OD∥BE,∴=,∵PA=AO,∴PA=AO=OB,∴=∴=,∴=,∵DE=2,∴PD=4,∵∠PDA+∠ADE=180°,∠ABE+∠ADE=180°,∴∠PDA=∠ABE,∵OD∥BE,∴∠AOD=∠ABE,∴∠PDA=∠AOD,∵∠P=∠P,∴△PDA∽△POD,∴=,设OA=某,∴PA=某,PO=2某,∴=,2∴2某=16,某=2∴OA=2.,点评:本题考查了切线的判定,三角形相似的判定和性质;要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.(12分)(2022包头)如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD 方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).(1)求线段CD的长;(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.①t为何值时,l经过点C?②求当l经过点D时t的值,并求出此时刻线段PQ的长.考点:四边形综合题.分析:(1)作DE⊥BC于E,根据勾股定理即可求解;(2)线段PQ将四边形ABCD的面积分为1:2两部分,分两种情况进行求解;(3)①当PQ的垂直平分线经过点C进行分析解答;②当PQ的。
1 高中数学空间几何体一、选择题(本大题共12小题,每小题5分,共60分) 1.表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为(的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A .p 32B .p 31C .p 32D .p 322 2.如图所示是一个无盖的正方体盒子展开后的平面图,.如图所示是一个无盖的正方体盒子展开后的平面图,A 、B 、C 是展开图上的三点,则在正方体盒子中,∠ABC 为(为( )A .1800B .1200 C .600D .450 3.已知三棱锥S -ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,r AC 2=,则球的体积与三棱锥体积之比是(,则球的体积与三棱锥体积之比是( ) A .p B .p 2 C .p 3 D .p 44.如图所示,如图所示,一个空间几何体的正视图、一个空间几何体的正视图、一个空间几何体的正视图、侧视图、侧视图、侧视图、俯视图为全等的等腰直角三角形,俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )A .1 B .21 C .31 D .61 5.一平面截球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是(积是( )A .33100cm pB .33208cm pC .33500cm pD .33416cm p6.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为(.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( )A .6:5p B .2:6p C .2:pD .12:5p 7.一个四棱锥和一个三棱锥恰好可以拼成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等,设四棱锥、三棱锥、三棱柱的高分别为h 1、h 2、h 3,则h 1:h 2:h 3等于(等于( )A .1:1:3B .2:2:3C .2:2:3D .3:2:38.如图所示的一个5×4×4的长方体,阴影所示为穿透的三个洞,的长方体,阴影所示为穿透的三个洞, 那么剩下的部分的体积是(那么剩下的部分的体积是( ) A .50 B B..54 C 54 C..56 D D..582 9.9.一个正三棱锥的四个顶是半径为一个正三棱锥的四个顶是半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是(圆上,则该正三棱锥的体积是( )A .123B .43C .33D D..433 1010.如图用□表示.如图用□表示1个正方体,用□(浅黑)表示两个正方体叠加,用□(深黑)表示三个立方体叠加,示三个立方体叠加,那么右图是由那么右图是由7个立方体叠成的几何体,个立方体叠成的几何体,从正前方观察,从正前方观察,从正前方观察,可画出可画出的平面图形是(的平面图形是( ))11.11.如图所示,水平地面上有一个大球,现作如下方法测量球的大小:用一个锐角为如图所示,水平地面上有一个大球,现作如下方法测量球的大小:用一个锐角为600的三角板,斜边紧靠球面,一条直角边紧靠地面,的三角板,斜边紧靠球面,一条直角边紧靠地面,并使三角板与地面垂直,并使三角板与地面垂直,P P 为三角板与球的切点,为三角板与球的切点,如果测得PA PA==5,则球的表面积为(,则球的表面积为( ))A .p 200B .p 300C .p 3200D .p 330012.12.一个盛满水的三棱锥容器,一个盛满水的三棱锥容器,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞不久发现三条侧棱上各有一个小洞D 、E 、F ;且知SD SD::DA DA==SE SE::EB EB==CF CF::FS FS==2:1,若仍用这个容器盛水,则最多可盛原来水的(,若仍用这个容器盛水,则最多可盛原来水的( ))A .2923B .2723C .2719D .3531二、填空题(本大题共4小题,每小题4分,共16分)分)13.13.若棱长为若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为的正方体的顶点都在同一球面上,则该球的表面积为______________________________。
2022-2023学年山东省淄博市张店实验中学七年级(上)期末数学试卷(五四学制)一、选择题(本大题共12个小题,每小题4分,共48分.)A.B.C.D.1.(4分)第24届冬奥会将于2022年2月在北京和张家口举办,下列四个图分别是第24届冬奥会图标中的一部分,其中是轴对称图形的是( )A.B.C.D.2.(4分)下列曲线中,表示y是x的函数的是( )A.25B.25或20C.20D.15 3.(4分)已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A.±3B.3C.±2D.-24.(4分)已知函数y=(m-2)x m2−3+1是一次函数,则m的值为( )√√A.40°B.50°C.55°D.60°5.(4分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为( )A.1对B.2对C.3对D.4对6.(4分)如图,AC∥BD,AB交CD于点O,过O的直线EF分别交AC、BD于E、F,DF=CE,则图中全等的三角形的对数共有( )7.(4分)一次函数y=kx+b的图象如图所示,则一次函数y=bx-k的图象所过象限为( )二、填空题(本大题共6小题,每小题4分,共24分,只要求填写最后结果)A .一、三、四象限B .二、三、四象限C .一、二、三象限D .一、二、四象限A .-9B .9C .3D .-38.(4分)已知点A (a +9,2a +6)在y 轴上,a 的值为( )A .北偏东25°方向B .距学校800米处C .温州大剧院音乐厅8排D .东经20°北纬30°9.(4分)根据下列表述,能够确定具体位置的是( )A .4B .39C .13D .3.30300300310.(4分)下列实数中,是无理数的是( )√A .v =25t B .v =-10t +25C .v =t 2+25D .v =5t +1011.(4分)从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v (m /s )与运动时间t (s )之间有如下的对应关系,则速度v 与时间t 之间的函数关系式可能是( )v (m /s )25155-5t (s )0123A .5B .4C .3D .212.(4分)如图,在△ABC 中,∠ACB =45°,AD ⊥BC ,BE ⊥AC ,AD 与BE 相交下点F ,连接并延长CF 交AB 于点G ,∠AEB 的平分线交CG 的延长线于点H ,连接AH .则下列结论:①∠EBD =45°;②AH =HF ;③△ABD ≌△CFD ;④CH =AB +AH ;⑤BD =CD -AF .其中正确的有( )个.13.(4分)−278的立方根是 .14.(4分)在平面直角坐标系中,点(2,-3)到x 轴距离是 .15.(4分)BD 是△ABC 的中线,AB =5,BC =3,△ABD 和△BCD 的周长的差是 .三、解答题(本大题共7小题,共78分,写出必要的文字说明、证明过程成推演步骤)16.(4分)将直线y =5x -1向下平移2个单位,可以得到一个一次函数的图象,则这个一次函数的表达式为 .17.(4分)如图,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为 .18.(4分)如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(8,0),(8,6),(0,6),点D 为线段BC 上一动点,将△OCD 沿OD 翻折,使点C 落到点E 处.当B ,E 两点之间距离最短时,点D 的坐标为 .19.计算与求值:(1)9−3−27−(5)2;(2)|2−5|−2;√√√20.在平面直角坐标系中,A (0,2),B (6,1),C (5,3),如图所示:(1)以x 轴为对称轴,作△ABC 的轴对称图形△DEF ;(2)求△ABC 的面积;(3)在x 轴上找一点M ,使M 点到A 、B 两点的距离之和最小,请你通过作图观察,直接写出点M 的坐标;21.如图,B 、F 、C 、E 在同一直线上,AB =DE ,AB ∥DE ,BF =EC ,判定AC 、DF 的关系并加以证明.22.在△ABC中,∠C=90°,AC=3,CB=4,CD是斜边AB上高.(1)求△ABC的面积;(2)求斜边AB;(3)求高CD.23.已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC的长.24.A,B两地相距60km,甲乙两人沿同一条路从A地前往B地,甲先出发.图中l1,l2表示甲乙两人离A地的距离y(km)与乙所用时间x(h)之间的关系,请结合图象回答下列问题:(1)图中表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是(填l1或l2);(2)当其中一人到达B地时,另一人距B地km;(3)乙出发多长时间时,甲乙两人刚好相距10km?25.如图,一次函数y=x+3的图象分别与x轴和y轴交于C,A两点,且与正比例函数y=kx的图象交于点B(-1,m).(1)求正比例函数的表达式;(2)若点D是x轴上的点,且△OBD的面积和△OBA的面积相等,求满足条件的点D的坐标.。
2022-2023学年度第二学期北师版七年级数学期末复习测试题一、选择题(本大题共12个小题,每小题4分,共48分)1. 下列冬奥元素中是轴对称图形的是()A. B. C. D.2.全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学记数法表示为()A.3×10-5B.3×10-4C.0.3×10-5D.0.3×10-43.下列计算正确的是()A.B.C.D.4.一个均匀的小球在如图所示的水平地板上自由滚动,并随机停在某块方砖上,若每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A. B. C. D. 15.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上6.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()7.如图,按以下方法作一个角的平分线:(1)以O为圆心,适当长为半径画弧,分别交OA、OB于点M、N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求.这种作图方法的依据是()A.AAS B.SAS C.SSS D.ASA8.如图,把两根钢条AB,CD的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)只要量得AC的长度,就可知工件的内径BD是否符合标准,这是利用的什么数学原理呢?()A.SSS B.SAS C.ASA D.AAS9.如图,是的中线,是的中线,是的中线,若,则等于()A.16B.14C.12D.1010.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径西弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,AB=10,则△ABE的面积是()A.B...计算:的结果等于.若多项式是完全平方式,则如图,在中,,,尺规作图作出的垂直平分线与交于点则的度数为写出y与x的关系式________.18.如图,两个正方形边长分别为a、b,如果a2+b2=300,ab=12,则阴影部分的面积为______.三、解答题(本大题共8个体,共78分.解答应写出文字说明,证明过程或演算步骤.)19计算:(1)3xy•(﹣2x3y)2÷(﹣6x5y3);(2)(m+2)(m﹣2)﹣(m﹣1)2(3)化简求值:(2x+1)2﹣4(x﹣1)(x+1),其中x=.20.如图,ABC的顶点A、B、C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画A 1B1C1,使它与ABC关于直线l成轴对称;(2)求ABC的面积;(3)在直线l上找一点P,使点P到点A、B的距离之和最短(不需计算,在图上直接标记出点P的位置).21如图,,,,求的度数.解:∵,∴ ∵,∴(∴ ∴ (∵,∴ AB CD )求证:ABF≌DCE2022-2023学年度第二学期北师版七年级数学期末复习测试题及答案一、选择题(本大题共12个小题,每小题4分,共48分)1. 下列冬奥元素中是轴对称图形的是()A. B. C. D.【答案】D2.全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学记数法表示为()A.3×10-5B.3×10-4C.0.3×10-5D.0.3×10-4【答案】A3.下列计算正确的是( )A.B.C.D.【答案】C3.一个均匀的小球在如图所示的水平地板上自由滚动,并随机停在某块方砖上,每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A. B. C. D. 1【答案】A5.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上【答案】C6.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A.70°B.60°C.50°D.40°【答案】B8.如图,按以下方法作一个角的平分线:、(1)以O为圆心,适当长为半径画弧,分别交OA、OB于点M、N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求.这种作图方法的依据是()A.AAS B.SAS C.SSS D.ASA【答案】C8.如图,把两根钢条AB,CD的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)只要量得AC的长度,就可知工件的内径BD是否符合标准,这是利用的什么数学原理呢?()A.SSS B.SAS C.ASA D.AAS【答案】B9.如图,是的中线,是的中线,是的中线,若,则等于()A.16B.14C.12D.10【答案】A9.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,分别以M,N为圆心,大于MN长为半径西弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,AB=10,则△ABE的面积是()A.8B.15C.24D.30【答案】B11如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=114°,则∠EAF为()A.40°B.44°C.48°D.52°A.B...计算:的结果等于.若多项式是完全平方式,则如图,在中,,,尺规作图作出的垂直平分线与交于点则的度数为写出y与x的关系式________.【答案】y=12+0.5x18.如图,两个正方形边长分别为a、b,如果a2+b2=300,ab=12,则阴影部分的面积为______.【答案】144三、解答题(本大题共8个体,共78分.解答应写出文字说明,证明过程或演算步骤.)19计算:(1)3xy•(﹣2x3y)2÷(﹣6x5y3);(2)(m+2)(m﹣2)﹣(m﹣1)2(3)化简求值:(2x+1)2﹣4(x﹣1)(x+1),其中x=.解:(1)原式=3xy•4x6y2÷(﹣6x5y3)=12x7y3÷(﹣6x5y3)=﹣2x2;(2)原式=m2﹣4﹣(m2﹣2m+1)=m2﹣4﹣m2+2m﹣1=2m﹣5;(3)原式=4x2+4x+1﹣4(x2﹣1)=4x2+4x+1﹣4x2+4=4x+5;当x=时,原式=4×+5=6.20.如图,ABC的顶点A、B、C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画A 1B1C1,使它与ABC关于直线l成轴对称;(2)求ABC的面积;(3)在直线l上找一点P,使点P到点A、B的距离之和最短(不需计算,在图上直接标记出点P的位置).)如图,A)ABC﹣×4×2﹣×2×1﹣×2×3如图,,,,求的度数.解:∵,∴ ( )又∵,∴(∴ ∴ (∵,∴ ∵,∴(两直线平行,同位角相等.∵,∴(等量代换)∴(内错角相等,两直线平行)∴(两直线平行,同旁内角互补)∵,∴.故答案为:;两直线平行,同位角相等;等量代换;;内错角相等,两直线平行;;两直线平行,同旁内角互补;.AB CD)求证:ABF≌DCEAB CD在ABF与DCE,∴ABF≌DCE)知,ABF≌DCE的概率是=,故答案为:;所以三条线段能构成三角形的概率是=,故答案为:.(1)求∠DAF的度数.(2)若BC的长为50,求△DAF的周长.解:(1)∵∠ABC=20°,∠ACB=65°,∴∠BAC=180°-∠ABC-∠ACB=95°.∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,FA=FC,∴∠DAB=∠ABC=20°,∠FAC=∠ACB=65°,∴∠DAF=∠BAC-∠DAB-∠FAC=10°.(2)由(1)可知DA=DB,FA=FC,∴△DAF的周长=DA+DF+FA=DB+DF+FC=BC=50.25.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?解:(1)自变量是时间t;因变量是路程s;500÷=30∴∠ACB﹣∠DCF=∠DCE﹣∠DCF,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB(SAS),∴AD=BE;②∵△CDA≌△CEB,∴∠CEB=∠CDA=180°﹣∠CDE=120°,∵∠CED=60°,∴∠AEB=∠CEB﹣∠CED=120°﹣60°=60°;(2)①∵AC=BC,CD=CE,∠ACB=∠DCE=90°,∴△ACB和△DCE均为等腰直角三角形,∴∠CDE=45°=∠CED,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,∴∠ADC=180°﹣∠CDE=135°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°,故填:90°;②∵△ACD≌△BCE,BE=2,∴BE=AD=2,∵∠CAF=∠BAF=22.5°,∠CDE=45°=∠CAD+∠ACD,∴∠ACD=∠CAD=22.5°,∴AD=CD=2,∵∠DCF=90°﹣∠ACD=67.5°,∠AFC=∠ABC+∠BAF=67.5°,∴∠DCF=∠AFC,∴DC=DF=2,∴AF=AD+DF=4,。
企业财务会计综合测试卷一(满分60分,时间40分钟)一、单项选择题(本大题共12小题,每小题2分,共24分)1.下列不属于现金使用结算范围的是()。
[单选题] *A.支付职工工资2500元B.向个人收购农副产品1200元C.向一般的税企业购入材料1130元(正确答案)D.采购员随身携带差旅费3200元2.企业因销售商品发生的应收账款,其入账价值不应当包括()。
[单选题] *A.销售商品的价款B.增值税销项税额C.销售货物时发生的现金折扣D.销售货物时发生的商业折扣(正确答案)3.某一般纳税人企业外购1000千克原材料,买价为98元/干克,增值税12 740元,对方代垫运杂费1580元,入库前挑选整理费915元,采购人员的差旅费995元,企业实际收到995千克,经查短缺5千克为合理损耗,则该批原材料的单位成本为()。
[单选题] *A. 101元/千克(正确答案)B. 102 元/千克C. 103元/千克D. 98元/千克答案解析:(1000*98+1580+915)/995=1014.某企业销售商品600件,每件售价60元(不含增值税),增值税税率13%,企业为购货方提供的商业折扣为10%,提供的现金折扣条件为“2/10.1/20.N/30"”,并代垫运杂费500元。
该企业在这项交易中应确认的收入金额为()。
[单选题] *A.320 000元B.308 200元C.324 000元(正确答案)D.320 200元5.在经营期间对于建造固定资产的借款利息,在固定资产达到预定可他用状态之前发生的,应借记()账户。
[单选题] *A.“管理费用”B.“财务费用”C.“在建工程”(正确答案)D.“固定资产”6.某企业购入一台需要安装的动产设备,取得的增值税专用发票上注明的设备买价为60 000元,增值税款为7800元,支付的运输费为2200元,设备安装时领用工程用材料物资价值 1500元,购进该批材料物资时支付的增值税额为195元,设备安装时支付有关人员工资费用 2500元,该项固定资产的成本为()。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只
有一项是符合题目要求的。
)
1.P是△ABC所在平面上一点,若,则P是△ABC的()
A 外心
B 内心
C 重心
D 垂心2.下列命题中,一定正确的是
A. B.若,则
C.≥
D. n
3.在四边形中,,,则四边形
A.直角梯形
B.菱形
C.矩形
D.正方形
4.若向量=(cos,sin),=(cos,sin),则a与一定满足()
A.与的夹角等于- B.(+)⊥(-) C.∥ D.⊥
5.已知向量≠,||=1,对任意t∈R,恒有|-t|≥|-|,
则()
A.⊥
B.⊥(-)
C.⊥(-)
D.(+)⊥(-)
已知向量≠,||=1,对任意t∈R,恒有|-t|≥|-|,
则()
A ⊥
B ⊥(-)
C ⊥(-)
D (+)⊥(-) 6.平面直角坐标系中,为坐标原点,已知两点(2,-1),(-1,3),若点满足其中0≤≤1,且,则点的轨迹方程为
A.(-1≤≤2)
B. (-1≤≤2)
C. D.
7.若,且,则向量与的夹角为 ( ) A30° B60° C120° D150°
8.已知向量(,),(,),与的夹角为,
则直线与圆的位置关系是()
A.相离
B.相交
C.相切
D.随的值而定
9.在△ABC中,已知的值为()
A.-2 B.2 C.±4 D.±2
10.点P在平面上作匀速直线运动,速度向量=(4,-3)(即点P的运动方向与v相同,且每秒移动的距离为||个单位.设开始时点P的坐标为(-10,10),则5秒后点P的坐标为( )
A (-2,4)
B (10,-5)
C (-30,25)
D (5,-10)11..设∠BAC的平分线AE与BC相交于E,那么有等于 ( )
A 2
B
C -3
D -
12.为了得到函数y=sin(2x-)的图像,可以将函数y=cos2x的图像 ( )
A 向右平移个单位长度
B 向左平移个单位长度
C 向左平移个单位长度 D向右平移个单位长度
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)
13.已知向量,且A、B、C三点共线,则k=_ __ 14.直角坐标平面中,若定点与动点满足,则点P的轨迹方程是__________.
15.已知点A(2,0),B(4,0),动点P在抛物线y2=-4x运动,则使取得最小值的点P的坐标是.
16.下列命题中:
①∥存在唯一的实数,使得;
②为单位向量,且∥,则=±||²;③;
④与共线,与共线,则与共线;⑤若
其中正确命题的序号是.
三、解答题(本大题共6小题,共74分.解答应有证明过程或演算步骤)
17.已知△ABC中,∠C=120°,c=7,a+b=8,求的值。
18.设向量,向量垂直于向量,向量平行于,试求的坐标.
19.已知M=(1+cos2x,1),N=(1,sin2x+a)(x,a∈R,a是常数),且y =²
(O是坐标原点)(1)求y关于x的函数关系式y=f(x);
(2)若x∈[0,],f(x)的最大值为4,求a的值,并说明此时f(x)的图象可由y=2sin(x+)的图象经过怎样的变换而得到.
20.在平面直角坐标系中,已知,满足向量
与向量共线,且点都在斜率为6的同一条直线上。
若。
求
(1)数列的通项 (2)数列{}的前n项和
21.已知点A、B、C的坐标分别为A(3,0),B(0,3),C(cosα,sinα),α()。
(1)若,求角α的值; (2)若=-1,求的值. 22.已知向量
(1);
(2)(理科做)若
(文科做)求函数的最小值。
参考答案
一、1.D 2.B 3.C 4.B 5.B 6.A 7.C 8.A 9.D 10.B 11.C 12.C
二、13. 14.x+2y-4=0 15.(0,0) 16.②③
三、17.解:解法1:由正弦定理:,
代入
∴
解法2:由
∵,∴
∴(也可由余弦定理求解)
18.解:设,∴,∴①又即:②
联立①、②得∴.
19.解:(1)y=²=1+cos2x+sin2x+a,得f(x) =1+cos2x+sin2x+a;
(2)f(x) =1+cos2x+sin2x+a化简得f(x) =2sin(2x+)+a+1,x∈[0,]。
当x=时,f(x)取最大值a+3=4,解得a=1,f(x) =2sin(2x+)+2。
将y =2sin(x+)的图象的每一点的横坐标缩短到原来的一半,纵坐标保持不变,再向上平移2个单位长度可得f(x) =2sin(2x+)+2的图象。
20.解:(1)∵点B n(n,b n)(n∈N*)都在斜率为6的同一条直线上,∴=6,即b n+1-b n=6,
于是数列{b n}是等差数列,故b n=12+6(n-1)=6n+6.
∵共线.
∴1³(-b n)-(-1)(a n+1-a n)=0,即a n+1-a n=b n
∴当n≥2时,a n=a1+(a2-a1)+(a3-a2)+ …+(a n-a n-1)=a1+b1+b2+b3+…+b n-1
=a1+b1(n-1)+3(n-1)(n-2)
当n=1时,上式也成立。
所以a n=.
(2)
21.解:(1)∵=(cos-3, sin), =(cos, sin-3).
∴∣∣=。
∣∣=。
由∣∣=∣∣得sin=cos.又∵,∴=.
(2)由² =-1,得(cos-3)cos+sin(sin-3)=-1 ∵sin+cos=.
①
又.
由①式两边平方得1+2sin cos= , ∴2sin cos=, ∴
22.解:(1)
⑵(理科)
①当时,当县仅当时,取得最小值-1,这与已知矛盾;
②当时,取得最小值,由已知得
;
③当时,取得最小值,由已知得
解得,这与相矛盾,综上所述,为所求.
(2)(文科)
∴当且仅当取得最小值。