全内反射荧光显微镜概述
- 格式:ppt
- 大小:418.50 KB
- 文档页数:14
tirf显微镜原理简介:TIRF(Total Internal Reflection Fluorescence,全内反射荧光显微镜)是一种用于研究界面和薄膜附近的生物发光过程的高分辨率显微镜技术。
本文将解析TIRF显微镜的原理,包括全内反射现象、波导耦合和荧光检测等方面,帮助读者深入了解这种重要的显微镜技术。
正文:1. 全内反射现象TIRF显微镜利用全内反射现象实现高分辨率成像。
当光束从高折射率的材料(例如玻璃)射入到低折射率的材料(例如溶液)时,当入射角大于临界角时,光束将完全反射,不进入低折射率材料。
2. 波导耦合TIRF显微镜利用光波在玻璃和样品之间发生全内反射来实现荧光成像。
一种常用的方法是通过特殊设计的金属或玻璃叫做波导,将激光束耦合到玻璃和样品的边界上。
波导保证了光束以全内反射的方式沿界面传播,通过控制波导与样品之间的接触面积,可以使激光束只在非常薄的区域内与样品相互作用,实现高分辨率荧光成像。
3. 荧光检测TIRF显微镜利用荧光探针标记的样品发出的荧光信号来进行观察。
在TIRF成像中,仅有与表面接触的荧光染料将被激发并发射荧光。
未被激发的荧光将不被收集,从而有效地减少了背景信号的干扰,提高了信噪比和成像的分辨率。
4. 超分辨率成像TIRF显微镜在满足一定条件下能够实现超分辨率成像。
通过控制入射角度、荧光染料的位置和波导耦合等参数,可以限制荧光激发区域的大小,使得成像分辨率超越传统荧光显微镜的衍射极限,实现更高的空间分辨率。
5. 应用TIRF显微镜广泛应用于生物科学的研究领域,特别是细胞和分子生物学。
通过观察细胞膜和介观尺度结构之间的相互作用、细胞内分子交互作用以及染料的分子动力学等,TIRF显微镜为研究生命科学中的各种现象和过程提供了高分辨率的实时成像手段。
总结:TIRF显微镜利用全内反射现象和波导耦合技术,实现了高分辨率的成像和荧光检测。
通过限制光激发区域和减少背景干扰,TIRF显微镜能够提供超过传统荧光显微镜的分辨率。
全内反射荧光显微术原理与应用1. 引言全内反射荧光显微术(Total Internal Reflection Fluorescence Microscopy,TIRFM)是一种基于全内反射原理的显微技术,利用全内反射限制激光光束的传播范围,使其仅激发样品表面附近的荧光染料,并通过荧光显微镜观察和记录表面附近的高分辨荧光信号。
该技术具有高灵敏度、高空间分辨率和实时监测能力等优点,广泛应用于生命科学研究中。
本文将详细介绍TIRFM的原理和应用。
2. 全内反射原理光在由一个折射率较大的介质(如光具)射入折射率较小的介质(如空气)时,当入射光线的入射角大于一个特定的临界角时,光线将会完全发生反射,不再穿透进入折射率较小的介质中。
这个现象被称为全内反射(Total Internal Reflection,TIR)。
当一个光束从高折射率的物质射入低折射率的物质时,入射角大于临界角时,发生全内反射。
通过调控入射角,可以使光线沿着介面传播,从而形成衰减系数很小的光束。
这个现象可以被用来实现TIRFM的照明光路。
3. 全内反射荧光显微术系统TIRFM系统主要由以下几个部分组成:激光光源、调制器、目标镜、物镜、荧光滤光片、成像系统和数据采集分析系统等。
激光光源:一般使用高功率激光器,如氩离子激光器或二极管激光器。
激光通过光纤输入到光路系统中。
调制器:用于控制激光的工作模式,常用的包括振荡镜或振荡腔。
目标镜:一般是具有高折射率的玻璃片或光具,用于实现全内反射,常用的目标镜材料有石英、玻璃等。
物镜:用于聚焦激光到样品表面,并收集荧光信号。
物镜的选择要考虑到激光的聚焦效果和空间分辨率。
荧光滤光片:用于选择性地阻挡激发光和透射荧光信号。
成像系统:一般是荧光显微镜或全内反射显微镜。
能够观察并记录样品表面的荧光信号。
数据采集分析系统:可以对观察到的荧光图像进行实时处理和分析,如图像增强、图像叠加、荧光强度计算等。
4. TIRFM原理TIRFM的原理可以通过以下步骤进行解释:1.激光从物镜聚焦到样品表面。
荧光显微镜荧光显微镜(Fluorescencemicroscope)及其操作荧光显微镜是免疫荧光细胞化学的基本工具。
它是由光源、滤板系统和光学系统等主要部件组成。
是利用一定波长的光激发标本发射荧光,通过物镜和目镜系统放大以观察标本的荧光图像。
原理编辑本段回目录某些物质经一定波长的光(如紫外光)照射后,物质中的分子被激活,吸收能量后跃迁至激发态;当其从激发态返回到基态时,所吸收的能量除部分转化为热量或用于光化学反应外,其余较大部分则以光能形式辐射出来,由于能量没能全以光的形式辐射出来,故所辐射出的光的波长比激发光的要长,这种波长长于激发光的可见光部就是荧光(fluorescence)。
所谓荧光就是某些物质在一定波长光(如紫外光)的照射下、在极短时间内所发出的比照射光波长更长的可见光。
由此可见,被照射物质产生荧光必须具备以下两个条件:①物质分子(或所特异性结合的荧光染料)必须具有可吸收能量的生色团;②该物质还必须具有一定的量子产率和适宜的环境(如溶剂、pH、温度等)。
荧光显微术是利用荧光显微镜结可发荧光的物质进行观测的一种实验技术。
某些物质在一定短波长的光(如紫外光)的照射下吸收光能进入激发态,从激发态回到基态时, 就能在极短的时间内放射出比照射光波长更长的光(如见光),这种光就称为荧光。
有些生物体内的物质受激发光照射后可直接产生荧光, 称为自发荧光(或直接荧光),如叶绿素的火红色荧光和木质素的黄色荧光等。
有的生物材料本身不能产生荧光,但它吸收荧光染料后同样却能发出荧光,这种荧光称为次生荧光(或间接荧光),如叶绿体吸附吖啶橙后便可发出桔红色荧光。
荧光显微镜具特殊光源(多为紫外光光源),提供足够强度和波长的激发光,诱发荧光物质发出荧光。
在视场中所所观察到的图像,主要是样品的荧光映像。
(一)光源现在多采用200W的超高压汞灯作光源,它是用石英玻璃制作,中间呈球形,内充一定数量的汞,工作时由两个电极间放电,引起水银蒸发,球内气压迅速升高,当水银完全蒸发时,可达50~70个标准大气压力,这一过程一般约需5~15min。
一,雷诺数Re(Reynolds number)表示作用于微团的与粘性力[1]之比。
两个几何相似的雷诺数相等,则对应微团的惯性力与粘性力之比相等。
雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为;若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的流场。
雷诺数越小意味着粘性力影响越显著,越大则惯性力影响越显著。
二,荧光产生原理:光致发光-物质分子吸收光能后,其电子由基态跃迁到激发态,激发态的分子以电磁辐射的形式释放能量回到基态,称为光致发光。
荧光-受光激发的分子从第一激发单重态的最低振动能级回到基态所发出的辐射。
磷光-受光激发的分子从第一激发三重态的最低振动能级回到基态所发出的辐射。
荧光光谱的主要参数和特征:(1)量子产率:荧光量子产率也叫荧光效率或量子效率,它表示物质发射荧光的能力,通常用下式表示发射荧光量子数 / 吸收光量子数(2)荧光寿命:当某种物质被一束激光激发后,该物质的分子吸收后从跃迁到某一激发态上,再以辐射跃迁的形式发出荧光回到基态.当激发停止后,分子的荧光强度降到激发时最大强度的1/e所需的时间称为荧光寿命,它表示粒子在存在的平均时间,通常称为激发态的荧光寿命。
(3)亮度:………斯托克司(stokes)位移:斯托克司位移为最大荧光波长与最大激发波长之差特征:(1)荧光淬灭:是指导致特定物质的荧光强度和寿命减少的所有现象。
(2)荧光漂白:photochemical destruction of a fluorophore, a phenomenon describing a fluorophore inability to be excited again after undergoing repetitive excitation and emission cycles.(3)荧光闪烁:The phenomenon of random switching between ON (bright) and OFF (dark) states of the emitter under its continuous excitation.主要荧光标记:有机染料荧光蛋白量子点三,单分子研究中常用显微术:(原理)(1)激光共聚焦显微镜:Confocal 利用放置在光源后的照明针孔和放置在检测器前的探测针孔实现点照明和点探测,来自光源的光通过照明针孔发射出的光聚焦在样品焦平面的某个点上,该点所发射的荧光成像在探测针孔上,该点以外的任何发射光均被探测针孔阻挡。
初级感觉神经元的分泌和胞吞:单个囊泡行为的全内反射显微成像(TIRFM)研究位于背根神经节(DRG)的初级感觉神经元表达多种神经肽,这些神经肽从神经元的末梢和胞体等区域的致密囊泡(DCV)分泌出来,起到调节神经元突触传递,细胞兴奋性和调控基因表达等重要作用。
分泌过程是神经肽行使其功能的重要调节步骤,然而以往对于这一过程的研究主要在神经内分泌细胞上进行,对神经元神经肽分泌多采用生化方法检测,不足以阐明这一精细调控的过程。
因此我们采用实时成像的方法对DRG神经元神经肽分泌的调控进行了研究。
在此过程中,我们还意外地发现了一个内吞的负向调控因子,于是我们进一步对其作用机制进行了研究。
本论文将分别对这两部分工作进行介绍。
第一部分研究DRG神经元神经肽分泌的调控。
我们首次将全内反射荧光显微镜(TIRFM)成像应用于DRG神经元,用NPY‐pHluorin作为分子标记,在单个囊泡水平观察刺激引起的神经肽分泌。
TIRFM 记录到的单囊泡分泌事件有NPY‐pHluorin“完全释放型”和“不完全释放型”两种,提示DRG神经元中神经肽的分泌受到融合小孔(fusion pore)的调节。
对胞体和轴突的同时记录发现,除了我们已知的胞体分泌,DRG神经元的轴突各部分也存在刺激依赖的DCV分泌,两者对于刺激的响应均表现出较长的延迟。
去极化及电刺激引起的轴突囊泡分泌的数量显著多于胞体,分泌时程也显著快于胞体,尽管轴突的内钙浓度并不比胞体更高,说明DCV在不同细胞区域的分泌位点受到严格的调控。
然而激活DRG神经元上的温度敏感通道TRPV1引起的神经肽分泌在轴突和胞体间没有明显的差异,其单个事件的动力学与去极化引起的分泌有显著的不同,有更多的不完全释放型的事件发生。
这一发现表明不同的生理刺激可以对分泌的位点和融合小孔进行调节,进而调节递质的分泌。
第二部分研究DRG神经元内吞的调控机制。
内吞过程的精确和有效的调控对于突触传递,细胞膜平衡,细胞膜表面的通道和受体的平衡等都具有重要的作用。
全内反射荧光显微镜单分子荧光能量共转移1. 引言1.1 概述本文旨在介绍全内反射荧光显微镜和单分子荧光能量共转移技术,并探讨它们在生物医学领域的应用。
全内反射荧光显微镜是一种基于全内反射现象的高分辨率显微镜,可以实现非常高的空间分辨率和极低的背景噪音,因此被广泛应用于生物体系中超分辨率成像的研究。
而单分子荧光能量共转移是一种用来研究生物体系中分子之间相互作用和结构动态变化的方法,在生命科学领域具有重要意义。
1.2 文章结构本文主要分为五个部分:引言、全内反射荧光显微镜、单分子荧光能量共转移、实验结果与讨论以及结论。
在引言部分,我们将对本篇文章进行简要介绍,并概述全内反射荧光显微镜和单分子荧光能量共转移技术的背景和意义。
随后,在接下来的几个部分,我们将逐步深入探讨这两项技术的原理、发展历程、应用领域以及实验方法与技术要点。
最后,我们将介绍相关的实验结果,并进行结果讨论与解释。
在结论部分,我们将对本文进行总结回顾,并探讨存在的问题及未来展望。
1.3 目的本文旨在全面介绍全内反射荧光显微镜和单分子荧光能量共转移技术的原理和应用,并通过实验结果与讨论来验证这两项技术在生物医学领域中的有效性。
通过本文的阐述,读者可以了解到这些重要技术在研究生物体系中起到的关键作用,并对未来发展方向有所启示。
2. 全内反射荧光显微镜部分的内容如下:2.1 原理介绍全内反射荧光显微镜(Total Internal Reflection Fluorescence Microscopy,TIRFM)是一种基于全内反射原理的高分辨率荧光显微技术。
其原理是利用高折射率物质与低折射率域之间的全内反射现象,将激发光只聚焦在非常薄的表面层上,进而使得观察对象处于极低背景的强照射区域。
相比传统荧光显微镜,TIRFM 具有更高的信噪比和更好的空间分辨率。
在TIRFM中,通过特定角度入射到玻璃-样品界面上的激发光会被全内反射。
当样品中存在荧光探针时,这些探针会受到入射激发光的刺激并发生荧光发射。
全内反射荧光显微镜(TIRFM)系统全内反射荧光显微镜TIRFM系统介绍一、全内反射荧光显微镜的原理及其在生物领域的应用全内反射荧光显微镜(Total internal reflection fluorescence microscope TIRFM)利用光从高折射率的介质进入较低折射率的介质时,如果入射角足够大时则光全部被反射而不发生折射,但是在两种介质的界面会产生衰逝波可以激发近界面100nm范围内的荧光的原理来实现对物体表面的观察。
可通过常规荧光显微镜的照明器或特殊照明器送入激发光,并对激光的入射角度进行控制,采用瞬间场激发方法以避免激发光进入探测器,在玻璃和水界面的激发光产生全内反射实现的。
为了实现全内反射,需要大的入射角,例如玻璃-水界面的入射角要大于61度。
这可以通过棱镜(prism)实现,称为prism-based TIRFM,也可通过高数值孔径的物镜实现,此时称为objective-type TIRFM。
现在商品化的全内反射荧光显微镜一般都是物镜类型的,速度快,精度高。
Wide field FL TIRFM全内反射荧光显微镜由于能实现物体表面非常薄范围内(小于100nm)荧光观察,故在某些生物领域得到广泛应用。
如以下等应用:1、细胞表面图象的观察。
如细胞膜表面结构,细胞表层的接触,膜表面动力学/蛋白质定位Fixed 3T3 纤维原细胞细胞免疫化学标记微管蛋白2、单分子观察及其操作。
肌球蛋白,肌动蛋白与Cy3标记ATP3、细胞膜表面运动。
如泡吞、泡吐现象,泡外分泌现象。
表达GFP-肌动蛋白的培养MAST 细胞正在胞饮4、细胞膜钙火花现象的观察,离子通道监视G蛋白偶联钙离子通道监视5、分子马达研究旋转的马达、细胞骨架蛋白、聚合体、G蛋白、环状蛋白、核苷酸马达RNA聚合酶反应除了在生物领域外,在化学领域等对于化学分子结构观察中也有很好的应用。
二、全内反射荧光显微镜的基本组成全内反射荧光显微镜主要由四部分组成。