密闭容器中光合作用
- 格式:ppt
- 大小:73.50 KB
- 文档页数:4
卡尔文将小球藻放置在含有未标记的CO2的密闭容器中,然后注入14C 标记的CO2,培养相当短的时间后,将小球藻浸入热的乙醇杀死,提取产物进行分析。
发现14C 标记的CO2在几秒钟之内就转变成三磷酸甘油酸(C3) 。
而在时间较长的光合作用后,卡尔文又找到了含有放射性的C5和C6这个实验证明了光合作用中由CO2转化的第一个产物是什么? 三磷酸甘油酸(C3在实验中,卡尔文发现在光照下C3和C5很快达到饱和并保持稳定。
但当把灯关掉后,C3的浓度急速升高,同时C5的浓度急速降低。
如果在光照下突然中断二氧化碳的供应,则C5就积累起来,C3就消失。
今天你如何分析这种现象的产生?在小麦体内该反应发生的场所在哪里? 需要什么条件?CO2的受体是什么?最初的产物是几碳化合物?1.光合作用的总反应式及各元素去向2.光合作用的过程C3植物:光合作用时CO2中的C 直接转移到C3里的植物,叫做C3植物。
例如:小麦、水稻、大麦、大豆、马铃薯、菜豆和菠菜等温带植物 C4植物:光合作用时CO2中的C 首先转移到C4里,然后再转移到C3中的植物。
例如:玉米、甘蔗、高粱等热带植物。
苋菜粟( 谷子,小米)C3植物维管束鞘细胞不含叶绿体。
叶肉细胞都含有叶绿体C4植物(花环式)维管束鞘细胞比较大,含有没有基粒的叶绿体,数量多,个体大。
叶肉细胞含正常的叶绿体。
N A D P HN A D P+A T P A D P +P i由上图可见:C4植物的光合作用中的C4途径发生在叶肉细胞的叶绿体内,C3途径发生在维管束鞘细胞的叶绿体内,两者共同完成CO2的固定。
C4途径的意义:同C3植物相比,C4植物大大提高了固定CO2的能力四、影响光合作用的因素:光照温度CO2矿质元素水等例:温度和CO2对光合作用强度的影响曲线 图 思考甲乙两图中的AB 曲线分别表示C3、C5中的哪一种?你能想出哪些措施提高农作物的产量?培育优良品种 降低呼吸消耗 防治害虫 提高光能的利用率物质甲123456时间(min)时间(min)物质的量乙AB提高农作物的光能利用率光能利用率: 在单位土地面积上,农作物通过光合作用所产生的有机物中所含的能量,与这块土地所接受的太阳能的比。
光合作用的探究历程和过程光合作用是地球上所有生物体中最重要的能量转换过程之一、它将太阳能转化为植物等光合生物能量的过程,同时还产生了氧气。
在光合作用的探究历程中,有两位科学家提供了重要的贡献,他们分别是英国化学家约瑟夫·普利斯特利(Joseph Priestley)和荷兰医生雅各布斯·伯兰特(Jacobus van't Hoff)。
约瑟夫·普利斯特利是第一个发现植物产生氧气的人。
在1771年,他进行了一些实验,在一个密闭的容器中放置了一段草和一只小鼠。
他发现,当阳光照射到容器中,小鼠能够继续存活,但当阳光被遮住时,小鼠却窒息死亡。
这个实验验证了植物在光照下产生氧气。
荷兰科学家雅各布斯·伯兰特则进一步研究了光合作用的过程和原理。
他在1890年提出了一个重要的理论,称为光合作用定律。
该定律描述了光合作用的过程中发生的化学反应,其中光能被植物中的叶绿素吸收,然后通过光合作用转化为化学能,同时产生氧气。
光合作用是一个复杂的过程,可以分为两个阶段:光反应和暗反应。
光反应发生在叶绿体的葉綠體内。
当光照射到叶绿体时,葉綠體中的叶绿素会吸收光能,然后将其转化为化学能。
在光反应中,水分子被分解成氧气和氢离子,这个过程称为光解水。
同时,光能被转化为化学能的同时,也会产生一种叫做ATP(三磷酸腺苷)的能量分子。
ATP是细胞内储存和转移能量的主要分子。
光反应完成后,暗反应开始进行。
暗反应不需要阳光,它发生在葉綠體质粒(m stroma)中。
在暗反应中,二氧化碳和氢离子通过一系列反应被转化为葡萄糖。
这个过程称为碳固定。
光反应中产生的ATP和氢离子提供了能量和电子给暗反应使用。
近年来,科学家们对光合作用的研究也在持续进行。
他们试图了解更多关于光合作用的细节,如叶绿素的吸收光谱、光反应和暗反应中其他信号传导和调节机制,以及如何利用光合作用提高农作物产量等。
这些研究对人类的生活和环境保护都有着重要的意义。
专题06 光合作用1.(2022·北京高考)2. 光合作用强度受环境因素的影响。
车前草的光合速率与叶片温度、CO2浓度的关系如下图。
据图分析不能得出( )A. 低于最适温度时,光合速率随温度升高而升高B. 在一定的范围内,CO2浓度升高可使光合作用最适温度升高C. CO2浓度为200μL·L-1时,温度对光合速率影响小D. 10℃条件下,光合速率随CO2浓度的升高会持续提高【答案】D【解析】【分析】由题图分析可得:(1)图中所展现有两个影响光合速率的因素:一个是CO2的浓度,另一个是温度。
(2)当温度相同时,光合速率会随着CO2的浓度升高而增大;当CO2的浓度相同时,光合速率会随着温度的升高而增大,达到最适温度时,光合速率达到最高值,后随着温度的继续升高而减小。
(3)当CO2浓度为200μL·L-1时,最适温度为25℃左右;当CO2浓度为370μL·L-1时,最适温度为30℃;当CO2浓度为1000μL·L-1时,最适温度接近40℃。
【详解】A、分析题图可知,当CO2浓度一定时,光合速率会随着温度的升高而增大,达到最适温度时,光合速率达到最高值,后随着温度的继续升高而减小,A正确;B、分析题图可知,当CO2浓度为200μL·L-1时,最适温度为25℃左右;当CO2浓度为370μL·L-1时,最适温度为30℃;当CO2浓度为1000μL·L-1时,最适温度接近40℃,可以表明在一定范围内,CO2浓度的升高会使光合作用最适温度升高,B正确;C、分析题图可知,当CO2浓度为200μL·L-1时,光合速率随温度的升高而改变程度不大,光合速率在温度的升高下,持续在数值为10处波动,而CO2浓度为其他数值时,光合速率随着温度的升高变化程度较大,曲线有较大的变化趋势,所以表明CO2浓度为200μL·L-1时,温度对光合速率影响小,C正确;D、分析题图可知,10℃条件下,CO2浓度为200μL·L-1至370μL·L-1时,光合速率有显著提高,而370μL·L-1至1000μL·L-1时,光合速率无明显的提高趋势,而且370μL·L-1时与1000μL·L-1时,两者光合速率数值接近同一数值,所以不能表明10℃条件下,光合速率随CO2浓度的升高会持续提高,D错误。
光合速率的测量方法光合速率是指单位时间内光合作用下光能转化为化学能的速度,是植物生长和养分吸收的重要指标之一。
测量光合速率的方法很多,主要包括密闭法、气体分析法、放射性同位素标记法和荧光测量法等。
下面将详细介绍这些方法及其原理。
密闭法是一种比较常用的测量光合速率的方法,其基本原理是通过测量植物在密闭环境中消耗或释放的氧气(O2)或二氧化碳(CO2)来确定光合速率。
在实验中,一般会用密闭容器将植物样品封闭起来,然后利用气体分析仪测量容器中氧气或二氧化碳的浓度变化,从而计算光合速率。
此方法的优点是简单易行,但需要严格控制环境条件,如光照强度、温度和湿度等,才能获得准确的测量结果。
气体分析法是另一种常用的测量光合速率的方法,其原理是通过测量光合作用中释放或吸收的氧气或二氧化碳来确定光合速率。
在实验中,植物样品会放置在容器中,然后利用气体分析仪测量容器中氧气或二氧化碳的浓度变化,并根据浓度变化计算光合速率。
与密闭法相比,气体分析法不需要封闭整个系统,易于操作,并且可以实时监测光合速率的变化。
放射性同位素标记法是一种较为精确的测量光合速率的方法,其原理是利用放射性同位素标记光合产物来跟踪光合作用的过程。
具体操作中,可以将CO2或H2O 中的放射性同位素标记后输入到植物中,标记的同位素会随光合作用的进行被固定在有机物中,然后通过测量有机物中的同位素浓度变化来计算光合速率。
这种方法的优点是非常准确可靠,可以同时测量不同物质的光合速率,但使用放射性同位素存在较高的风险和技术要求。
荧光测量法是一种新型的测量光合速率的方法,它利用叶绿体中叶绿素的荧光特性来间接测量光合速率。
荧光测量法通过测量叶绿素荧光在不同光照强度下的变化来确定光合速率。
当光照强度较强时,荧光强度会降低,而光合速率会增加,反之亦然。
这种方法简单易行,可以实时监测光合速率的变化,并且不需要复杂的仪器和试剂,因此具有广泛的应用前景。
除了以上介绍的方法外,还有一些其他的测量光合速率的方法,如光谱测量法、光合膜片测量法等。
__高一()班__时间:2017、02、10光合作用与呼吸作用的题型1、【题型一】分析推断类:辨析光合作用的原理与应用。
【方法指导】①需要绘制光合作用模式简图的基础上借助图形进行分析。
②需要从物质的生成和消耗两方面综合分析。
〖示例〗CO2供应正常,光照停止时C3的含量变化:光照停止[H]、ATP减少消耗量减少C3含量增加CO2供应正常C3仍在生成条件C3C5[H]、ATP模型分析光照由强到弱,CO2供应不变↑(增多)↓(减少)↓光照由弱到强,CO2供应不变↓↑↑光照不变,CO2由充足到不足↓↑↑光照不变,CO2由不足到充足↑↓↓【易错易混】C3、C5含量变化的两点注意①以上分析只表示条件改变后短时间内各物质相对含量的变化,而非长时间。
②以上各物质变化中,C3和C5含量的变化是相反的,[H]和ATP的含量变化是一致的。
例1、(2016XX金溪一中一模)在光照最强的夏季的中午,绿色植物的光合作用强度反而会降低,此时细胞内C3和C5以与ATP含量变化依次是(B )A.增加、减少、减少B.减少、增加、增加C.减少、增加、减少D.增加、减少、增加暗反应 有Ⅰ有Ⅱ 有Ⅲ光反应 光反应 暗反应 有Ⅰ、Ⅱ 有Ⅲ例2、(2016XX 长春11中上学期期中)光合作用通过密切关联的两大阶段--光反应和暗反应实现.对于改变反应条件而引起的变化,错误的说法是( ) A .突然中断CO 2供应会暂时引起叶绿体基质中C 5⁄ C 3比值增加 B .突然中断CO 2供应会暂时引起叶绿体基质中ATP ⁄ADP 比值增加C .突然将红光改变为绿光会暂时引起叶绿体基质中C 5⁄ C 3比值减少D .突然将绿光改变为红光会暂时引起叶绿体基质中ATP ⁄ ADP 比值减少〖解析〗A 、突然中断CO 2供应,使暗反应中二氧化碳固定减少,而三碳化合物还原仍在进行,因此导致C 3减少,C 5增多,因此会暂时引起叶绿体基质中C 5⁄ C 3比值增加,A 正确;B 、突然中断CO 2供应使C 3减少,因此三碳化合物还原利用的ATP 减少,导致ATP 积累增多,而ADP 含量减少,因此会暂时引起叶绿体基质中ATP ⁄ ADP 比值增加,B 正确;C 、由于色素主要吸收红光和蓝紫光,对绿光吸收最少,突然将红光改变为绿光,会导致光反应产生的ATP 和[H]减少,这将抑制暗反应中三碳化合物的还原,导致导致C 5减少,C 3增多,因此会暂时引起叶绿体基质中C 5⁄ C 3比值减少,C 正确;D 、突然将绿光改变为红光会导致光反应吸收的光能增加,光反应产生的ATP 和[H]增加,而ADP 相对含量减少,因此暂时引起叶绿体基质中ATP ⁄ ADP 比值增加,D 错误.故选:D .例3、(2016XX 实验中学阶段性测试)如图表示光照强度和CO 2浓度对某植物光合速率的影响.下列叙述不正确的是( )A .b 点和a 点相比,叶绿体中C 3浓度降低B .b 点和d 点相比,叶绿体中C 5浓度升高C .ab 段影响光合速率的主要因素是光照强度D .bc 段限制光合速率的因素可能是温度等其它条件〖解析〗A 、分析题图可知,b 、a 两点二氧化碳浓度相同,b 点光照强度大于a 点,b 点光反应产生的还原氢和ATP 数量多,三碳化合物还原多,叶绿体中C3浓度降低,A 正确;B 、分析题图可知,b 、d 光照强度相同,b 点二氧化碳浓度高,二氧化碳与五碳化合物结合形成三碳化合物消耗的五碳化合物都,叶绿体中C5浓度降低,B 错误;C 、ab 段二氧化碳浓度相同,随光照强度增加光合作用强度增强,因此限制该段光合作用的因素主要是光照强度,C 正确;D 、bc 段二氧化碳浓度相同,随光照强度增加光合作用强度不再增强,因此限制该段光合作用的因素不是光照强度,可能是温度等其他调节,C 正确.故选:B .2、【题型二】过程图析类:光合作用和呼吸作用过程综合 【方法指导】①“图解法”理解光合作用与呼吸作用过程A.过程__B.物质__►C 元素:CO 2 (CH 2O )丙酮酸 CO 2►O 元素:H 2O O 2 H 2O►H 元素:H 2O [H](CH 2O ) [H]H 2OC.能量联系热能光能ATP中活跃的化学能有机物中稳定化学能ATP中活跃的化学能各项生命活动光合作用细胞呼吸②光合作用和有氧呼吸过程中[H]和ATP来源、去路比较光合作用P一103 有氧呼吸P一94[H] 本质还原型辅酶Ⅱ(NADPH)还原型辅酶Ⅰ(NADH)来源光反应水的光解有氧呼吸第一、二阶段去路暗反应还原剂,用于C3还原还原O2产生H2O释放大量的能量ATP 来源光反应,色素吸收、转换的太阳能有氧呼吸,来自有机物的分解去路暗反应C3还原,活跃化学能→稳定化学能直接用于各项生命活动【易错易混】①植物光合作用光反应阶段产生的ATP专用于暗反应,不用于其他生命活动;植物或动物细胞呼吸产生的ATP才能用于各项生命活动。
光合作用实验的解析方法光合作用是一种生物体内的基本代谢过程,它是绿色植物和蓝藻细菌等光合有机生物对光能进行利用的过程。
光合作用通过将光能转化为化学能,使植物能够吸收二氧化碳并释放氧气,从而维持整个生态系统的能量来源和氧气供应。
为了研究光合作用的机理,科学家们开展了许多实验研究,并发展了一系列解析方法。
下面将介绍几种常用的光合作用实验解析方法。
1. 氧气释放法:这是最常用的测量光合作用速率的方法之一。
实验中,使用一个水培植物样品,将其光照,然后将样品装入一个密闭的容器中,并通过分析其溶解氧水平的变化来测量光合作用速率。
首先,装入的容器中只含有水,并在光照条件下进行一段时间,以达到平稳的氧气释放速率。
然后,将植物样品加入容器中,并再次记录一段时间内的氧气释放速率。
通过比较两个阶段的氧气释放速率,可以得出植物光合作用的速率。
2. 光谱法:光合作用依赖于色素分子对光的吸收,因此光谱法可以用来研究这些吸收的过程。
实验中,将叶片浸泡在提取液中(如酒精、醚等),使其色素溶解,并用分光光度计逐渐扫描叶片提取液的吸光度。
通过绘制吸光度与波长之间的关系曲线,可以确定吸收光线的最大吸收峰,并进一步确定光合作用色素的光谱特性。
3. CO2吸收法:光合作用是将二氧化碳转化为有机物的过程,因此测量二氧化碳的吸收可以用来研究光合作用速率。
实验中,将一片叶片或整个植物样品浸泡在吸收二氧化碳的溶液中,然后将溶液中的二氧化碳浓度进行测量。
通过定期取样并分析二氧化碳浓度的变化,可以计算出单位时间内二氧化碳的吸收速率,从而得到光合作用的速率。
4. 光合色素荧光法:叶绿素是植物光合作用的主要色素之一,其荧光可以用来间接测量光合作用速率。
实验中,使用荧光仪测量样品叶片或全植物的荧光发射。
在暗处预激发绿蛋白,并在光照条件下测量其发射光强度的变化。
通过分析荧光信号的参数,例如叶绿素最大荧光量(Fm)和最小荧光量(F0),可以计算出光合作用的效率。
【新教材新高考】考点5 光合作用——2022届高考生物一轮复习考点易错题提升练【易错点】1.光合色素:叶绿素对橙光,黄光吸收较少,对绿光吸收最少,主要吸收红光和蓝紫光2.暗反应过程并非不需要光光合作用的过程可以分为两个阶段,即光反应和暗反应。
前者在光下才能进行,并在一定范围内随着光照强度的增加而增强;后者在有光、无光的条件下都可以进要光反应的产物[H]和ATP,因此在无光条件下不可以长期进行3.影响光合作用的因素及其应用(1)光照强度①光照强度与光合作用强度的关系曲线分析A点:光照强度为0,此时只进行细胞呼吸,释放的CO2量可表示此时细胞呼吸的强度。
AB段:随光照强度增强,光合作用强度也逐渐增强,CO2释放量逐渐减少,这是因为细胞呼吸释放的CO2有一部分用于光合作用,此时细胞呼吸强度大于光合作用强度。
B点:细胞呼吸释放的CO2全部用于光合作用,即光合作用强度等于细胞呼吸强度(光照强度只有在B点以上时,植物才能正常生长)。
BC段:表明随着光照强度不断加强,光合作用强度不断加强,到C点以后不再加强。
限制C点以后光合作用强度不再增加的内部因素是色素含量、酶的数量和最大活性,外部因素是CO2浓度等除光照强度之外的环境因素。
②应用:阴雨天适当补充光照,及时对大棚除霜消雾。
(2)CO2浓度①曲线分析:A点是进行光合作用所需的最低CO2浓度,B点是CO2饱和点;B点以后,随着CO2浓度的增加光合作用强度不再增加。
②应用:温室中适当增加CO2浓度,如投入干冰等,大田中“正其行,通其风”,多施有机肥来提高CO2浓度。
(3)温度①B点是最适温度,此时光合作用最强,高于或低于此温度光合作用强度都会下降,因为温度会影响酶的活性。
②应用:温室栽培时白天适当提高温度,夜间适当降低温度。
(4)水及矿质元素对光合作用的影响①原理:①N、Mg、Fe等是叶绿素合成的必需元素,若这些元素缺乏,会影响叶绿素的合成从而影响光合作用。
水既是光合作用的原料,又是体内各种化学反应的介质,水还会影响气孔的开闭,从而影响CO2进入植物体。
易错点08 关于光合作用和呼吸作用图像分析曲线图和柱形图在考查光合作用和呼吸作用的高考题中常常出现。
对曲线变化和曲线上的特殊点所代表的的生物学含义没有掌握或理解不准确是失分主要原因,对原因依据类答不全或逻辑混乱也是失分常见的原因。
在复习备考中,准确理解曲线变化趋势及拐点所代表的生物学含义,结合题目情境将知识准确、合理的应用,同时避开易错陷阱,从而提高这类题的得分率。
易错陷阱1:总光合速率与净光合作用速率的判断。
混淆“产生O2的量”与“释放O2的量”的区别、“叶绿体(植物)固定CO2的量”与“植物吸收CO2的量”的区别、“合成有机物的量”与“积累有机物的量”的区别。
易错陷阱2:净光合作用为0时,光合作用强度和呼吸作用强度的比较。
误以为整株绿色植物净光合作用为0时,植物光合作用强度等于植物呼吸作用强度,叶肉细胞中光合作用强度也等于呼吸作用强度。
易错陷阱3:光照、温度、CO2浓度对光合作用的影响。
误以为光照强度、温度、CO2浓度与光合作用强度成正相关,误判曲线图中影响光合作用的限制因素。
易错陷阱4:光合作用曲线中补偿点与饱和点移动规律。
对补偿点与饱和点含义不理解造成误判,对光照强度、温度、CO2浓度对光合作用和呼吸作用的影响分析不准确造成误判。
易错陷阱5:一昼夜中开始进行光合作用的点、有机物积累最多的点的判断。
误以为光合速率下降就没有积累有机物,误以为下图中c点开始进行光合作用,d点有机物积累最多。
易错陷阱6:植物正常生长与有机物积累的关系。
误以为植物光合作用有合成有机物即可正常生长,忽略了呼吸作用消耗有机物。
例题1、如图表示温度对某绿色植物光合作用和呼吸作用的影响,下列分析错误的是()A.F点表示光合作用速率与呼吸作用速率相等B.植物有机物积累量最大时对应的最低温度是10 ℃C.图中光合作用单位时间内固定的CO2最大量为30D.H、J点表示光合作用制造的有机物量是呼吸作用消耗有机物量的2倍【解析】A、从空气中吸收的二氧化碳量表示净光合速率,F点表示从空气中吸收的二氧化碳量等于0,即净光合速率为0,F点表示光合作用速率与呼吸作用速率相等,A项正确;B、图中植物有机物积累量可以用图中“从空气中吸收的CO2量”表示,所以净光合作用最大(I 点)时对应的最低温度是10 ℃,B项正确;C、图中光合作用单位时间内固定的CO2最大量=净光合作用强度+呼吸作用强度,当温度为30 ℃时,净光合作用强度=30,呼吸作用强度=30,因此图中光合作用单位时间内固定的CO2最大量= 30+30=60,C项错误;D、光合作用制造的有机物量=呼吸作用消耗的有机物量+净光合作用积累的有机物量,当光合作用制造的有机物量是呼吸作用消耗有机物量的2倍时,呼吸作用消耗的有机物量=净光合作用积累的有机物量,图中两曲线交点表示净光合作用强度=呼吸作用强度,因此图中表示光合作用制造的有机物量是呼吸作用消耗有机物量2倍的是H、J两点,D项正确。
二氧化碳缓冲液在光合作用实验中的作用
在光合作用实验中,二氧化碳缓冲液的作用是至关重要的。
它主要起到缓冲密闭容器内二氧化碳浓度的变化,即排除光合作用吸收的二氧化碳引起的气体体积变化。
这样可以确保液滴移动的距离仅由氧气体积的变化引起。
具体来说,当光合速率大于呼吸速率时,可以理解为光合作用吸收的二氧化碳全部来自缓冲液,而非吸收密闭容器内的二氧化碳。
此时,液滴右移的距离代表了这段时间内光合作用释放的氧气体积,也被称为净光合作用。
反之,当光合速率小于呼吸速率时,可以理解为呼吸作用释放的二氧化碳全部被缓冲液吸收,不会引起密闭容器内的气体体积变化。
此时,液滴左移的距离代表了这段时间内呼吸作用吸收的氧气体积。
此外,二氧化碳缓冲液在实验中还有助于维持瓶内二氧化碳量大致不变。
例如,碳酸氢钠溶液作为一种二氧化碳缓冲液,当瓶内二氧化碳量减少时,它可以释放二氧化碳;反之,则吸收二氧化碳。
综上所述,二氧化碳缓冲液在光合作用实验中起到了关键的作用,确保了实验结果的准确性和可靠性。
专题4.1 光合作用和呼吸作用疑难突破1.(2015·全国Ⅰ,29)为了探究不同光照处理对植物光合作用的影响,科学家以生长状态相同的某种植物为材料设计了A、B、C、D四组实验。
各组实验的温度、光照强度和CO2浓度等条件相同、适宜且稳定,每组处理的总时间均为135 s,处理结束时测定各组材料中光合作用产物的含量。
处理方法和实验结果如下:A组:先光照后黑暗,时间各为67.5 s;光合作用产物的相对含量为50%。
B组:先光照后黑暗,光照和黑暗交替处理,每次光照和黑暗时间各为7.5 s;光合作用产物的相对含量为70%。
C组:先光照后黑暗,光照和黑暗交替处理,每次光照和黑暗时间各为3.75 ms(毫秒);光合作用产物的相对含量为94%。
D组(对照组):光照时间为135 s;光合作用产物的相对含量为100%。
回答下列问题:(1)单位光照时间内,C组植物合成有机物的量________(填“高于”“等于”或“低于”)D组植物合成有机物的量,依据是__________________________________;C组和D组的实验结果可表明光合作用中有些反应不需要________,这些反应发生的部位是叶绿体的________。
(2)A、B、C三组处理相比,随着____________________________________________________的增加,使光下产生的________________能够及时利用与及时再生,从而提高了光合作用中CO2的同化量。
【答案】(1)高于C组只用了D组一半的光照时间,其光合作用产物的相对含量却是D组的94%光照基质(2)光照和黑暗交替频率A TP和[H]【解析】(1)C组只用了D组一半的光照时间,其光合作用产物的相对含量却是D组的94%,说明C组黑暗条件下进行了部分光合作用,暗反应消耗了ATP和[H],为下一次的光照时间内光反应提供了充足的原料ADP、Pi和NADP+等,所以单位光照时间内,C组合成有机物的量高于D组。
浅谈测定光合速率的常用方法光合速率是指光合作用在单位时间内能够产生的生物质量。
测定光合速率的方法有很多种,下面将介绍几种常用的方法。
1. 色素消失法色素消失法是通过测定叶绿素含量的变化来测定光合速率的方法。
在叶片中,光照时,叶绿素分子会处于激发状态,在光合作用中,叶绿素会被加速消耗,因此通过检测叶绿素的消失量可以判断光合速率的大小。
运用色素消失法能够测定光合速率的最大值。
2. 密闭法密闭法是用密闭的容器将植物样品和空气一并封闭在其中,然后暴露在光源下一段时间,同时记录容器内氧气和二氧化碳的含量变化。
光合作用会消耗二氧化碳,释放氧气,因此可以通过检测氧气浓度的增加和二氧化碳浓度的下降来测定光合速率。
该方法常常被运用于无机炭素供应有限的环境的光合作用研究中。
改良版密闭法是在普通密闭法的基础上改进的,它会在容器底部加入小颗粒氧气传感器和二氧化碳传感器,精度相对较高,而且实验操作比较方便。
4. 改良版水稻叶片法改良版水稻叶片法是通过切取一定数量的水稻叶片,然后把它们放在特定大小的容器中,在光照下测定容器内氧气和二氧化碳浓度的变化,从而算出光合速率。
改良版水稻叶片法测定光合速率速度快,准确性较高,常常被用于大量测定的实验中。
5. 净光合速率法净光合速率法是将植物样品置于光源下一定时间,然后分析容器内氧气和二氧化碳浓度的变化量,得出光合速率。
通过净光合速率法能够测出光合作用的实际效果,具有较强的实际意义。
以上方法只是测定光合速率的一部分,电极法、荧光法、同位素标记法、光合活性计法等方法也都有较高的应用价值。
使用不同的方法会对测定结果产生影响,因此在实验中,需要按照需求选择合适的测定方法,以获得准确的数据。