北京工业大学-材料力学-应力应变状态典型习题解析
- 格式:pdf
- 大小:683.76 KB
- 文档页数:6
北京工业大学2012年硕士研究生入学考试试题A B C注:所有答案必须做在答题纸上,做在试题纸上无效!第页(共6 页)注:所有答案必须做在答题纸上,做在试题纸上无效!第页(共6 页)注:所有答案必须做在答题纸上,做在试题纸上无效!第页(共6 页)注:所有答案必须做在答题纸上,做在试题纸上无效!第页(共6 页)注:所有答案必须做在答题纸上,做在试题纸上无效!第页(共6 页)e23PlPl已知:2-7. 一刚性杆AB ,A 端铰支,B 端作用一集中力P ,C 、D 处与两根抗弯刚度均为EI 的细长杆铰接,4l AC CD ==,2l DB =,CE H DF ==,如图所示。
试求当结构由细长杆的失稳而毁坏时,载荷P 的临界值。
(10分)题2-7图注:所有答案必须做在答题纸上,做在试题纸上无效!第 页 (共6 页)1-5. ~OO7gIMllt%I¥J3f1J (o~O) fof:flIJ7lJ~;ff1lfl¥Jm.OO~OOOFJT7j\, iXW3ffJtff;f§[r'1JI¥J~~*~~~~, ~-~ (~ (, 4*)A.m 1fl: 5lliN;ffi , m m 5lli!t /F [r'1J ;B. m1.iL5lliNT-RJ, mm5lli!t;ffi ~;c. m1fl, mffi5lli!ttl3if§ RJ; T I50 1500i40i .oili . Ii y50 lorD ~.....--'! 30 Ij 30 4!{}I MPa A BC DR911-6 002-6. B~Q: ff~7}/{f5t\(;1iIf q(x), ;1t-g-j; Jg R, fFffl x ,r2, 0 nn ~iIDJ:.~U1~ aBC TIl]) DY.5t~: &a=O.6xlO·3 , b ,r2, C4''tiFzD DY.1f.Jg &b=1.2xlO·4 , tjf45i1!'lim. E=200GPa, rst~b~ ,lFO.3, l,J.\:sjt: 1) 7}/{f5j;-g-j; R *+, 2) 7}~j;1Ij; R fFfflOO1ft~ x? CI5?t)R60aI_---'-'-'--"-"'--_~:n2-7. ri~mJgJ:[2'j] , P3~£:7v.o, ~Jf-:7vt, (t < ~), tj*4!¥J5E!i'l1fliiJg E, ~t~b~Jg,Lt,)~WJ~*~~rPJtfct) F ~Q7'~j;1~~E Tf'Fffl (:!lQ 00), 1Jt*: ~t~~~Jf-!¥J[;Jl:1t:i: M ~QH t~I¥J [;Jl:1ti: £ill 0 CI5 *F。
第四章 扭 转4-5 一受扭薄壁圆管,外径D = 42mm ,内径d = 40mm ,扭力偶矩M = 500N •m ,切变模量G =75GPa 。
试计算圆管横截面与纵截面上的扭转切应力,并计算管表面纵线的倾斜角。
解:该薄壁圆管的平均半径和壁厚依次为mm 122 mm 5.20)22(210=-==+=d D d D R δ,于是,该圆管横截面上的扭转切应力为189.4MPa Pa 10894.1m001.00.02052πN 500π282220=⨯=⨯⨯==δτR T 依据切应力互等定理,纵截面上的扭转切应力为 MPa 4.189=='ττ 该圆管表面纵线的倾斜角为rad 102.53rad 1075104.189396-⨯=⨯⨯==G τγ 4-7 试证明,在线弹性范围内,且当R 0/δ≥10时,薄壁圆管的扭转切应力公式的最大误差不超过4.53%。
解:薄壁圆管的扭转切应力公式为δR Tτ20π2=设βδR =/0,按上述公式计算的扭转切应力为3220π2π2δβTδR T τ== (a)按照一般空心圆轴考虑,轴的内、外直径分别为 δR D δR d +=-=002 2,极惯性矩为 )4(2π])2()2[(32π)(32π2200404044p δR δR δR δR d D I +=--+=-=由此得)14(π)12()2()4(π)2(23022000p max ++=++=+=ββδβδδδT R R R TδR I T τ (b)比较式(a)与式(b),得)12(214)12()14(ππ222332max++=++⋅=ββββββδδβT Tττ 当100==δβR 时,9548.0)1102(10211042max=+⨯⨯⨯+⨯=ττ可见,当10/0≥δR 时,按薄壁圆管的扭转切应力公式计算τ的最大误差不超过4.53%。
4-8 图a 所示受扭圆截面轴,材料的γτ-曲线如图b 所示,并可用mC /1γτ=表示,式中的C 与m 为由试验测定的已知常数。
材料力学精选练习题及答案
材料力学,是力学中的一个重要分支,它主要研究物质的力学
性质和形变行为。
在工程实践中,材料力学的知识和技能非常重要,不仅是理论基础,更是工程设计和制造中必不可少的一部分。
以下是材料力学的一些精选练习题及答案,供大家参考和学习。
1、弹性力学
题目:一个长为L,横截面积为A的钢杆,弹性模量为E,要
求它在受到一定的拉力F后产生的伸长量为δ,求钢杆所受的应力和应变。
解答:应力σ=F/A,应变ε=δ/L,弹性模量E=σ/ε,所以σ=F/A,ε=F/(AE),将δ带入ε可得σ=F(L/AE),ε=F/(AE)。
2、塑性力学
题目:在压缩试验中,一块铜板被加压后,其长度由原来的L
缩短至L',试求其应变。
解答:应变ε=(L-L')/L。
3、断裂力学
题目:一个半径为a的圆柱体被沿着一直径破裂,试求其破裂力F。
解答:破裂力F=πa^2σ_max。
4、疲劳力学
题目:在疲劳试验中,一个试件经过n个周期后发生失效,试求其循环应力幅值σ_a和平均应力σ_m。
解答:循环应力幅值σ_a和平均应力σ_m可根据试件的应力-应变曲线以及可能失效的总循环数和n计算得出。
5、复合材料力学
题目:一个由纤维和基材组成的复合材料,在受到一定的横向压力后,试求其纵向伸长量。
解答:通过复合材料的材料性质和几何体积参数可以计算出纵向伸长量。
以上是一些基本的材料力学练习题,希望对大家有所帮助。
在学习过程中,还需要不断积累和练习,才能真正掌握材料力学的知识和技能,为工程实践提供有力的支持和保障。
应力、应变状态分析典型习题解析1 已知矩形截面梁,某截面上的剪力F S =120 kN 及弯矩m kN 10⋅=M 。
绘出表示1、2、3及4点应力状态的微体,并求出各点的主应力。
b = 60 mm ,h = 100 mm 。
解题分析: 从图中可分析1、4点是单向应力状态,2点在中性轴上为纯剪切应力状态,31取平行和垂直与梁横截面的六个平面,构成微体。
则各点处的应力状态如图示。
2、 梁截面惯性矩为 点微体上既有正应力又有切应力。
解:、画各点处微体的应力状态图计算各点处主应力4843333m 1050012m 10100(106012−−−×=×××==)bh I z1点处弯曲正应力(压应力)MPa 100Pa 10100m 10500m1050m N 101064833−=×=×××⋅×==−−zI My σ 1点为单向压缩受力状态,所以 021==σσ,MPa 1003−=σ 2点为纯剪切应力状态, MPa 30Pa 1030m10100602N 1012036263=×=×××××=−τ(向下)容易得到,MPa 301=σ,02=σ,MPa 303−=σ 3点为一般平面应力状态弯曲正应力MPa 50Pa 1050m 10500m 1025m N 101064833=×=×××⋅×==−−zI My σ 弯曲切应力F S =120 kN题图1MPa 5.22Pa 1050.22m10500m 1060m 105.372560N 101206483393*S =×=××××××××==−−−z z bI S F τ MPa 6.8MPa 6.58Pa)105.22()2Pa 1050(2Pa 1050)2(22626622min max −=×+×±×=+−±+=xy x y x τσσσσσσ所以 MPa 6.581=σ,02=σ,MPa 6.83−=σ4点为单向拉伸应力状态,拉伸正应力的大小与1点相等。
材料力学试卷1、结构构件应该具有足够的四、两圆截面杆直径关系为:D2 3D1题8分) 五、已知构件上危险点的应力状态,计算第一强度理论相当应力;第二强度理论相当应力; 第三强度理论相当应力;第四强度理论相当应力。
泊松比{单位MPfl>六、等截面直杆受力如图,已知杆的横截面积为A= 400 mm 2, P =20 kN 。
试作直杆的轴力图;计算杆内的最大正应力;材料的弹性模量E =200 Gpa ,计算杆的轴向总变形。
(本题15 分)。
(本题3分)二、低碳钢拉伸破坏经历了四个典型阶段: 阶段、阶段、阶段和阶段。
衡量材料强度的指标是(本题6分) 三、在其他条件不变的前提下,压杆的柔度越大,则临界应力越 、临界力越材料的临界柔度只与有关。
(本题3分)则Iz2I Z1 W z2W ziI P2I P1 W p2W pi(本0.3。
(本题15分)1W!七、矩形截面梁,截面高宽比h=2b ,1=4米,均布载荷q =30kN /m 许用应力100MPa , 1、画梁的剪力图、弯矩图八、一圆木柱高1=6米,直径D =200 mm ,两端铰支,承受轴向载荷 F =50 kN ,校核柱子30002。
(本题15分)九、用能量法计算结构 B 点的转角和竖向位移,EI 已知。
(本题15 分)2P 42、设计梁的截面(本题20分)。
qWMPa ,折减系数与柔度的关系为:的稳定性。
已知木材的许用应力 1/2材料力学试卷2一、(5分)图(a)与图(b)所示两个矩形微体,虚线表示其变形后的情况,确定该二微体在A处切应变 a b的大小。
二、(10分)计算图形的惯性矩I z I y。
图中尺寸单位:毫米。
三、(15分)当应力。
四、(10分)杆的横截面积、如,500、、------1002C0已知构件上危险点的应力状态,计算第三强度理论相当应力;第四强度理论相1«单位MR》画图示杆的轴力图;计算横截面上最大正应力;计算杆最大轴向应变A=4OO mm 2,E=200 GPa。
第二章轴向拉伸与压缩2-1 试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。
F1=18kN (b)F3=25kN 3力。
解:2-2 图示中部对称开槽直杆,试求横截面1-1和2-2上的正应1 .轴力M1I2- , --------------------------------------------------------- 4kN* -------------- —------------------------------------- r .------------- *—1 2201 F2=3kNF4=10kN2 31518F N F14kN2.应力F N141031 1MPa175MPaA1 1204F N141032 2MPa350A2 22010 4由截面法可求得,杆各横截面上的轴力为2-3 图示桅杆起重机,起重杆 AB 的横截面是外径为 20mm 、 径为18 mm 的圆环,钢丝绳 BC 的横截面面积为 BC 横截面上的应力。
AB 和钢丝绳 o 10mm 2。
试求起重杆解:1 .轴力 取节点 F x 0 :B 为研究对象,受力如图所示, F NBC F NAB cos30 F cos 45 2-4 图示由铜和钢两种材料组成的等直杆,铜和钢的弹性模量分别为 E 1100 GPa 和 E 2210 GPa 。
若杆的总伸长为A l 0.126mm ,试求载荷F 和杆横截面上的应力。
2铜1钢/ /F140 . -400600解:1•横截面上的应力由题意有I 1Fh FI 2 l 2E 1AE 2A由此得到杆横截面上的应力为l h I 2 E 1 E 2 h E 1l 2E 20.126 600 400 100 103 210 103 MPa 15.9MPaF y 0 : 由此解得: 2 .应力 起重杆横截面上的应力为F NABABF NAB sin 30 F sin 45 F NAB 2.83kN , 2.83 103 A AB ____ 2。