2013年金山区中考数学二模卷及答案
- 格式:doc
- 大小:280.85 KB
- 文档页数:8
1 / 122013年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列式子中,属于最简二次根式的是( )AB; C; D2.下列关于x 的一元二次方程有实数根的是( ) A .210x +=; B .210x x ++=; C .210x x -+=; D .210x x --=.3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A .()212y x =-+; B .()212y x =++; C .21y x =+; D .23y x =+.4.数据0,1,1,3,3,4的中位数和平均数分别是( ) A .2和2.4; B .2和2; C .1和2; D .3和2.5.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且:3:5AD DB =,那么:CF CB 等于( )A .5:8;B .3:8;C .3:5;D .2:5.6.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( ) A .BDC BCD ∠=∠; B .ABC DAB ∠=∠;C .ADB DAC ∠=∠;D .AOB BOC ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.因式分解:21a -= .8.不等式组1023x x x->⎧⎨+>⎩的解集是 .9.计算:23b a a b⋅= . 10.计算:()23a b b -+= .11.已知函数()231f x x =+,那么f = .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字面e 的概率是 .13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .14.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为 .15.如图3,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,B F =C E ,A C ∥D F ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 (只需写一个,不添加辅助线).16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y (升)与行驶里程x (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时油箱剩余油量是 升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .3 / 1218.如图5,在△ABC 中,AB AC =,8BC =,32tanC =,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为 .三、解答题:(本大题共7题,19~22题10分,23、24题12分,25题14分,满分满分78分)1910112π-⎛⎫-+ ⎪⎝⎭. 20.解方程组:22220x y x xy y -=-⎧⎨--=⎩. 21.已知平面直角坐标系xOy (如图6),直线12y x b =+经过第一、二、三象限,与y 轴交于点B ,点()2,A t 在这条直线上,联结AO ,△AOB 的面积等于1.(1)求b 的值;(2)如果反比例函数k y x=(k 是常量,0k ≠)的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图(1)所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图(2)所示,其示意图如图(3)所示,其中AB BC ⊥,EF ∥BC ,143EAB ∠=, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计,参考数据:370.60sin ≈,370.80cos ≈,370.75tan ≈.)23.如图8,在△ABC 中,90ACB ∠=,B A ∠>∠,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .(1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xOy 中,顶点为M 的抛物线()20y ax bx a =+>经过点A 和x 轴正半轴上的点B ,2AO BO ==,120AOB ∠=.(1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.25.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP (如图10).已知13AD =,5AB =.设AP x =,BQ y =.(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F .如果4EF EC ==,求x 的值.2013年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、D ;3、C ;4、B ;5、A ;6、C二、 填空题7、(a+1)(a ﹣1); 8、x >1; 9、3b ; 10、2+ ; 11、1; 12、 ; 13、40%;14、;15、AC=DF;16、2;17、30°;18、.三、解答题19.解:原式=2+﹣1﹣1+2=320.解:,由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,21.解:(1)过A作AC⊥y轴,连接OA,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b,∵S△AOB =OB•AC=OB=1,∴b=1;(2)由b=1,得到直线解析式为y=x+1,将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,5 / 12则反比例解析式为y=.22.解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB﹣∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°﹣∠EAH=37°,AE=1.2米,∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度为2.2米.23.证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC ﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.7 / 1224.解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO=,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,9 / 12∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2AB∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).25.解:(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.∵MQ是线段BP的垂直平分线,∴BQ=PQ,BM=BP,∠BMQ=90°,∴∠MBQ+∠BQM=90°,∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,又∵∠A=∠BMQ=90°,∴△ABP∽△MQB,∴,即,化简得:y=BP2=(x2+25).当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13﹣x)2,解得x=1;又AP≤AD=13,∴x的取值范围为:1≤x≤13.∴y=(x2+25)(1≤x≤13).(2)当⊙P与⊙Q相外切时,如答图1所示:设切点为M,则PQ=PM+QM=AP+QC=AP+(BC﹣BQ)=x+(13﹣y)=13+x﹣y;∵PQ=BQ,∴13+x﹣y=y,即2y﹣x﹣13=0将y=(x2+25)代入上式得:(x2+25)﹣x﹣13=0,解此分式方程得:x=,经检验,x=是原方程的解且符合题意.∴x=.(3)按照题意画出图形,如答图2所示,连接QE.11 / 12∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).∵PQ=BQ,∴∠3=∠4,而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,∴∠1=∠5,又∵∠C=∠A=90°,∴△CEQ∽△ABP,∴,即,化简得:4x+5y=65,将y=(x2+25)代入上式得:4x+(x2+25)=65,解此分式方程得:x=,经检验,x=是原方程的解且符合题意,∴x=.。
2013年上海市中考数学试卷及答案2013年上海市中考数学试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)(2013•上海)下列式子中,属于最简二次根式的是( )A .B .C .D .2.(4分)(2013•上海)下列关于x 的一元二次方程有实数根的是( )A . x 2+1=0B . x 2+x+1=0C . x 2﹣x+1=0D . x 2﹣x ﹣1=03.(4分)(2013•上海)如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A . y =(x ﹣1)2+2B . y =(x+1)2+2C . y =x 2+1D . y =x 2+34.(4分)(2013•上海)数据 0,1,1,3,3,4 的中位数和平均数分别是( )A . 2和2.4B . 2和2C . 1和2D . 3和25.(4分)(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:56.(4分)(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()A.∠BDC=∠BCDB.∠ABC=∠DABC.∠ADB=∠DACD.∠AOB=∠BOC二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(2013•上海)分解因式:a2﹣1=_________.8.(4分)(2013•上海)不等式组的解集是_________.9.(4分)(2013•上海)计算:=_________.10.(4分)(2013•上海)计算:2(﹣)+3=_________.11.(4分)(2013•上海)已知函数,那么=_________.12.(4分)(2013•上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为_________.13.(4分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_________.14.(4分)(2013•上海)在⊙O中,已知半径长为3,弦AB 长为4,那么圆心O到AB的距离为_________.15.(4分)(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是_________.(只需写一个,不添加辅助线)16.(4分)(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是_________升.17.(4分)(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_________.18.(4分)(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为_________.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(10分)(2013•上海)计算:.20.(10分)(2013•上海)解方程组:.21.(10分)(2013•上海)已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;(2)如果反比例函数(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.22.(10分)(2013•上海)某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)23.(12分)(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.24.(12分)(2013•上海)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.(14分)(2013•上海)在矩形ABCD中,点P是边AD 上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.2013年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)(2013•上海)下列式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.解答:解:A、=3,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=,不是最简二次根式,故此选项错误;故选:B.点本题考查了最简二次根式的定义.在判断最简二次根式评:的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.(4分)(2013•上海)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0考点:根的判别式.专题:计算题.分析:计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.解答:解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∴方程没有实数根,本选项不合题意;D 、这里a=1,b=﹣1,c=﹣1,∵△=b 2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选D点评: 此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.3.(4分)(2013•上海)如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A . y =(x ﹣1)2+2B . y =(x+1)2+2C . y =x 2+1D . y =x 2+3考点: 二次函数图象与几何变换. 分析: 根据向下平移,纵坐标相减,即可得到答案. 解答: 解:∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2﹣1,即y=x 2+1.故选C .点评: 本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.(4分)(2013•上海)数据0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4 B.2和2 C.1和2 D.3和2考点:中位数;加权平均数.分析:根据中位数和平均数的定义求解即可.解答:解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.故选B.点评:本题考查了中位数及平均数的定义,属于基础题,掌握基本定义是关键.5.(4分)(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:5考平行线分线段成比例.分析:先由AD:DB=3:5,求得BD:AB的比,再由DE∥BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF∥AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.解答:解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选A.点评:此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.6.(4分)(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()A.∠BDC=∠BCD B.∠ABC=∠DABC.∠ADB=∠DACD.∠AOB=∠BOC考等腰梯形的判定.分析:等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.解答:解:A、∵∠BDC=∠BCD,∴BD=BC,根据已知AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;B、根据∠ABC=∠DAB和AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;C、∵∠ADB=∠DAC,AD∥BC,∴∠ADB=∠DAC=∠DBC=∠ACB,∴OA=OD,OB=OC,∴AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项正确;D、根据∠AOB=∠BOC,只能推出AC⊥BD,再根据AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误.故选C.评:生的推理能力和辨析能力,注意:等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(2013•上海)分解因式:a2﹣1=(a+1)(a﹣1).考点:因式分解-运用公式法.分析:符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).解答:解:a2﹣1=(a+1)(a﹣1).点评:本题主要考查平方差公式分解因式,熟记公式是解题的关键.8.(4分)(2013•上海)不等式组的解集是x>1.考点:解一元一次不等式组.专探究型.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>1;由②得,x>﹣3,故此不等式组的解集为:x>1.故答案为:x>1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(4分)(2013•上海)计算:=3b.考点:分式的乘除法.专题:计算题.分析:分子和分母分别相乘,再约分.解答:解:原式==3b,故答案为3b.点本题考查了分式的乘除法,分式的乘除混合运算一般是先乘方,即把分子、分母分别乘方,然后再进行乘除运算.10.(4分)(2013•上海)计算:2(﹣)+3=.考点:*平面向量.分析:先去括号,然后进行向量的加减即可.解答:解:2(﹣)+3=2﹣2+3=2+.故答案为:2+.点评:本题考查了平面向量的知识,属于基础题,掌握向量的加减运算是关键.11.(4分)(2013•上海)已知函数,那么= 1.考点:函数值.分析:把自变量的值代入函数关系式进行计算即可得解.解答:解:f()==1.点评:本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.12.(4分)(2013•上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.考点:概率公式.分析:让英文单词theorem中字母e的个数除以字母的总个数即为所求的概率.解答:解:∵英文单词theorem中,一共有7个字母,其中字母e有2个,∴任取一张,那么取到字母e的概率为.故答案为.点评:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.13.(4分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为40%.考点:条形统计图.分析:各个项目的人数的和就是总人数,然后利用报名参加甲组和丙组的人数之和除以总人数即可求解.解答:解:总人数是:50+80+30+40=200(人),则报名参加甲组和丙组的人数之和占所有报名人数的百分比为×100%=40%.故答案是:40%.点评:本题考查了条形统计图,正确读图,理解图形中说明的意义是关键.14.(4分)(2013•上海)在⊙O中,已知半径长为3,弦AB 长为4,那么圆心O到AB的距离为.考点:垂径定理;勾股定理.分析:根据题意画出图形,过点O作OD⊥AB于点D,由垂径定理可得出BD的长,在Rt△OBD中,利用勾股定解答:解:如图所示:过点O作OD⊥AB于点D,∵AB=4,∴BD=AB=×4=2,在Rt△OBD中,∵OB=3cm,BD=2cm,∴OD===.故答案为:.点评:本题考查的是垂径定理及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.15.(4分)(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF.(只需写一个,不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:求出BC=EF,∠ACB=∠DFE,根据SAS推出两三角形全等即可.解答:解:AC=DF,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:AC=DF.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.16.(4分)(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.考点:一次函数的应用.分析:先运用待定系数法求出y与x之间的函数关系式,然后把x=240时带入解析式就可以求出y的值,从而得出剩余的油量.解答:解:设y 与x之间的函数关系式为y=kx+b ,由函数图象,得,解得:,则y=﹣x+3.5.当x=240时,y=﹣×240+3.5=2升.故答案为:2点评:本题考查了运用待定系数法求一次函数的运用,根据自变量求函数值的运用,解答时理解函数图象的含义求出一次函数的解析式是关键.17.(4分)(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.考点:三角形内角和定理.专题:压轴题;新定义.分析:根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.解答:解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.点评:此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.18.(4分)(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.考点:翻折变换(折叠问题).专题:压轴题.分析:首先根据已知得出△ABC的高以及B′E的长,利用勾股定理求出BD即可.解答:解:过点A作AQ ⊥BC于点Q,∵AB=AC,BC=8,tanC=,∴=,QC=BQ=4,∴AQ=6,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过B′点作B′E⊥BC于点E,∴B′E=AQ=3,∴=,∴EC=2,设BD=x,则B′D=x,∴DE=8﹣x﹣2=6﹣x,∴x2=(6﹣x)2+32,解得:x=,直线l与边BC交于点D,那么BD的长为:.故答案为:.点评:此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关键.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(10分)(2013•上海)计算:.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行二次根式的化简、绝对值、零指数幂、负整数指数幂的运算,然后按照实数的运算法则计算即可.解答:解:原式=2+﹣1﹣1+2=3.点评:本题考查了实数的运算,涉及了二次根式的化简、绝对值、零指数幂、负整数指数幂等知识,属于基础题.20.(10分)(2013•上海)解方程组:.考高次方程.点:分析:先由②得x+y=0或x﹣2y=0,再把原方程组可变形为:或,然后解这两个方程组即可.解答:解:,由②得:(x+y)(x ﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,.点评:此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.21.(10分)(2013•上海)已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;(2)如果反比例函数(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)连接OA,过A作AC垂直于y轴,由A的横坐标为2得到AC=2,对于直线解析式,令y=0求出x的值,表示出OB的长,三角形AOB面积以OB为底,AC为高表示出,根据已知三角形的面积求出OB的长,确定出B坐标,代入一次函数解析式中即可求出b的值;(2)将A坐标代入一次函数求出t的值,确定出A坐标,将A坐标代入反比例解析式中求出k的值,即可确定出反比例解析式.解答:解:(1)过A作AC⊥y轴,连接OA,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b ,∵S△AOB=OB•AC=OB=1,∴b=1;(2)由b=1,得到直线解析式为y=x+1,将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,则反比例解析式为y=.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.22.(10分)(2013•上海)某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)考点:解直角三角形的应用.分析:过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠EAH=53°,则∠EAH=53°,然后在△EAH中,利用余弦函数的定义得出EH=AE•cos∠AEH≈0.96米,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.解答:解:如图,过点A作BC的平行线AG,过点E作EH⊥AG 于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB﹣∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°﹣∠EAH=37°,AE=1.2米,∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度为2.2米.点评:本题考查了解直角三角形在实际中的应用,难度适中.关键是通过作辅助线,构造直角三角形,把实际问题转化为数学问题加以计算.23.(12分)(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.考点:菱形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:(1)首先证明四边形DBCF 为平行四边形,可得DF=BC,再证明DE=BC,进而得到EF=CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G ,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.解答:证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.点评:此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.24.(12分)(2013•上海)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.考点:二次函数综合题.专压轴题.题:分析:(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)根据(1)中解析式求出M点坐标,再利用锐角三角函数关系求出∠FOM=30°,进而得出答案;(3)分别根据当△ABC1∽△AOM以及当△C2AB∽△AOM时,利用相似三角形的性质求出C点坐标即可.解答:解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO=,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x ﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2AB∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).点评:此题主要考查了锐角三角函数的应用以及待定系数法求二次函数解析式和相似三角形的性质等知识,利用分类讨论思想以及数形结合得出是解题关键.25.(14分)(2013•上海)在矩形ABCD中,点P是边AD 上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.考点:四边形综合题.专题:压轴题.分(1)利用相似三角形△ABP∽△MQB,求出y关于x析:的函数解析式;注意求x的取值范围时,需考虑计算x 最大值与最小值的情形;(2)如答图1所示,利用相外切两圆的性质,求出PQ 的长;利用垂直平分线的性质PQ=BQ,列方程求出x的值;(3)如答图2所示,关键是证明△CEQ∽△ABP,据此列方程求出x的值.解答:解:(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.∵MQ是线段BP的垂直平分线,∴BQ=PQ,BM=BP,∠BMQ=90°,∴∠MBQ+∠BQM=90°,∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,又∵∠A=∠BMQ=90°,∴△ABP∽△MQB,∴,即,化简得:y=BP2=(x2+25).当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13﹣x)2,解得x=1;又AP≤AD=13,∴x的取值范围为:1≤x≤13.∴y=(x2+25)(1≤x≤13).(2)当⊙P与⊙Q相外切时,如答图1所示:设切点为M,则PQ=PM+QM=AP+QC=AP+(BC﹣BQ)=x+(13﹣y)=13+x﹣y;∵PQ=BQ,∴13+x﹣y=y,即2y﹣x﹣13=0将y=(x 2+25)代入上式得:(x2+25)﹣x﹣13=0,解此分式方程得:x=,经检验,x=是原方程的解且符合题意.∴x=.(3)按照题意画出图形,如答图2所示,连接QE.∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).∵PQ=BQ,∴∠3=∠4,而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,∴∠1=∠5,又∵∠C=∠A=90°,∴△CEQ∽△ABP ,∴,即,化简得:4x+5y=65,将y=(x2+25)代入上式得:4x+(x2+25)=65,解此分式方程得:x=,经检验,x=是原方程的解且符合题意,∴x=.点评:本题是中考压轴题,难度较大.试题的难点在于:其一,所考查的知识点众多,包括相似三角形的判定与性质、矩形的性质、勾股定理、圆的位置关系、角平分线的性质、垂直平分线的性质、解分式方程与一元二次方程等,对数学能力要求很高;其二,试题计算量较大,需要仔细认真计算,避免出错.参与本试卷答题和审题的老师有:caicl;sd2011;gbl210;HJJ;sks;HLing;wdxwwzy;CJX;hdq123;未来;ZJX;星期八;lantin;zjx111;zhjh(排名不分先后)菁优网2013年12月10日。
2013年上海市中考数学试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】.C D.25.(4分)(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()6.(4分)(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(2013•上海)分解因式:a2﹣1=_________.8.(4分)(2013•上海)不等式组的解集是_________.9.(4分)(2013•上海)计算:=_________.10.(4分)(2013•上海)计算:2(﹣)+3=_________.11.(4分)(2013•上海)已知函数,那么=_________.12.(4分)(2013•上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为_________.13.(4分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_________.14.(4分)(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为_________.15.(4分)(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是_________.(只需写一个,不添加辅助线)16.(4分)(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是_________升.17.(4分)(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_________.18.(4分)(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为_________.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)(2013•上海)计算:.20.(10分)(2013•上海)解方程组:.21.(10分)(2013•上海)已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;(2)如果反比例函数(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.22.(10分)(2013•上海)某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)23.(12分)(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.24.(12分)(2013•上海)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x 轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.(14分)(2013•上海)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.2013年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】.C D.是最简二次根式,故此选项正确;=2,不是最简二次根式,故此选项错误;=,不是最简二次根式,故此选项错误;2平均数为:5.(4分)(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()6.(4分)(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.(4分)(2013•上海)分解因式:a2﹣1=(a+1)(a﹣1).8.(4分)(2013•上海)不等式组的解集是x>1.,9.(4分)(2013•上海)计算:=3b.10.(4分)(2013•上海)计算:2(﹣)+3=.()+3=2+3=2+.+11.(4分)(2013•上海)已知函数,那么=1.)12.(4分)(2013•上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.的概率为故答案为13.(4分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为40%.×14.(4分)(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.BD=AB=OD===故答案为:15.(4分)(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF.(只需写一个,不添加辅助线)16.(4分)(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.x+3.5×17.(4分)(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.18.(4分)(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.tanC=,∴,E=∴,x=的长为:故答案为:三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)(2013•上海)计算:.+1+2=3.20.(10分)(2013•上海)解方程组:.,再把原方程组可变形为:或,原方程组可变形为:或,21.(10分)(2013•上海)已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;(2)如果反比例函数(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.y=x+b=x+1y=22.(10分)(2013•上海)某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)23.(12分)(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.BC EF=DE=CB=24.(12分)(2013•上海)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x 轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.,),xy=﹣((,﹣=AB=2EO=2,∴,MO==∴∴,∴25.(14分)(2013•上海)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.BM=∴y=(y=(((x=x=x=.∴(4x+x=x=x=参与本试卷答题和审题的老师有:caicl;sd2011;gbl210;HJJ;sks;HLing;wdxwwzy;CJX;hdq123;未来;ZJX;星期八;lantin;zjx111;zhjh(排名不分先后)菁优网2013年12月10日。
2013年上海市徐汇、松江、金山区高考数学二模试卷(理科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2006•上海)若函数f(x)=a x(a>0,且a≠1)的反函数的图象过点(2,﹣1),则a=.故答案为2.(4分)(2013•松江区二模)已知函数的值域为A,集合B={x|<0},则A∩B=[2,3).解:由函数3.(4分)(2013•松江区二模)已知=﹣.﹣(﹣,∴±±,故答案为﹣.4.(4分)(2013•松江区二模)已知圆锥的母线长为5,侧面积为15π,则此圆锥的体积为12π(结果保留π).h=∴h==4V=π×π×5.(4分)(2013•松江区二模)已知x=﹣3﹣2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,则a+b=19.,解得.6.(4分)(2013•松江区二模)如图给出的是计算的值的一个程序框图,图中空白执行框内应填入i=i+2.由已知中该程序的功能是计算该程序的功能是计算7.(4分)(2013•松江区二模)在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为ρcosθ=3.8.(4分)(2013•松江区二模)将参数方程(θ为参数,θ∈R)化为普通方程,所得方程是y=﹣x2+3().,,则9.(4分)(2013•松江区二模)在二项式的展开式中,常数项的值是﹣20,则=.,解:由题意二项式的展开式的通项为=a==故答案为:10.(4分)(2013•松江区二模)一质地均匀的正方体三个面标有数字0,另外三个面标有数字1.将此正方体连续抛掷两次,若用随机变量ξ表示两次抛掷后向上面所标有的数字之积,则数学期望Eξ=.=.,=.=故答案为11.(4分)(2013•松江区二模)已知椭圆内有两点A(1,3),B(3,0),P为椭圆上一点,则|PA|+|PB|的最大值为15.椭圆方程为10+|AB'|=10+=10+5=1512.(4分)(2013•松江区二模)如图,O为直线A0A2013外一点,若A0,A1,A2,A3,A4,A5,…,A2013中任意相邻两点的距离相等,设,用表示,其结果为1007().=2同理可得=2(13.(4分)(2013•松江区二模)设函数f(x)=x|x|,将f(x)向左平移a(a>0)个单位得到函数g(x),将f(x)向上平移a(a>0)个单位得到函数h(x),若g(x)的图象恒在h(x)的图象的上方,则正数a的取值范围为a>2.,==14.(4分)(2013•松江区二模)如图,现将一张正方形纸片进行如下操作:第一步,将纸片以D为顶点,任意向上翻折,折痕与BC交于点E1,然后复原,记∠CDE1=α1;第二步,将纸片以D为顶点向下翻折,使AD与E1D重合,得到折痕E2D,然后复原,记∠ADE2=α2;第三步,将纸片以D为顶点向上翻折,使CD与E2D重合,得到折痕E3D,然后复原,记∠CDE 3=α3;按此折法从第二步起重复以上步骤…,得到α1,α2,…,αn,…,则=.依此类推:(.若;若{是以为首项,解:由第二步可知:;由第三步可知:,(∴∴,则,此时{是以为首项,∴,即.∴=.综上可知:.故答案为依此类推:(二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2013•松江区二模)已知a,b为实数,命题甲:ab>b2,命题乙:,若命题乙:16.(5分)(2013•松江区二模)已知函数,设F(x)=x2•f(x),则﹣17.(5分)(2013•松江区二模)气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22 (℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;18.(5分)(2013•松江区二模)如图所示,向量的模是向量的模的t 倍,的夹角为θ,那么我们称向量经过一次(t ,θ)变换得到向量.在直角坐标平面内,设起始向量,向量经过n ﹣1次变换得到的向量为,其中为逆时针排列,记A i坐标为(a i ,b i )(i ∈N *),则下列命题中不正确的是( ).变换的定义,推导知的向量坐标,然:解:向量,则=,三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(12分)(2013•松江区二模)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且,若,△ABC 的面积,求a+c 的值.由条件可知的面积可知,,∵,20.(14分)(2013•松江区二模)某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为k.轮船的最大速度为15海里/小时.当船速为10海里/小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元.假定运行过程中轮船以速度v匀速航行.(1)求k的值;(2)求该轮船航行100海里的总费用W(燃料费+航行运作费用)的最小值.,得燃料费为小时,可燃料费为海里的总费用为)由题意,设燃料费为小时,可得其余航行运作费用为=(∵当且仅当时,即21.(14分)(2013•松江区二模)如图,已知ABC﹣A1B1C1是正三棱柱,它的底面边长和侧棱长都是2,D为侧棱CC1的中点.(1)求异面直线A1D与BC所成角的大小(结果用反三角函数值表示);(2)求直线A1B1到平面DAB的距离.为向量arccos;在中,;.arccos由题意得上的高为,则,的距离为h=××∴的距离为22.(16分)(2013•松江区二模)已知数列的前n项和为S n,数列是首项为0,公差为的等差数列.(1)求数列{a n}的通项公式;(2)设,对任意的正整数k,将集合{b2k﹣1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为d k,求证:数列{d k}为等比数列;(3)对(2)题中的d k,求集合{x|d k<x<d k+1,x∈Z}的元素个数.)由条件得,∴.)可知∴为常数,所以数列23.(18分)(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,=是它的一条渐近线的一个方向向量.(1)求双曲线C的方程;(2)若过点(﹣3,0)任意作一条直线与双曲线C交于A,B两点(A,B都不同于点D),求证:为定值;(3)对于双曲线Γ:,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).情形一:双曲线及它的左顶点;情形二:抛物线y2=2px(p>0)及它的顶点;情形三:椭圆及它的顶点.的方程为,由顶点坐标、渐近线方程及的方程为,则的方程为.,得由,则+9k.综上,,则,化简得,过定点(中,若)在椭圆中,若过定点(,)在椭圆中,若过定点()在椭圆中,若))在椭圆中,若,。
2013学年第二学期金山区学习能力诊断卷初中数学学科 2014.4(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求作答在答题纸规定位置,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸相应位置上】 1. 下列各数中是有理数的是( )(A )3.14; (B )8; (C )2π; (D )22.2. 将直线2y x =+向下平移2个单位后,所得直线的解析式为( ▲ )(A )4y x =+; (B )2y x =-; (C )y x =; (D )4y x =-. 3. 下列一元二次方程中有两个不相等的实数根的是( ▲ )(A )210x +=; (B )2210x x -+=; (C )210x x ++=; (D )220x -= 4. 在本学期的“献爱心”的捐款活动中,九(1)班学生捐款情况如图1所示,那么捐款金额的众数和中位数分别是( ▲ ).(A )15和13.5; (B )8元和6.5元; (C )15和8元; (D )8元和8元. 5. 下列命题中,真命题是( ▲ )(A )平行四边形是轴对称图形; (B )正多边形是中心对称图形;(C )正多边形都是轴对称图形; (D )是轴对称图形的四边形都是中心对称图形.6. 在同一平面内,已知线段AO = 2,⊙A 的半径为r ,将⊙A 绕点O 按逆时针方向旋转90°,得到的圆记作⊙B ,如果⊙A 与⊙B 外切,那么r ,值为( ▲ )(A )1; (B )2; (C )2; (D )2. 二、填空题:(本大题共12题,每题4分,满分48分) 7. 计算:32()a = ▲ .8. 计算:(2)(2)a a +-= ▲ .9. 方程2111x x x =--的解是 ▲ . 10. 计算:2()a a b ++=r r r▲ .11. 已知函数2()f x x=,那么(2)f = ▲ . 12. 已知反比例函数的图像经过点(– 1 , 2),那么该反比例函数的图像的两个分支在第 ▲ 象限. 13. 菱形的两条对角线长分别是6和8,这个菱形的周长为 ▲ .14. 某班共有学生36人,在迎新年庆祝会上,随机抽取1名一等奖,3名二等奖,5名三等奖,以上统称为等第奖,该班每一名学生获得等第奖的概率是 ▲ .15. 为了了解学生课外阅读的喜好,某校随机抽取部分学生进行问卷调查,调查时要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍或者喜欢其他类型的书籍,则都选“其他”,图2是整理数据后绘制的不完整的统计图,如果还知道喜欢漫画的有60人,选“其他”的有30人,那么喜欢小说的人数为 ▲ . 16. 如图3,在ABC △中,AB = 4,BC = 6,BD 是∠ABC 的角平分线,DE // BC 。
上海市金山区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸相应位置上】1.(4分)(•金山区二模)下列各数中是有理数的是()A.3.14 B.C.D.考点:实数.分析:根据有理数是有限小数或无限循环小,可得答案.解答:解:A、是有限小数,故A是有理数;B、C、D是无限不循环小数,故B、C、D是无理数;故选:A.点评:本题考查了有理数,有限小数或无限循环小数是有理数.2.(4分)(•金山区二模)将直线y=x+2向下平移2个单位后,所得直线的解析式为()A.y=x+4 B.y=x﹣2 C.y=x D.y=x﹣4考点:一次函数图象与几何变换.分析:根据平移k值不变,只有b只发生改变解答即可.解答:解:根据题意知,平移后的直线解析式为:y=x+2﹣2=x,即y=x.故选:C.点评:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.3.(4分)(•金山区二模)下列一元二次方程中,有两个相等的实数根的是()A.x2+2x﹣1=0 B.x2﹣2x+1=0 C.x2+2x+4=0 D.x2﹣2x﹣4=0考点:根的判别式.专题:计算题.分析:分别计算四个方程的根的判别式,然后根据判别式的意义进行判断.解答:解:A、△=22﹣4×(﹣1)=8>0,方程有两个不相等的实数根,所以A选项错误;B、△=22﹣4×1=0,方程有两个相等的实数根,所以B选项正确;C、△=22﹣4×4=﹣12<0,方程没有实数根,所以C选项错误;D、△=22﹣4×(﹣4)=20>0,方程有两个不相等的实数根,所以D选项错误.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.(4分)(•金山区二模)在本学期的“献爱心”的捐款活动中,九(1)班学生捐款情况如图,那么捐款金额的众数和中位数分别是()A.15和13.5 B.8元和6.5元C.15和8元D.8元和8元考点:条形统计图;中位数;众数.专题:计算题.分析:根据条形统计图中的数据求出众数与中位数即可.解答:解:根据条形统计图得到捐8元的学生数最多,为15个,故捐款金额的众数为8元,将捐款数按照从小到大顺序排列得到3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,10,10,10,其中最中间的两个数为5和8,平均数为6.5,即中位数为6.5,故选B点评:此题考查了条形统计图,众数,以及中位数,弄清题中的数据是解本题的关键.5.(4分)(•金山区二模)下列命题中,真命题是()A.平行四边形是轴对称图形B.正多边形是中心对称图形C.正多边形都是轴对称图形D.是轴对称图形的四边形都是中心对称图形考点:命题与定理.分析:根据轴对称图形和中心对称图形的定义以及平行四边形、正多边形和等腰梯形的性质分别进行判断.解答:解:A、平行四边形是中心对称图形,不是轴对称图形,所以A选项错误;B、当正多边形的边数为偶数时,它是中心对称图形,所以B选项错误;C、正多边形都是轴对称图形,所以C选项正确;D、等腰梯形是轴对称图形,但不是中心对称图形,所以D选项错误.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.(4分)(•金山区二模)在同一平面内,已知线段AO=2,⊙A的半径为r,将⊙A绕点O按逆时针方向旋转90°,得到的圆记作⊙B,如果⊙A与⊙B外切,那么r的值为()A.1B.2C.D.考点:圆与圆的位置关系.分析:根据旋转的性质得到△OAB为等腰直角三角形,则AB=OA=2,从而求得线段AB的长,然后利用两圆外切两圆的圆心距等于两圆的半径之和直接求解.解答:解:∵⊙A绕点O按逆时针方向旋转90°得到的⊙B,∴△OAB为等腰直角三角形,∵AO=2,∴OB=OA=2,AB=2,∵⊙A、⊙B外切,∴AB等于两圆半径之和,∴r=.故选C.点评:本题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(•金山区二模)计算:(a3)2=a6.考点:幂的乘方与积的乘方.分析:按照幂的乘方法则:底数不变,指数相乘计算.即(a m)n=a mn(m,n是正整数)解答:解:(a3)2=a6.故答案为:a6.点评:本题考查了幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),牢记法则是关键.8.(4分)(•宝坻区二模)计算:(a+2)(a﹣2)=a2﹣4.考点:平方差公式.分析:利用平方差公式直接求解即可求得答案.解答:解:(a+2)(a﹣2)=a2﹣4.故答案为:a2﹣4.点评:本题考查了平方差公式.注意运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.9.(4分)(•金山区二模)方程=的解是x=﹣1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2=1,解得:x=1或x=﹣1,经检验x=1是增根,分式方程的解为x=﹣1.故答案为:x=﹣1点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.(4分)(•金山区二模)计算:+2(+)=3+2.考点:*平面向量.分析:先去掉括号,然后进行加法运算即可.解答:解:+2(+)=+2+2=3+2.故答案为:3+2.点评:本题考查了平面向量,主要是向量的加法运算,是基础题.11.(4分)(•金山区二模)已知函数f(x)=,那么f()=.考点:函数值.分析:把x=代入函数解析式进行计算即可得解.解答:解:f()==.故答案为:.点评:本题考查了函数值求解,把自变量的值代入函数关系式计算即可,比较简单.12.(4分)(•金山区二模)已知反比例函数的图象经过点(﹣1,2),那么该反比例函数的图象的两个分支在第二、四象限.考点:反比例函数的性质.分析:根据反比例函数图象在一、三象限或在二、四象限,根据(﹣1,2)所在象限即可作出判断.解答:解:点(﹣1,2)在第二象限,则该反比例函数的图象的两个分支在第二、四象限.故答案是:二、四.点评:本题考查了反比例函数的性质,对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.13.(4分)(•肇庆)菱形的两条对角线长分别为6和8,则这个菱形的周长为20.考点:菱形的性质;勾股定理.分析:根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.解答:解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.点评:本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.14.(4分)(•金山区二模)某班共有学生36人,在迎新年庆祝会上,随机抽取1名一等奖,3名二等奖,5名三等奖,以上统称为等第奖,该班每一名学生获得等第奖的概率是.考点:概率公式.分析:共36人,其中有1+3+5=9个等第奖,利用概率公式直接求解即可.解答:解:∵共36人,其中有1+3+5=9个等第奖,∴该班每一名学生获得等第奖的概率是=,故答案为:.点评:综合考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(4分)(•金山区二模)为了了解学生课外阅读的喜好,某校随机抽取部分学生进行问卷调查,调查时要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍或者喜欢其他类型的书籍,则都选“其他”,图2是整理数据后绘制的不完整的统计图,如果还知道喜欢漫画的有60人,选“其他”的有30人,那么喜欢小说的人数为120.考点:扇形统计图.专题:计算题.分析:根据扇形统计图,列出算式,计算即可得到结果.解答:解:根据题意得:(30÷10%)﹣60﹣30﹣(30÷10%)×30%=300﹣60﹣30﹣90=120(人),则喜欢小说的人数为120人.故答案为:120.点评:此题考查了扇形统计图,弄清题中的数据是解本题的关键.16.(4分)(•金山区二模)如图,在△ABC中,AB=4,BC=6,BD是∠ABC的角平分线,DE∥BC.DE交AB于点E,那么DE的长为 2.4.考点:相似三角形的判定与性质;等腰三角形的判定与性质.分析:根据平行线的性质和角平分线定义求出∠EDB=∠EBD,推出DE=BE,设DE=BE=x,证相似,得出比例式,代入求出即可.解答:解:∵DE∥BC,∴∠EDB=∠CBD,∵BD是∠ABC的角平分线,∴∠CBD=∠ABD,∴∠EDB=∠EBD,∴DE=BE,设DE=BE=x,∵DE∥BC,∴△AED∽△ABC,∴=,∴=,解得:x=2.4,∴DE=2.4,故答案为:2.4.点评:本题考查了等腰三角形的性质和判定,平行线的性质,相似三角形的性质和判定的应用,解此题的关键是求出BE=DE和求出△AED∽△ABC.17.(4分)(•金山区二模)如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为或.考点:勾股定理;锐角三角函数的定义.专题:分类讨论.分析:分两种情况考虑,当斜边为直角边2倍时,当直角边为直角边2倍时,求出最小角的正切值即可.解答:解:如图1所示,AC=2AB,∴最小角为∠C,根据勾股定理得:BC==AB,则tanC===;如图2所示,BC=2AB,∴tanC==,综上,这个直角三角形的较小的锐角的正切值为或.故答案为:或.点评:此题考查了勾股定理,锐角三角函数定义,熟练掌握勾股定理是解本题的关键.18.(4分)(•金山区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是边AB上一点,联结CD,把△ACD沿CD所在的直线翻折,点A落在点E的位置,如果DE∥BC,那么AD的长为2.考点:翻折变换(折叠问题).专题:计算题.分析:连结CE交AB于F点,根据勾股定理得AB=5,再根据折叠的性质得CE=CA=4,DE=AD,∠E=∠A,有DE∥BC得到∠1=∠B,则∠1+∠E=90°,得到CE⊥AB,于是可根据面积法计算出CF=,所以EF=CE﹣CF=,然后证明△DEF∽△BCF,利用相似比可计算出DE=2,于是得到AD=2.解答:解:连结CE交AB于F点,如图,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵△ACD沿CD所在的直线翻折,点A落在点E的位置,∴CE=CA=4,DE=AD,∠E=∠A,∵DE∥BC,∴∠1=∠B,而∠A+∠B=90°,∴∠1+∠E=90°,∴∠DFE=90°,∴CE⊥AB,∵CF•AB=AC•BC,∴CF==,∴EF=CE﹣CF=4﹣=,∵DE∥BC,∴△DEF∽△BCF,∴DE:BC=EF:CF,即DE:3=:,∴DE=2,∴AD=2.故答案为2.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、相似三角形的判定与性质.三、解答题:(本大题共7题,满分78分)第15题19.(10分)(•金山区二模)计算:﹣cos30°﹣2﹣1+(π﹣)0.考点:二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=﹣﹣+1,然后合并即可.解答:解:原式=﹣﹣+1=0.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.20.(10分)(•金山区二模)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:求出每个不等式的解集,再找出不等式组的解集即可.解答:解:∵解不等式x﹣2>﹣3得:x>﹣1,解不等式3﹣x≥得:x≤4,∴不等式组的解集为﹣1<x≤4,在数轴上表示为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式组的解集的应用,关键是能求出不等式组的解集.21.(10分)(•金山区二模)某市为鼓励居民节约用水,制定了分阶梯收费制度,按每年用水量分成两个阶梯,即年用水量不超过200立方米的部分和200立方米以上的部分按不同的价格收取水费,每户居民每年的水费y(元)和用水量x(立方米)的如图1和图2,(1)如果小张家年用水量为160立方米,那么小王家的年水费是多少?(2)如果小王家年用水量为1500元,那么小王家的年用水量是多少?考点:一次函数的应用.分析:(1)根据图象可得当x≤200时,水价与水费成正比例函数关系,设y=kx,再把(200,700)代入可得k的值,进而得到函数解析式,然后再代入x=160,算出y即可;(2)根据函数图象可得x≥200时,水价与水费成一次函数关系,设y=ax+b,再把(200,700),(300,1200),代入算出a、b的值,进而得到函数解析式,然后再把y=1500代入算出x即可.解答:解:(1)当x≤200时,水价与水费成正比例函数关系,设y=kx,∵图象经过(200,700),∴700=200k,解得:k=3.5,∴y=3.5x,把x=160代入:y=160×3.5=560(元),答:小王家的年水费是560元;(2)当x≥200时,水价与水费成一次函数关系,设y=ax+b,∵图象经过(200,700),(300,1200),∴,解得:,∴y=5x﹣300,把y=1500代入:1500=5x﹣300,解得:x=360,答:小王家的年用水量是360立方米.点评:此题主要考查了一次函数的应用,关键是正确掌握待定系数法求一次函数解析式.22.(10分)(•金山区二模)已知:如图,C是线段BD上一点,AB⊥BD,ED⊥BD,∠ACE=90°,tan∠ACB=2,AB=4,ED=3.求:(1)线段BD的长;(2)∠AEC的正切值.考点:解直角三角形.专题:计算题.分析:(1)利用同角的余角相等得到一对角相等,再由一对直角相等,得到三角形ABC与三角形DCE相似,由相似得比例,根据锐角三角函数定义及tan∠ACB的值,求出BC与CD的值,根据BC+CD求出BD的值即可;(2)由三角形ABC与三角形DCE相似,根据AB与CD长求出相似比,进而求出AC与CE的比值,即为∠AEC的正切值.解答:解:(1)∵∠ACE=90°,AB⊥BD,ED⊥BD,∴∠ACB+∠ECD=90°,∠ACB+∠BAC=90°,∠B=∠D=90°,∴∠BAC=∠ECD,∴△ABC∽△CDE,∴=,∵tan∠ACB==2,AB=4,ED=3,∴=2,即BC=2,CD=6,则BD=BC+CD=2+6=8;(2)∵△ABC∽△CDE,∴===,则tan∠AEC==.点评:此题属于解直角三角形题型,涉及的知识有:锐角三角函数定义,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.23.(12分)(•金山区二模)已知:如图,线段AB∥CD,AC⊥CD,AC、BD相交于点P,E、F分别是线段BP和DP的中点.(1)求证:AE∥CF;(2)如果AE和DC的延长线相交于点Q,M、N分别是线段AP和DQ的中点,求证:MN=CE.考点:相似三角形的判定与性质.分析:(1)根据直角三角形斜边上中线性质求出AE=BE=PE,CF=PF,推出∠EAP=∠EPA,∠CPF=∠FCP,求出∠EAP=∠FCP,根据平行线的判定推出即可;(2)求出ME∥CN,EN∥CM,得出矩形MCNE,根据矩形的判定推出即可.解答:(1)证明:∵AB∥CD,AC⊥CD,∴∠BAP=∠DCP=90°,∵E、F分别是线段BP和DP的中点,∴AE=PE=BE,CF=PF,∴∠EAP=∠EPA,∠CPF=∠FCP,∵∠EPA=∠CPF,∴∠EAP=∠FCP,∴AE∥CF;(2)证明:连接EM、EN,∵M、E分别为AP、BP的中点,∴EM∥AB,∵AB∥CD,∴ME∥DC,即EM∥CN,∵AB∥CD,∴△AEB∽△QED,∴=,∵AE=BE,∴DE=EQ,∵N为DQ的中点,∴EN⊥AQ,∵∠ACD=90°,∴EN∥MC,∴四边形MCNE是矩形,∴MN=CE.点评:本题考查了直角三角形斜边上中线性质,矩形的性质和判定,相似三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目比较好,难度适中.24.(12分)(•金山区二模)如图,在直角坐标系中,直线y=x+2与x轴交于点A,B是这条直线在第一象限上的一点,过点B作x轴的垂线,垂足为点D,已知△ABD的面积为18.(1)求点B的坐标;(2)如果抛物线的图象经过点A和点B,求抛物线的解析式;(3)已知(2)中的抛物线与y轴相交于点C,该抛物线对称轴与x轴交于点H,P是抛物线对称轴上一点,过点P作PQ∥AC交x轴交于点Q,如果点Q在线段AH上,并且AQ=CP,求点P的坐标.考点:二次函数综合题.分析:(1)由直线y=x+2可知斜率为1,则AD=BD,然后根据三角形的面积求得B点的纵坐标,因为直线与x轴交点是(2,0)求得OA的长,从而求得OD的长,最后求得P点的坐标.(2)用待定系数法把A、B的坐标代入即可.(3)由A、C点的坐标可得AC的斜率为3,设PQ直线为y=3x+b,可解出b值以及Q点的x坐标,AQ可得,CP可用勾股定理获得,然后AQ=CP,求出点P的坐标.解答:解:(1)∵直线y=x+2的斜率为1,∴AD=BD,∴S△ABC=AD•BD=BD2,∴18=BD2,解得BD=6,∴AD=BD=6,∵直线y=x+2与x轴的交点A的坐标为(﹣2,0),∴OD=4,∴点B的坐标为(4,6).(2)把A、B点的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.(3)可设P点为(a,),可得AC的斜率为3,设PQ直线为y=3x+b,可解出b值以及Q点的x坐标,AQ可得,CP可用勾股定理获得,然后AQ=CP,求出点P的坐标∵抛物线的解析式为y=﹣x2+2x+6与y轴的交点C为(0,6),对称轴为x=2.∴直线AC的斜率为3,∵PQ∥AC,∴直线PQ的斜率也为3,设直线PQ的解析式为y=3x+b,则Q(﹣,0),∴AQ=2﹣,当x=2时,y=3x+b=6+b,∴P(2,6+b),∴PC2=22+【6﹣(6+b)】2=4+b2,当y=0时,y=3x+b的x=﹣,∴AQ=2﹣,∵AQ=CP,∴(2﹣)2=4+b2,解得:b=﹣,∴P(2,)点评:本题考查了二次函数的综合运用,考查用待定系数法求二次函数解析式以及勾股定理的应用;25.(14分)(•金山区二模)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,AB=4,AD=3,sin∠DCB=,P是边CD上一点(点P与点C、D不重合),以PC为半径的⊙P与边BC 相交于点C和点Q.(1)如果BP⊥CD,求CP的长;(2)如果PA=PB,试判断以AB为直径的⊙O与⊙P的位置关系;(3)联结PQ,如果△ADP和△BQP相似,求CP的长.考点:圆的综合题.专题:综合题.分析:(1)作DH⊥BC于H,如图1,利用矩形的性质得DH=4,BH=3,在Rt△DHC中,利用正弦的定义可计算出DC=5,再利用勾股定理计算出CH=3,则BC=BH+CH=6,然后证明Rt△DCH∽Rt△BCP,利用相似比可计算出PC=;(2)作PE⊥AB于E,如图2,由于PA=PB,根据等腰三角形的性质得AE=BE=AB=2,也可判断PE为梯形ABCD的中位线,所以PD=PC=,PE=(AD+BC)=,于是得到EA+PC=PE,根据两圆外切的判定方法得到以AB为直径的⊙O与⊙P外切;(3)如图1,作PF⊥BC于F,根据垂径定理得CF=QF,设PC=x,则DP=5﹣x,先证明△CPF∽△CDH,利用相似比可计算出CF=,则CQ=2CF=,BQ=BC﹣CQ=6﹣,由PQ=PC得∠PQC=∠PCQ,而∠ADP+∠PCQ=180°,∠PQC+∠PQB=180°,所以∠ADP=∠PQB,然后讨论:当△ADP∽△BQP,根据相似的性质得,解得x1=,x2=10(舍去),得到PC=;当△ADP∽△PQB,利用相似的性质得=,解得x1=,x2=5(舍去),得到PC=.解答:解:(1)作DH⊥BC于H,如图1,∵AD∥BC,AB⊥BC,AB=4,AD=3,∴DH=4,BH=3,在Rt△DHC中,sin∠DCH==,∴DC=5,∴CH==3,∴BC=BH+CH=6,∵BP⊥CD,∴∠BPC=90°,而∠DCH=∠BCP,∴Rt△DCH∽Rt△BCP,∴=,即=,∴PC=;(2)作PE⊥AB于E,如图2,∵PA=PB,∴AE=BE=AB=2,∵PE∥AD∥BC,∴PE为梯形ABCD的中位线,∴PD=PC,PE=(AD+BC)=(3+6)=,∴PC=BC=,∴EA+PC=PE,∴以AB为直径的⊙O与⊙P外切;(3)如图1,作PF⊥BC于F,则CF=QF,设PC=x,则DP=5﹣x,∵PF∥DH,∴△CPF∽△CDH,∴=,即=,解得CF=,∴CQ=2CF=,∴BQ=BC﹣CQ=6﹣,∵PQ=PC,∴∠PQC=∠PCQ,∵AD∥BC,∴∠ADP+∠PCQ=180°,而∠PQC+∠PQB=180°,∴∠ADP=∠PQB,当△ADP∽△BQP,∴=,即=,整理得2x2﹣25x+50=0,解得x1=,x2=10(舍去),经检验x=是原分式方程的解.∴PC=;当△ADP∽△PQB,∴=,即=整理得5x2﹣43x+90=0,解得x1=,x2=5(舍去),经检验x=是原分式方程的解.∴PC=,∴如果△ADP和△BQP相似,CP的长为或.点评:本题考查了圆的综合题:熟练掌握垂径定理、圆与圆的位置关系和梯形的性质;会运用勾股定理和相似比进行几何计算.。
金山区初三中考模拟考试数 学 试 卷(满分150分,考试时间100分钟) 4月一、选择题(共6道小题,每小题4分,共24分)1.14-的绝对值等于……………………………………………………………………( )(A )4(B )4-(C )14(D )14-2.下列计算正确的是……………………………………………………………………( ) (A )248a a a ⋅= (B )224a a a +=;(C )22(2)2a a =;(D )633a a a ÷=.3.二次函数2(1)2y x =--+图象的顶点坐标是……………………………………( ) (A )(1,2) (B )(1,2)- (C )(1,2)--(D )(1,2)-4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,30,120.这组数据的众数和中位数分别是…………………………………………………………………………………( ) (A )120,50(B )50,20 (C )50,30(D )50,505.若一个多边形的内角和等于900,则这个多边形的边数是…………………… ( ) (A )8(B )7(C )6(D )56.在下列命题中,真命题是……………………………………………………………( ) (A )两条对角线相等的四边形是矩形 (B )两条对角线互相垂直的四边形是菱形 (C )两条对角线互相平分的四边形是平行四边形 (D )两条对角线互相垂直且相等的四边形是正方形 二、填空题(共12道小题,每小题4分,共48分) 7.在函数2y x =-中,自变量x 的取值范围是 . 8.分解因式:2x xy -= .9.如果线段AB =4cm ,点P 是线段AB 的黄金分割点,那么较长的线段BP= cm . 102x x -=的根是 . 11.不等式组10230x x -≤⎧⎨+>⎩的整数解为 .12.如果方程2210kx x ++=有两个不等实数根,则实数k 的取值范围是 . 13.点11(,)A x y ,点22(,)B x y 是双曲线2y x=-上的两点,若120x x <<,则1y2y (填“=”、“>”、“<”).14.有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 .15.如图,梯形ABCD 中,AB ∥CD ,CD AB 2=,AD a= ,AB b =,请用向量b a、表示向量AC = .16.已知两圆的圆心距为4,其中一个圆的半径长为3,那么当两圆内切时,另一圆的半径为 .17.如图,已知AD 为△ABC 的角平分线,//DE AB 交AC 于E ,如果23AE EC =,那么 ABAC = .18. 在Rt △ABC 中,∠C =90º ,BC =4 ,AC =3,将△ABC 绕着点B 旋转后点A 落在直线BC上的点A ',点C 落在点C '处,那么'tan AAC 的值是 . 三、解答题(共7道小题,共78分)19.(本题满分1010212sin 45(2)321-⎛⎫-+-π- ⎪-⎝⎭20.(本题满分10分)解方程:281242x x x x -=--+ 21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在平行四边形ABCD 中,以点A 为圆心,AB 为半径的圆,交BC 于点E . (1)求证:ABC ∆≌EAD ∆;(2)如果AC AB ⊥,6=AB ,53cos =∠B , 求EC 的长.ECBAB CDABCDEA第15题图第17题图22.(本题满分10分,第(1)(2)小题满分各3分,第(3)小题满分4分)今年3月5日,光明中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道、去敬老院服务和到社区文艺演出三项。
金山区2012学年第二学期初三模拟考试数学试卷2013.04一.选择题:(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2 B 铅笔填涂】1.下列各数中,与2是同类二次根式的是()A .6B .a 2(a >0)C .21D .232.满足不等式82x的最小整数解是( ) A .3B .2C .1D .03.在平面直角坐标系中,一次函数22xy的图像不经过() A .第一象限B .第二象限C .第三象限D .第四象限4.一位射箭选手在训练中,五次射箭的成绩分别是10,7,8,10,10(单位:环).这组数据的平均数和众数分别是()A .8,7B .8,10C .9,8D .9,105.下列命题中,逆命题是真命题的是()A .对顶角相等.B .两直线平行,同位角相等.C .全等三角形的对应角相等.D .正方形的四个内角都相等.6.在ABC Rt 中,90C ,3AC ,4BC ,CP 、CM 分别是AB 上的高和中线,如果圆A 是以点A 为圆心,半径长为2的圆,那么下列判断正确的是( ) A .点P 、M 均在圆A 内.B .点P 、M 均在圆A 外.C .点P 在圆A 内,点M 在圆A 外.D .点P 在圆A 外,点M 在圆A 内.二.填空题:(本大题共12题,每题4分,满分48分)【只要求在答题纸上直接写出结果,每个空格填对得4分,否则得零分】7.计算:2__________.8.因式分解:42x__________________.9.方程x x 32的根是__________.10.方程1112x x x的根是__________.11.如果关于x 的一元二次方程:012x mx(m 为常数)有两个实数根,那么m 的取值范围是__________.0.040.08 0.160.36 0.12AB C D20 30 E F10 50 40 60 频率组距70年龄(岁)12.已知正比例函数kx y(0k )的图像经过点(1,2),那么正比例函数的解析式为__________.13.在六张大小质地相同的卡片分别写上2010,2011,2013,2013,2013,2014,随机抽取一张,抽取的卡片上的数字是偶数的概率是__________.14.为了解各年龄段观众对某电视节目的收视率,小明调查了部分观众的收视情况,并分成A 、B 、C 、D 、E 、F 六组进行调查,其频率分布直方图如图所示,各长方形上方的数据表示该组的频率,若E 组的频数为48,那么被调查的观众总人数为________人.15.如图,已知,AC AB ,CE 平分BCD ,120A ,那么ACE________.16.如图,已知点D 、E 分别是边AC 和AB 上中点,设a BO ,b OC ,那么ED ________.(用a ,b 来表示)17.如图,已知在ABC 中,BC ∥DE ,8:1:BDECADES S四边形,a AB,那么BD_______.(用a 的代数式来表示)18.已知正方形ABCD 的边长为3,点E 在边DC 上,且30DAE,若将ADE 绕着点A 顺时针旋转60,点D 至'D 处,点E 至'E 处,那么''E AD 与四边形ABCE 重叠部分的面积等于_____________.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,直接做在答题纸上】19.(本题满分10分)先化简,再求值:122)1(112xx x xxxx x,其中12x .20.(本题满分10分)解方程组:2544322yxy xy x ABCDE(15)ABCDE (16)OABCD E(17)ABCDE GABCP EDO21. (本题满分10分)如图,已知在ABC 中,DE 是AC 的垂直平分线,交AC 于点D 、AB 于点E ,若8BC,BCE 的周长为21,135cos B .求:(1)AB 的长;(2)AC 的长.22.(本题满分10分)某工厂计划生产甲、乙两种型号的机器200台,生产机器一定要有A 、B 两种材料,现厂里有A 种材料10000吨,B 种材料6000吨,已知生产一台甲机器和一台乙机器所需A 、B 两种材料的数量和售后利润如下表所示:机器型号A 种材料B 种材料售后利润甲55吨20吨5万元乙40吨36吨6万元设生产甲种型号的机器x 台,售后的总利润为y 万元.(1)写出y 与x 的函数关系式;(2)若你是厂长,要使工厂所获利润最大,那么如何安排生产?(请结合所学函数知识说明理由). 23.(本题满分12分)如图,已知在等腰三角形ABC 中,AC AB,BO 是AC 边上的中线,延长BO 至D ,使得BO DO ;延长BA 至E ,使AB AE ,联结CD 、DE ,在AE 取一点P ,联结DP ,并延长DP 、CA 交于点G .求证:(1)四边形ACDE 是菱形;(2)EP CG AE2.24.(本题满分12分)如图,已知点)0,4-(P ,以点P 为圆心PO 长为半径作圆交x 轴交于点A 、O 两点,过点A 作直线AC 交y 轴于点C ,与圆P 交于点B ,53sin CAO(1) 求点C 的坐标;(2) 若点D 是弧AB 的中点,求经过A 、D 、O 三点的抛物线)0(2a c bx axy 的解析式;(3) 若直线)0(k b kx y经过点)0,2(M ,当直线)0(kb kxy与圆P 相交时,求b 的取值范围.OxA yBCDPCEPFA B25.(本题满分14分)如图,在ABC 中,2ACAB ,90A ,P 为BC 的中点,E 、F 分别是AB 、AC 上的动点,45EPF .(1)求证:BPE ∽CFP .(2)设x BE,PEF 的面积为y .求y 关于x 的函数解析式,并写出x 的取值范围.(3)当E 、F 在运动过程中,EFP 是否可能等于60,若可能请求出x 的值,若不可能请说明理由.初三二模数学参考答案及评分说明一、选择题:1、C 2、A3、A4、D5、B6、C二、填空题:7、28、)2)(2(x x 9、3x 10、1x 11、41m且0m 12、xy 213、3114、20015、10516、21a21b17、a3218、336或0三、简答题:19、原式=11)1()1(2x x x xx x x =11x(6分)当12x 原式=221121(4分)20、解:由254422yxy x得,52y x ,52y x (4分)523y xy x 523y xy x (2分)解得21yx 811yx (4分)21、(1)∵DE 是AC 的垂直平分线∴CE AE (2分)∵8BC 21CE BE BC (1分)∴13BECEBEAEAB(2分)(2)作AH 垂直BC 交BC 于H(1分)在ABH Rt 中∵ABBH Bcos (1分)∵13AB,135cosB∴5BH (1分)∴1222BHABAH (1分)∵358BH BCCH 在ACH Rt 中∴1733122222CHAHAC (1分)22、(1))200(65x x y xy 1200(5分)(2)6000)200(362010000)200(4055x xx x 340075x的整数(2分)又∵y 随x 的增大而减少(2分)∴当75x时,利润最大1125y 万元125200x 答:生产甲、乙两种型号的机器75、125台工厂所获利润最大. (1分)23、(1)∵BO 是AC 边上的中线∴CO AO (1分)∵BODO D O CA OB ∴DOCAOB(1分)∴DC AB C D OABO (1分)∴AB //CD 即AE //CD (1分)∵AB AE∴AEAB∴四边形ACDE 是平行四边形(1分)∵AC AB∴AEAC ∴四边形ACDE 是菱形(1分)(2)∵四边形ACDE 是菱形∴DCG E DE //AC(2分)∴G EDP (1分)∴DPE ∽GCD (1分)∴DCEP CGDE (1分)又∵AEDCDE∴EPCG AE 2(1分)24、(1)∵)0,4-(P ∴8AO (1分)在AOC Rt 中53s i n C A O设m OC 3则mAO5(1分)∵222AC AO OC 222)5(8)3(m m (1分)∴2m∴)6,0(C (1分)(2)联接PD 过点D 作x 轴的垂线交x 轴于H∵点D 是弧AB 的中点∴ABPD ∴D AA O C P H D 90∴PDH ∽CAO∴AC PD AODH COPH (1分)∵6CO 8AO4PD 10AC∴512PH 516DH ∴5325124OH∴)516,532(D (1分)又∵)0,8(A )0,0(O 设抛物线的解析式为)8(x ax y把)516,532(D 代人得165a (1分)∴x x y 251652(1分)(3)554554b 且0b (3+1分)25、(1)∵AC AB90A ∴45CB(1分)又∵FPC EPF EPC B E PB E PC (1分)45EPF∴BEP FPC (1分)∴BPE ∽CFP(1分)(2)作BC EG,BC PH 垂足分别是G 、H∵BPE ∽CFP ∴FC BP CPBE FCx 22xFC2(1分)∴xEG22(1分)xFH2(1分)FPCBEPAEFABCS SS S yxx xx y 222122221)22)(2(212(1分)121x xy)21(x(1+1分)(3)作EP EM 垂足是M 设aFM在EMF Rt 中得a EM 3(1分)在EMP Rt 中得aPM 3aEP6(1分)31636aaa FPEP (1分)∵BPE ∽CFP∴3162x ∴33x (1分)。
【提示】根据中位数和平均数的定义求解即可.【考点】中位数,加权平均数.5.【答案】A【解析】解:∵35ADDB =::,∴:58BD AB =:,∵DE BC ∥,∴::5:8CE AC BD AB ==, ∵EF AB ∥,∴::5:8CF CB CE AC ==,故选A .【提示】先由:3:5AD DB =,求得:BD AB 的比,再由DE BC ∥,根据平行线分线段成比例定理, 可得::CE AC BD AB =,然后由EF AB ∥,根据平行线分线段成比例定理,可得::CF CB CE AC =, 则可求得答案.【考点】平行线分线段成比例.6.【答案】C【解析】解:A .∵BDC BCD ∠=∠,∴BD BC =,根据已知AD BC ∥不能推出四边形ABCD 是等腰梯形,故本选项错误;B .根据ABC DAB ∠=∠和AD BC ∥不能推出四边形ABCD 是等腰梯形,故本选项错误;C .∵ADB DAC AD BC ∠=∠,∥,∴ADB DAC DBC ACB ∠=∠=∠=∠,∴OA OD OB OC ==,, ∴AC BD =,∵AD BC ∥,∴四边形ABCD 是等腰梯形,故本选项正确;D .根据AOB BOC ∠=∠,只能推出AC BD ⊥,再根据AD BC ∥不能推出四边形ABCD 是等腰梯形,故本选项错误,故选:C .【提示】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.【考点】等腰梯形的判定.二、填空题7.【答案】(1)(1)a a +-【解析】解:21(1)(1)a a a -=+-.【提示】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:22()()a b a b a b -=+-.【考点】因式分解.8.【答案】1x >【解析】解:1023x x x ->⎧⎨+>⎩①②,由①得,1x >; 由②得,3x >-,故此不等式组的解集为:1x >.【提示】分别求出各不等式的解集,再求出其公共解集即可.45x∴栏杆EF 段距离地面的高度为: 1.20.96 2.16 2.2AB EH +≈+=≈(米).∴1DCB B ∠=∠=∠,∵1A ADG ∠+∠=∠,∴A G B ∠+∠=∠.11(2)当Pe与Qe相外切时,如图1所示:(3)按照题意画出图形,如图2所示,连接QE.。
金山区2012学年第二学期初三模拟考试数学试卷2013.04一.选择题:(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2 B 铅笔填涂】1.下列各数中,与2是同类二次根式的是( ) A .6 B .a 2(a >0) C .21 D .23 2.满足不等式82<-x 的最小整数解是( )A .3-B .2-C .1-D .0 3.在平面直角坐标系中,一次函数22--=x y 的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.一位射箭选手在训练中,五次射箭的成绩分别是10,7,8,10,10(单位:环).这组数据的平均数和众数分别是( )A .8,7B .8,10C .9,8D .9,10 5.下列命题中,逆命题是真命题的是( ) A .对顶角相等.B .两直线平行,同位角相等.C .全等三角形的对应角相等.D .正方形的四个内角都相等.6.在ABC Rt ∆中,︒=∠90C ,3=AC ,4=BC ,CP 、CM 分别是AB 上的高和中线,如果圆A 是以点A 为圆心,半径长为2的圆,那么下列判断正确的是( ) A .点P 、M 均在圆A 内. B .点P 、M 均在圆A 外.C .点P 在圆A 内,点M 在圆A 外.D .点P 在圆A 外,点M 在圆A 内. 二.填空题:(本大题共12题,每题4分,满分48分)【只要求在答题纸上直接写出结果,每个空格填对得4分,否则得零分】7.计算:=-2__________.8.因式分解:=-42x __________________. 9.方程x x =+32的根是__________.10.方程1112-=-x x x 的根是__________. 11.如果关于x 的一元二次方程:012=++x mx (m 为常数)有两个实数根,那么m 的取值范围是__________.0.040.08 0.16 0.360.12A BC D 20 30 E F 10 50 40 60 频率组距 70 年龄(岁) 12.已知正比例函数kx y =(0≠k )的图像经过点(1,2-),那么正比例函数的解析式为__________.13.在六张大小质地相同的卡片分别写上2010,2011,2013,2013,2013,2014,随机抽取一张,抽取的卡片上的数字是偶数的概率是__________.14.为了解各年龄段观众对某电视节目的收视率,小明调查了部分观众的收视情况,并分成A 、B 、C 、D 、E 、F 六组进行调查,其频率分布直方图如图所示,各长方形上方的数据表示该组的频率,若E 组的频数为48,那么被调查的观众总人数为________人.15.如图,已知,AC AB =,CE 平分BCD ∠,︒=∠120A ,那么=∠ACE ________.16.如图,已知点D 、E 分别是边AC 和AB 上中点,设a BO =,b OC =,那么=ED ________.(用a ,b 来表示)17.如图,已知在ABC ∆中,BC ∥DE ,8:1:=∆BD EC AD E S S 四边形,a AB =,那么=BD _______.(用a 的代数式来表示)18.已知正方形ABCD 的边长为3,点E 在边DC 上,且︒=∠30DAE ,若将ADE ∆绕着点A 顺时针旋转︒60,点D 至'D 处,点E 至'E 处,那么''E AD ∆与四边形ABCE 重叠部分的面积等于_____________.三、解答题(本大题共7题,满分78分) 【将下列各题的解答过程,直接做在答题纸上】19.(本题满分10分) 先化简,再求值:122)1(112---+⋅-++x x x x xx x x ,其中12+=x .20.(本题满分10分) 解方程组:⎩⎨⎧=++=+2544322y xy x y xABC DE(15)ABCDE (16)O A BCDE(17)A BC DEGABCP EDO21. (本题满分10分) 如图,已知在ABC ∆中,DE 是AC 的垂直平分线,交AC 于点D 、AB 于点E ,若8=BC ,BCE ∆的周长为21,135cos =∠B . 求:(1)AB 的长;(2)AC 的长.22.(本题满分10分) 某工厂计划生产甲、乙两种型号的机器200台,生产机器一定要有A 、B 两种材料,现厂里有A 种材料10000吨,B 种材料6000吨,已知生产一台甲机器和一台乙机器所需A 、B 两种材料的数量和售后利润如下表所示:机器型号 A 种材料 B 种材料售后利润甲55吨 20吨 5万元乙40吨 36吨 6万元设生产甲种型号的机器x 台,售后的总利润为y 万元. (1)写出y 与x 的函数关系式;(2)若你是厂长,要使工厂所获利润最大,那么如何安排生产?(请结合所学函数知识说明理由).23.(本题满分12分) 如图,已知在等腰三角形ABC 中,AC AB =,BO 是AC 边上的中线,延长BO 至D ,使得BO DO =;延长BA 至E ,使AB AE =,联结CD 、DE ,在AE 取一点P ,联结DP ,并延长DP 、CA 交于点G .求证:(1)四边形ACDE 是菱形;(2)EP CG AE ⋅=2.24.(本题满分12分)如图,已知点)0,4-(P ,以点P 为圆心PO 长为半径作圆交x 轴交于点A 、O 两点,过点A 作直线AC 交y 轴于点C ,与圆P 交于点B ,53sin =∠CAO (1) 求点C 的坐标;(2) 若点D 是弧AB 的中点,求经过A 、D 、O 三点的抛物线)0(2≠++=a c bx ax y 的解析式;(3) 若直线)0(≠+=k b kx y 经过点)0,2(M ,当直线)0(≠+=k b kx y 与圆P 相交时,求b 的取值范围.OxAy BCDPCEPFAB25.(本题满分14分)如图,在ABC ∆中,2==AC AB ,︒=∠90A ,P 为BC 的中点,E 、F 分别是AB 、AC 上的动点,︒=∠45EPF . (1)求证:BPE ∆∽CFP ∆.(2)设x BE =,PEF ∆ 的面积为y .求y 关于x 的函数解析式,并写出x 的取值范围.(3)当E 、F 在运动过程中,EFP ∠是否可能等于︒60,若可能请求出x 的值,若不可能请说明理由.初三二模数学参考答案及评分说明一、选择题:1、C 2、A 3、A 4、D 5、B 6、C 二、填空题:7、2 8、)2)(2(-+x x 9、3=x 10、1-=x 11、41≤m 且0≠m 12、x y 2-= 13、31 14、200 15、︒105 16、21a 21+b 17、a 32 18、336-或0 三、简答题:19、原式=11)1()1(2--+⋅-+x xx x x x x =11-x (6分) 当12+=x原式=221121=-+ (4分) 20、解: 由254422=++y xy x 得, 52=+y x ,52-=+y x (4分)⎩⎨⎧=+=+523y x y x ⎩⎨⎧-=+=+523y x y x (2分) 解得⎩⎨⎧==21y x⎩⎨⎧-==811y x (4分) 21、(1)∵DE 是AC 的垂直平分线 ∴CE AE = (2分)∵8=BC 21=++CE BE BC (1分) ∴13=+=+=BE CE BE AE AB (2分) (2)作AH 垂直BC 交BC 于H (1分)在ABH Rt ∆中∵ABBHB =∠cos (1分) ∵13=AB ,135cos =∠B ∴5=BH (1分)∴1222=-=BH AB AH (1分)∵358=-=-=BH BC CH在ACH Rt ∆中∴1733122222=+=+=CH AH AC (1分)22、(1))200(65x x y -+=x y -=1200 (5分) (2)⎩⎨⎧≤-+≤-+6000)200(362010000)200(4055x x x x 340075≤≤x 的整数 (2分)又∵y 随x 的增大而减少 (2分)∴ 当75=x 时,利润最大 1125=y 万元 125200=-x 答:生产甲、乙两种型号的机器75、125台工厂所获利润最大. (1分) 23、(1)∵BO 是AC 边上的中线 ∴CO AO = (1分)∵BO DO = D O C A O B ∠=∠ ∴DOC AOB ∆≅∆ (1分)∴DC AB = C D O ABO ∠=∠ (1分)∴AB //CD 即AE //CD (1分) ∵AB AE = ∴AE AB =∴四边形ACDE 是平行四边形 (1分) ∵AC AB = ∴AE AC = ∴四边形ACDE 是菱形 (1分) (2)∵四边形ACDE 是菱形∴DCG E ∠=∠ DE //AC (2分)∴G EDP ∠=∠ (1分) ∴DPE ∆∽GCD ∆ (1分) ∴DCEPCG DE = (1分) 又∵AE DC DE == ∴EP CG AE ⋅=2(1分) 24、(1)∵)0,4-(P ∴8=AO (1分)在AOC Rt ∆中 53s i n=∠C A O 设m OC 3= 则m AO 5= (1分)∵222AC AO OC =+ 222)5(8)3(m m =+ (1分)∴2±=m ∴)6,0(C (1分) (2)联接PD 过点D 作x 轴的垂线交x 轴于H ∵ 点D 是弧AB 的中点∴AB PD ⊥ ∴D A ∠=∠ =∠=∠A O C P H D ︒90 ∴PDH ∆∽CAO ∆ ∴ACPDAO DH CO PH == (1分) ∵6=CO 8=AO 4=PD 10=AC∴512=PH 516=DH ∴5325124=+=OH ∴)516,532(-D (1分) 又∵)0,8(-A )0,0(O设抛物线的解析式为)8(-=x ax y把)516,532(-D 代人得 165-=a (1分)∴ x x y 251652--= (1分) (3)554554 b -且0≠b (3+1分) 25、(1)∵AC AB = ︒=∠90A ∴︒=∠=∠45C B (1分)又∵FPC EPF EPC ∠+∠=∠ B E P B E P C ∠+∠=∠ (1分) ︒=∠45EPF∴BEP FPC ∠=∠ (1分) ∴BPE ∆∽CFP ∆ (1分)(2)作BC EG ⊥,BC PH ⊥垂足分别是G 、H ∵BPE ∆∽CFP ∆ ∴FC BP CP BE = FCx 22=x FC 2= (1分) ∴x EG 22=(1分) xFH 2=(1分) FPC BEP AEF ABC S S S S y ∆∆∆∆---= xx x x y 222122221)22)(2(212⋅-⋅----= (1分) 121-+=xx y )21(≤≤x (1+1分) (3)作EP EM ⊥垂足是M 设a FM =在EMF Rt ∆中得a EM 3= (1分)在EMP Rt ∆中得a PM 3= a EP 6= (1分)31636+=+=a a a FP EP (1分) ∵BPE ∆∽CFP ∆∴3162+=x ∴33-=x (1分)。