(完整版)阅读理解型(初中数学中考题汇总49),推荐文档
- 格式:docx
- 大小:185.83 KB
- 文档页数:14
中考数学复习专题第五讲阅读理解型问题【要点梳理】阅读理解能力是初中数学课程的主要目标,是改变学生学习方式,实现自主探索主动发展的基础.阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别致.这类问题,主要考查解题者的心理素质,自学能力和阅读理解能力,考查解题者的观察分析能力、判辩是非能力、类比操作能力、抽象概括能力、数学归纳能力以及数学语言表达能力.这就要求同学们在平时的学习活动中,逐步养成爱读书、会学习、善求知、勤动脑、会创新和独立获取新知识的良好习惯.阅读理解题型分类:题型一:考查掌握新知识能力的阅读理解题命题者给定一个陌生的定义或公式或方法,让你去解决新问题,这类考题能考查我们自学能力和阅读理解能力,能考查我们接收、加工和利用信息的能力.题型二:考查解题思维过程的阅读理解题言之有据,言必有据,这是正确解题的关键所在,是提高我们数学水平的前提.数学中的基本定理、公式、法则和数学思想方法都是理解数学、学习数学和应用数学的基础,这类试题就是为了检测我们理解解题过程、掌握基本数学思想方法和辨别是非的能力而设置的.题型三:考查纠正错误挖病根能力的阅读理解题理解知识不是拘泥于形式的死记硬背,而是要把握知识的内涵或实质,理解知识间的相互联系,形成知识脉络,从而整体地获取知识.这类试题意在检测我们对知识的理解以及认识问题和解决问题的能力.题型四:考查归纳、探索规律能力的阅读理解题对材料信息的加工提炼和运用,对规律的归纳和发现能反映出我们的应用数学、发展数学和进行数学创新的意识和能力.这类试题意在检测我们的“数学化”能力以及驾驭数学的创新意识和才能.【学法指导】解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题”,具体做法:①认真阅读材料,把握题意,注意一些数据、关键名词;②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.【考点解析】阅读新知识,解决新问题(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2阅读解题过程,模仿解题策略(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D 在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB ∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).阅读探索规律,推出一般结论(2017内江)观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:(1)请写出第六个等式:a6= = ﹣;(2)用含n的代数式表示第n个等式:an= =﹣;(3)a1+a2+a3+a4+a5+a6= (得出最简结果);(4)计算:a1+a2+…+an.【考点】37:规律型:数字的变化类.【分析】(1)根据已知4个等式可得;(2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;(4)根据已知等式规律,列项相消求解可得.==﹣,【解答】解:(1)由题意知,a6故答案为:,﹣;(2)a==﹣,n故答案为:,﹣;(3)原式=﹣+﹣+﹣+﹣+﹣+﹣=﹣=,故答案为:;(4)原式=﹣+﹣+…+﹣=﹣=.【真题训练】训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.参考答案:训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.【点评】此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道基础题目.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.【考点】6B:分式的加减法.【分析】根据所列的等式找到规律=(﹣),由此计算+ ++…+的值.【解答】解:∵ =﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故答案是:.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【考点】A6:解一元二次方程﹣配方法;A3:一元二次方程的解;A8:解一元二次方程﹣因式分解法.【分析】(1)利用因式分解法解各方程即可;(2)根据以上方程特征及其解的特征,可判定方程x2﹣9x+8=0的解为1和8;②关于x的方程的解为x1=1,x2=n,则此一元二次方程的二次项系数为1,则一次项系数为1和n的和的相反数,常数项为1和n的积.(3)利用配方法解方程x2﹣9x+8=0可判断猜想结论的正确.【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x 1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;。
中考数学复习专题九:阅读理解型问题一、中考专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.三、中考考点精讲 考点一: 阅读试题提供新定义、新定理,解决新问题例1 (•十堰)阅读材料:例:说明代数式221(3)4x x ++-+的几何意义,并求它的最小值.解:221(3)4x x ++-+=222(0)1(3)2x x -++-+,如图,建立平面直角坐标系,点P (x ,0)是x 轴上一点,则2(0)1x -+可以看成点P 与点A (0,1)的距离, 22(3)2x -+可以看成点P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA+PB 的最小值.设点A 关于x 轴的对称点为A′,则PA=PA′,因此,求PA+PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,所以PA′+PB 的最小值为线段A′B 的长度.为此,构造直角三角形A′CB ,因为A′C=3,CB=3,所以A′B=32,即原式的最小值为32.根据以上阅读材料,解答下列问题:(1)代数式22(1)1(2)9x x -++-+的值可以看成平面直角坐标系中点P (x ,0)与点A (1,1)、点B 的距离之和.(填写点B 的坐标)(2)代数式22491237x x x ++-+的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.专题:探究型.解析:(1)先把原式化为222(1)1(2)3x x -++-+的形式,再根据题中所给的例子即可得出结论;(2)先把原式化为222(0)7(6)1x x -++-+的形式,故得出所求代数式的值可以看成平面直角坐标系中点P (x ,0)与点A (0,7)、点B (6,1)的距离之和,再根据在坐标系内描出各点,利用勾股定理得出结论即可.解答:解:(1)∵原式化为222(1)1(2)3x x -++-+的形式, ∴代数式222(1)1(2)3x x -++-+的值可以看成平面直角坐标系中点P (x ,0)与点A (1,1)、点B (2,3)的距离之和,故答案为(2,3);(2)∵原式化为222(0)7(6)1x x -++-+的形式, ∴所求代数式的值可以看成平面直角坐标系中点P (x ,0)与点A (0,7)、点B (6,1)的距离之和, 如图所示:设点A 关于x 轴的对称点为A′,则PA=P A′,∴PA+PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,∴PA′+PB 的最小值为线段A′B 的长度,∵A (0,7),B (6,1)∴A′(0,-7),A′C=6,BC=8,∴A′B=222268A C BC '+=+=10,故答案为:10.点评:本题考查的是轴对称-最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解.考点二、阅读试题信息,归纳总结提炼数学思想方法例2 (•赤峰)阅读材料:(1)对于任意两个数a 、b 的大小比较,有下面的方法:当a-b >0时,一定有a >b ;当a-b=0时,一定有a=b ;当a-b <0时,一定有a <b .反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a 、b 的大小时,我们还可以用它们的平方进行比较:∵a 2-b 2=(a+b )(a-b ),a+b >0∴(a 2-b 2)与(a-b )的符号相同当a 2-b 2>0时,a-b >0,得a >b当a 2-b 2=0时,a-b=0,得a=b当a 2-b 2<0时,a-b <0,得a <b解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x ,每张B5纸的面积为y ,且x >y ,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:①W1= (用x、y的式子表示)W2= (用x、y的式子表示)②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1= km(用含x的式子表示);②在方案二中,a2= km(用含x的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.考点:轴对称-最短路线问题;整式的混合运算.专题:计算题.分析:(1)①根据题意得出3x+7y和2x+8y,即得出答案;②求出W1-W2=x-y,根据x和y的大小比较即可;(2)①把AB和AP的值代入即可;②过B作BM⊥AC于M,求出AM,根据勾股定理求出BM.再根据勾股定理求出BA′,即可得出答案;③求出a12-a22=6x-39,分别求出6x-39>0,6x-39=0,6x-39<0,即可得出答案.解答:(1)解:①W1=3x+7y,W2=2x+8y,故答案为:3x+7y,2x+8y.②解:W1-W2=(3x+7y)-(2x+8y)=x-y,∵x>y,∴x-y>0,∴W1-W2>0,得W1>W2,所以张丽同学用纸的总面积大.(2)①解:a1=AB+AP=x+3,故答案为:x+3.②解:过B 作BM ⊥AC 于M ,则AM=4-3=1,在△ABM 中,由勾股定理得:BM 2=AB 2-12=x 2-1,在△A′MB 中,由勾股定理得:AP+BP=A′B=22248A M BM x '+=+,故答案为:248x +.③解:a 12-a 22=(x+3)2-(248x +)2=x 2+6x+9-(x 2+48)=6x-39,当a 12-a 22>0(即a 1-a 2>0,a 1>a 2)时,6x-39>0,解得x >6.5,当a 12-a 22=0(即a 1-a 2=0,a 1=a 2)时,6x-39=0,解得x=6.5,当a 12-a 22<0(即a 1-a 2<0,a 1<a 2)时,6x-39<0,解得x <6.5,综上所述当x >6.5时,选择方案二,输气管道较短,当x=6.5时,两种方案一样,当0<x <6.5时,选择方案一,输气管道较短.点评:本题考查了勾股定理,轴对称-最短路线问题,整式的运算等知识点的应用,通过做此题培养了学生的计算能力和阅读能力,题目具有一定的代表性,是一道比较好的题目.考点三、阅读相关信息,通过归纳探索,发现规律,得出结论例3 (•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l 上修建一个泵站,分别向A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l 上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l 看成一条直线(图(2)),问题就转化为,要在直线l 上找一点P ,使AP 与BP 的和最小.他的做法是这样的:①作点B 关于直线l 的对称点B′.②连接AB′交直线l 于点P ,则点P 为所求.请你参考小华的做法解决下列问题.如图在△ABC 中,点D 、E 分别是AB 、AC 边的中点,BC=6,BC 边上的高为4,请你在BC 边上确定一点P ,使△PDE 得周长最小.(1)在图中作出点P (保留作图痕迹,不写作法).(2)请直接写出△PDE 周长的最小值: .考点:轴对称-最短路线问题.分析:(1)根据提供材料DE 不变,只要求出DP+PE 的最小值即可,作D 点关于BC 的对称点D′,连接D′E ,与BC 交于点P ,P 点即为所求;(2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:(1)如图,作D 点关于BC 的对称点D′,连接D′E ,与BC 交于点P ,P 点即为所求;(2)∵点D 、E 分别是AB 、AC 边的中点,∴DE 为△ABC 中位线,∵BC=6,BC 边上的高为4,∴DE=3,DD′=4,∴D′E=222234DE DD '+=+=5,∴△PDE 周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE 周长的最小值,求出DP+PE 的最小值即可是解题关键.考点四、阅读试题信息,借助已有数学思想方法解决新问题例4 (•重庆)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=6,AB=3.E 为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.考点:相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形.专题:代数几何综合题.分析:(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;(3)分别从当0≤t≤43时,当43<t≤2时,当2<t≤103时,当103<t≤4时去分析求解即可求得答案.解答:解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB-BG=3-x,∵GF∥BE,∴△AGF∽△ABC,∴AG GF AB BC=,即336x x -=,解得:x=2,即BE=2;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=83,∴t=BB′=BC-B′E-EC=6-2-83=43,∵ME=2-12t,∴FM=12t,当0≤t≤43时,S=S△FMN=12×t×12t=14t2,②如图④,当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•DHCH=34(4-t)=3-34t,∴FK=2-EK=34t-1,∵NL=23AD=43,∴FL=t-43,∴当43<t≤2时,S=S△FMN-S△FKL=14t2-12(t-43)(34t-1)=-18t2+t-23;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=83,∴EC=4-t=B′C-2=23,∴t=103,∵B′N=12B′C=12(6-t)=3-12t,∵GN=GB′-B′N=12t-1,∴当2<t≤103时,S=S梯形GNMF-S△FKL=12×2×(12t-1+12t)-12(t-43)(34t-1)=-38t2+2t-53,④如图⑥,当103<t≤4时,∵B′L=34B′C=34(6-t),EK=34EC=34(4-t),B′N=12B′C=12(6-t)EM=12EC=12(4-t),S=S梯形MNLK=S梯形B′EKL-S梯形B′EMN=-12t+52.综上所述:当0≤t≤43时,S=14t2,当43<t≤2时,S=-18t2+t-23;当2<t≤103时,S=-38t2+2t-53,当103<t≤4时,S=-12t+52.点评:此题考查了相似三角形的判定与性质、正方形的性质、直角梯形的性质以及勾股定理等知识.此题难度较大,注意数形结合思想、方程思想与分类讨论思想的应用,注意辅助线的作法.四、中考真题演练1.(•宁波)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.考点:图形的剪拼;平行四边形的性质;菱形的性质;作图—应用与设计作图.分析:(1)①根据邻边长分别为2和3的平行四边形进过两次操作即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;(2)①利用3阶准菱形的定义,即可得出答案;②根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形.解答:解:(1)①利用邻边长分别为2和3的平行四边形进过两次操作,所剩四边形是边长为1的菱形,故邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形;(2)①如图所示:,②∵a=6b+r,b=5r,∴a=6×5r+r=31r;如图所示:故▱ABCD是10阶准菱形.点评:此题主要考查了图形的剪拼以及菱形的判定,根据已知n阶准菱形定义正确将平行四边形分割是解题关键.2.(•淮安)阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.考点:翻折变换(折叠问题).专题:压轴题;规律型.分析:(1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠C;(2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠B-2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C;(3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是88°、88°.解答:解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠A1B1C=∠C;∵∠AA1B1=∠C+∠A1B1C(外角定理),∴∠B=2∠C;故答案是:是;(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C 重合,则∠BAC是△ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;(3)由(2)知,∠B=n∠C,∠BAC是△ABC的好角,∴∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角,∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.3.(•南京)下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m 的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程: 变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD 的内部,AB ∥A′B′,AD ∥A′D′,且AD :AB=2:1,设AB 与A′B′、BC 与B′C′、CD 与C′D′、DA 与D′A′之间的距离分别为a 、b 、c 、d ,要使矩形A′B′C′D′∽矩形ABCD ,a 、b 、c 、d 应满足什么条件?请说明理由.考点:相似多边形的性质;一元二次方程的应用.分析:(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm ,则长为2xm ,然后由题意得方程23124112y y y y ---=--- =2,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD ,利用相似多边形的性质,可得A D ADA B AB''='',即 ()2()1AD a c AB b d -+=-+,然后利用比例的性质,即可求得答案.解答:解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由. 在“设矩形蔬菜种植区域的宽为xm ,则长为2xm .”前补充以下过程: 设温室的宽为ym ,则长为2ym .则矩形蔬菜种植区域的宽为(y-1-1)m ,长为(2y-3-1)m . ∵23124112y y y y ---=--- =2,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD , 就要A D ADA B AB''='',即()2()1AD a c AB b d -+=-+, 即2()2()1AB a c AB b d -+=-+,即a cb d++=2. 点评:此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.4.(•鸡西)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2-7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.考点:相似形综合题;解一元二次方程-因式分解法;平行四边形的判定;矩形的性质;相似三角形的判定与性质.分析:(1)解一元二次方程,求出OA、OB的长度,从而得到A、B点的坐标;(2)△APQ与△AOB相似时,存在两种情况,需要分类讨论,不要遗漏,如图(2)所示;(3)本问关键是找齐平行四边形的各种位置与性质,如图(3)所示.在求M1,M2坐标时,注意到M1,M2与Q点坐标的对应关系,则容易求解;在求M3坐标时,可以利用全等三角形,得到线段之间关系.解答:解:(1)解方程x2-7x+12=0,得x1=3,x2=4,∵OA<OB,∴OA=3,OB=4.∴A(0,3),B(4,0).(2)在Rt△AOB中,OA=3,OB=4,∴AB=5,∴AP=t,QB=2t,AQ=5-2t.△APQ与△AOB相似,可能有两种情况:(I)△APQ∽△AOB,如图(2)a所示.则有AP AQAO AB=,即5235t t-=,解得t=1511.此时OP=OA-AP=1811,PQ=AP•tanA=2011,∴Q(2011,1811);(II)△APQ∽△ABO,如图(2)b所示.则有AP AQAB AO=,即5253t t-=,解得t=2513.此时AQ=2513,AH=AQ•cosA=913,HQ=AQ•sinA=1213,OH=OA-AH=3013,∴Q(1213,3013).综上所述,当t=1511秒或t=2513秒时,△APQ与△AOB相似,所对应的Q点坐标分别为(2011,1811)或(1213,3013).(3)结论:存在.如图(3)所示.∵t=2,∴AP=2,AQ=1,OP=1.过Q点作QE⊥y轴于点E,则QE=AQ•sin∠QAP=45,AE=AQ•cos∠QAP=35,∴OE=OA-AE=125,∴Q(45,125).∵▱APQM1,∴QM1⊥x轴,且QM1=AP=2,∴M1(45,25);∵▱APQM2,∴QM2⊥x轴,且QM2=AP=2,∴M2(45,225);如图(3),过M3点作M3F⊥y轴于点F,∵▱AQPM3,∴M3P=AQ,∠QAE=∠M3PF,∴∠PM3F=∠AQE;在△M3PF与△QAE中,∵∠QAE=∠M3PF,M3P=AQ,∠PM3F=∠AQE,∴△M3PF≌△QAE,∴M3F=QE=45,PF=AE=35,∴OF=OP+PF=85,∴M3(-45,85).∴当t=2时,在坐标平面内,存在点M,使以A、P、Q、M为顶点的四边形是平行四边形.点M的坐标为:M1(45,25),M2(45,225),M3(-45,85).点评:本题是动点型压轴题,综合考查了相似三角形的判定与性质、全等三角形的判定与性质、解一元二次方程、平行四边形等知识点.本题难点在于分类讨论思想的应用,第(2)(3)问中,均涉及到多种情况,需要逐一分析不能遗漏;另外注意解答中求动点时刻t和点的坐标的过程中,全等三角形、相似三角形、三角函数等知识发挥了重要作用,这是解答压轴题的常见技巧,需要熟练掌握.5.(•长春)如图,在Rt △ABC 中,∠ACB=90°,AC=8cm ,BC=4cm .D 、E 分别为边AB 、BC 的中点,连接DE .点P 从点A 出发,沿折线AD-DE-EB 运动,到点B 停止.点P 在线段AD 上以5cm/s 的速度运动,在折线DE-EB 上以1cm/s 的速度运动.当点P 与点A 不重合时,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN ,使点M 在线段AQ 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上运动时,线段DP 的长为 cm (用含t 的代数式表示). (2)当点N 落在AB 边上时,求t 的值.(3)当正方形PQMN 与△ABC 重叠部分图形为五边形时,设五边形的面积为S (cm 2),求S 与t 的函数关系式.(4)连接CD ,当点N 与点D 重合时,有一点H 从点M 出发,在线段MN 上以2.5cm/s 的速度沿M-N-M 连续做往返运动,直至点P 与点E 重合时,点H 停止往返运动;当点P 在线段EB 上运动时,点H 始终在线段MN 的中点处,直接写出在点P 的整个运动过程中,点H 落在线段CD 上时t 的取值范围.考点:相似形综合题.分析:(1)点P 在AD 段的运动时间为2s ,则DP 的长度为(t-2)cm ;(2)当点N 落在AB 边上时,有两种情况,如图(2)所示.利用运动线段之间的数量关系求出时间t 的值;(3)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有两种情况,如图(3)所示.分别用时间t 表示各相关运动线段的长度,然后利用“S=S 梯形AQPD -S △AMF =12(PG+AC )•PC -12AM•FM”求出面积S 的表达式;(4)本问涉及双点的运动,首先需要正确理解题意,然后弄清点H 、点P 的运动过程:当4<t <6时,此时点P 在线段DE 上运动,如图(4)a 所示.此时点H 将两次落在线段CD 上;当6≤t≤8时,此时点P 在线段EB 上运动,如图(4)b 所示.此时MN 与CD 的交点始终是线段MN 的中点,即点H .解答:解:(1)∵在Rt △ABC 中,AC=8cm ,BC=4cm , ∴AB=22228445AC BC +=+=,D 为AB 中点,∴AD=25,∴点P 在AD 段的运动时间为255=2s . 当点P 在线段DE 上运动时,DP 段的运动时间为(t-2)s , ∵DE 段运动速度为1cm/s ,∴DP=(t-2)cm .(2)当点N 落在AB 边上时,有两种情况,如下图所示:①如图(2)a,此时点D与点N重合,P位于线段DE上.由三角形中位线定理可知,DM=12BC=2,∴DP=DM=2.由(1)知,DP=t-2,∴t-2=2,∴t=4;②如图(2)b,此时点P位于线段EB上.∵DE=12AC=4,∴点P在DE段的运动时间为4s,∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4.∵PN∥AC,∴PN:PB=AC:BC=2,∴PN=2PB=16-2t.由PN=PC,得16-2t=t-4,解得t=203.所以,当点N落在AB边上时,t=4或t=203.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况,如下图所示:①当2<t<4时,如图(3)a所示.DP=t-2,PQ=2,∴CQ=PE=DE-DP=4-(t-2)=6-t,AQ=AC-CQ=2+t,AM=AQ-MQ=t.∵MN∥BC,∴FM:AM=BC:AC=1:2,∴FM=12AM=12t.S=S梯形AQPD-S△AMF=12(DP+AQ)•PQ-12AM•FM=12[(t-2)+(2+t)]×2-12t•12t=-14t2+2t;②当203<t<8时,如图(3)b所示.PE=t-6,∴PC=CM=PE+CE=t-4,AM=AC-CM=12-t,PB=BE-PE=8-t,∴FM=12AM=6-12t,PG=2PB=16-2t,S=S梯形AQPD-S△AMF=12(PG+AC)•PC-12AM•FM=12[(16-2t)+8]×(t-4)-12(12-t)•(6-12t)=-54t2+22t-84.综上所述,S与t的关系式为:S=2212(24)45202284(8)43t t tt t t⎧-+<<⎪⎪⎨⎪-+-<<⎪⎩。
八年级数学上期末复习新题型(阅读理解、新定义找规律)精选一、阅读理解题 1.阅读材料:课堂上,老师设计了一个活动:将一个4×4的正方形网格沿着网格线.....划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图1、图2、图3所示. 小方说:“我们三个人的划分方法都是正确的.但是将小红的整个图形(图3)逆时针旋转90°后得到的划分方法与我的划分方法(图1)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1)图4的划分方法是否正确?答:_______________.(2)判断图5的划分方法与图2小易的划分方法是否相同,并说明你的理由; 答:____________________________________________________________________. (3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图6中画出来.图4图5图6图1图2图32.阅读理解:课外兴趣小组活动时,老师提出了如下问题:在△ABC中,AB=9,AC=5,求BC边上的中线AD的取值范围。
小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD到Q,使得DQ=AD;②再连接BQ,把AB、AC、2AD集中在△ABQ中;③利用三角形的三边关系可得4<AQ<14,则AD的取值范围是_____________。
感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的己知条件和所求证的结论集中到同一个三角形中。
(2)请你写出图1中AC与BQ的位置关系并证明。
(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC =90°。
中考数学阅读理解型试题透析(江苏海门育才中学仇建新)在数学课程改革如火如荼的今天,对学生阅读类题型试题的考查已被列为初中考试的一个热点,同时又是一个重点。
所谓数学阅读是指从数学的文字、符号、图形中获取意义的一个过程。
这一过程非常复杂,包括语言符号(文字、数学符号、术语、公式、图表等)的认知和认读、新概念的同化和顺应、阅读材料的理解和记忆等各种心理活动。
因此,处理阅读理解型试题除了要求具有一定的分析、综合、抽象、概括等演绎推理能力,还要求通过观察、猜想、归纳、联想,最终做出合理的判断和推理。
此类题型不仅可以考查学生的基础知识、基本概念的掌握情况,更能突出考查学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识迁移等基本能力。
数学阅读较文科类的阅读更高,它往往是建立在思维基础之上的逻辑性阅读、符号化阅读、图表化阅读等。
笔者结合历年的中考数学阅读类试题特征作一些透析,以利于同学复习时参考。
一、概念型的阅读题这类试题首先给出一个末知的定义、公式、定理、性质或计算法则,然后据此解决题目中提出的问题。
例1(2005南京市中考题)阅读下列材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半经,则称图形A被这个圆覆盖。
对于平面图形A,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半经,则称图形A被这些圆覆盖。
例1、图1的三角形被一个圆覆盖,图2的四边形被两个圆覆盖。
回答下列问题:(1)边长为1cm的正方形被一个半径为r的圆覆盖,则r的最小值是cm(2)边长为1cm的正三角形被一个半径为r的圆覆盖,则r的最小值是cm(3)长2cm,宽为1cm的矩形被两个半径都为r的圆覆盖,则r的最小值是cm,这两个圆的圆心距是cm。
分析:(1)(2)根据覆盖的定义,要使覆盖圆的半径最小,则这个圆为该多边形的外接圆,(3)要使矩形被两个相同圆覆盖,则必须把这个矩形分成两个相同的正方形,然后再用两个相同的圆分别覆盖这两个正方形,这两个圆分别是两个正方形的外接圆。
中考数学阅读题训练精选(2)1.数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律.譬如:数轴上点A、点B表示的数分别为a,b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.如图,数轴上点A表示的数为﹣2,点B表示的数为6(1)直接写出:线段AB的长度,线段AB的中点表示的数为;(2)x表示数轴上任意一个有理数,利用数轴探究下列问题,直接回答:|x+2|+|x﹣6|有最小值是,|x+2|﹣|x﹣6|有最大值是;(3)点C在数轴上对应的数为10,动点P从原点出发在数轴上运动,若存在某个位置,使得P A+PB=PC,则称点P是关于点A,B,C的“石室幸运点”,请问在数轴上是否存在“石室幸运点”?若存在,请直接写出所有“石室幸运点”.2.北师大版初中数学教科书七年级下册第126页告诉我们利用尺规作已知角的平分线的方法.请根据提供的材料完成以下问题:例2利用尺规,作∠AOB的平分线(图5﹣18).已知:∠AOB.求作:射线OC,使∠AOC=∠BOC.做法:1.在OA和OB上分别截取OD,OE使OD=OE.2.分别以D,E为圆心,以大于的长为半径作弧,两弧在∠AOB内交于点C.3.作射线OC.OC就是∠AOB的平分线(图5﹣19)(1)连接EC,DC,可以说明△OCE≌△OCD的依据是(填序号).①ASA;②AAS;③SSS;④SAS.(2)求证:OC平分∠BOA.3.几何学的产生,源于人们对土地测量的需要,后来由实际问题抽象成为数学问题.初中数学常见的几何模型有很多,通过整理归纳,可以从这些基本模型中找到其所藻蕴含的规律.【提出问题】如图1,△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,△ADE绕点A旋转,连结BD、EC,小明通过探究得到∠ABD与∠BCE的大小存在某种数量关系,具体探究过程如下.【探究问题】小明先将上述问题“特值化”,如图1,令AB=1,AD=,∠ABD=100°,则可证明△ABD和△ACE相似,进而可求得∠BCE的度数.请你帮助小明完成解答过程.【解决问题】将问题“一般化”,如图2,在△ADE绕点A旋转过程中,∠ABD与∠BCE 满足的数量关系为.【拓展应用】如图3,过线段AB的端点B作射线BM⊥AB,Rt△ADE的直角顶点D在射线BM上运动,连结BE,若AB=4,=,则BE的最小值为.4.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为6,点B表示的数为﹣4,点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度向右匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:A、B两点间的距离AB=,线段AB的中点C表示的数为;(2)求当t为何值时,PQ=2;(3)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请直接写出线段MN的长.5.【背景知识】数轴是初中数学的一个重要工具,如图①,若数轴上点A、点B表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为b﹣a.【问题情境】数轴上三点A,B,C表示的数分别为a,b,c,其中A在原点左侧,距原点4个单位,b是最大的负整数,C在原点右侧,且AC=9.如图②,动点M从A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,与此同时,过点N从点C出发,以每秒2个单位长度速度沿数轴向右匀速运动,一只电子狗Q从B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,设移动时向为t秒(t>0).【问题探究】(1)a=,b=,c=;(2)在运动过程中,4MN+aMQ的值不随t的变化而变化,请求出a的值;(3)如果在C处竖立一块挡板,当电子狗Q到达C时,被挡板弹回,以同样的速度向相反的方向运动.问:当t为何值时,电子狗Q到M,N的距离相等?并求出此时电子狗Q的位置.6.阅读理解:将代数式x2+2x+3转化为(x+m)2+k的形式(其中m、k为常数),则x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,其中m=1,k=2.(1)仿照此法将代数式x2+6x+15化为(x+m)2+k的形式,并指出m、k的值;(2)已知在初中数学学习中,一个数的平方总是非负数,请问﹣x2+8x﹣17有最小值或者最大值吗?有的话,请说明是最小值还是最大值,并求出这个值,以及此时x的取值.7.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是人,补全统计图①;(2)图②中扇形C的圆心角度数为度;(3)若参加成果展示活动的学生共有2400人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.8.综合探究【背景知识】数轴是初中数学的一个重要⼯具,利⼯数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:如图①,若数轴上点A、点B表示的数分别为a,b (b>a),则线段AB的⼯(点A到点B的距离)可表示为b﹣a.请⼯上⼯材料中的知识解答下⼯的问题:【问题情境】如图②,一个点从数轴上的原点开始,先向左移动2个单位⼯度到达点A,再向右移动3个单位⼯度到达点B,然后再向右移动5个单位⼯度到达点C.(1)【问题探究】请在图②中表示出A、B、C三点的位置;(2)【问题探究】若点P从点A出发,以每秒1个单位⼯度的速度沿数轴向左匀速运动,同时点M、N从点B、点C分别以每秒2个单位⼯度、每秒3个单位⼯度速度沿数轴向右匀速运动.设移动时间为t秒(t>0).①A,B两点间的距离AB=,AC=;②若点D、E分别是线段AB,BC的中点,求线段DE的长;③⼯含t的代数式表示:t秒时,点P表示的数为,点M表示的数为,点N表示的数为.9.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为10,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:A、B两点间的距离AB=,线段AB的中点表示的数为;(2)当t为何值时,?(3)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.10.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了许多重要的规律;若数轴上点A,点B表示的数分别为a,b,则A,B两点之间的距离为:AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】已知,点A、B、O在数轴上对应的数为a、b、0,且关于x的多项式﹣x3+8x2+ax2+24x ﹣2bx+3不含x2项和x的一次项,点M、N分别从O、B出发,同时向左匀速运动,M 的速度为1个单位长度每秒,N的速度为3个单位长度每秒,设运动的时间为t秒(t>0).【综合运用】(1)直接写出OA=;OB=;(2)①用含t的代数式表示:t秒后,点M表示的数为;点N表示的数为.②当t为何值时,恰好有AN=2AM?(3)若点P为线段AM的中点,Q为线段BN的中点,M、N在运动的过程中,PQ+MN 的长度会随着t的改变而改变,请直接写出当t满足什么条件时,PQ+MN有最小值,最小值是多少?11.图形变换是初中数学学习的重要内容,某兴趣学习小组的同学利用所学知识,进行了一系列的图形变换操作实践活动,让我们一起来体验他们的探究过程吧.(1)轴对称:将正方形纸片ABCD折叠,使边AD、AB都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1,求∠EAF的大小;(2)旋转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点H、G,连接GH,如图2,则线段BH、GH.DG之间存在的数量关系为,并证明你的结论;(3)计算:在图2中,连接正方形对角线BD,若∠GAH的两边AH、AG分别交对角线BD于点M、点N.如图3,若BM=3,DN=4,求正方形ABCD的面积.12.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB =|a﹣b|,若a>b,则可化简为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒2个单位的速度沿数轴向右匀速运动,点B以每秒3个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数;(2)用含t的式子填空:点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(3)按上述方式运动,A、B两点经过多少秒会相距5个单位长度.13.阅读下列材料:材料1:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算时往往难度比较大,这时我们可以将假分数(分式)拆分成一个整数(整式)与一个真分数(式)的和(差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法.此法在处理分式或整除问题时颇为有效.如将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:设x+2=t,则x=t﹣2.∴原式==t﹣7+∴=x﹣5+材料2:配方法是初中数学思想方法中的一种重要的解题方法,配方法最终的目的就是配成完全平方式,利用完全平方式来求解,它的应用非常广泛,在解方程、求最值、证明等式、化简根式、因式分解等方面都经常用到.如:当a>0,b>0时,∵+=()2+()2=(﹣)2+2∴当=,即a=b时,+有最小值2.根据以上阅读材料回答下列问题:(1)将分式拆分成一个整式与一个分子为整数的分式的和的形式,则结果为;(2)已知分式的值为整数,求整数x的值;(3)当﹣1<x<1时,求代数式的最大值及此时x的值.14.安阳某初中数学小组在学习了“三角形外角和”后,就证明问题进行了探讨:已知:如图,∠4,∠5,∠6是△ABC的三个外角.求证:∠4+∠5+∠6=360°.(1)该小组的明明进行了如下的证明,请你补充完整:证法1:∵∠4是△ABC的一个外角,∴.同理,∠5=∠1+∠3.∠6=∠1+∠2.∴∠4+∠5+∠6=2(∠1+∠2+∠3).∵.∴∠4+∠5+∠6=2×180°=360°(2)事实上,还有另外一种证明方法,请你给该小组展示出来.15.平移和翻折是初中数学中两种重要的图形变化,阅读并回答下列问题:(一)平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.(1)把笔尖放在数轴的原点处,先向左移动2个单位长度,再向右移动3个单位长度,这时笔尖的位置表示的数是;(2)一个机器人从数轴上表示﹣1的点出发,并在数轴上移动2次,每次移动3个单位后到达B点,则B点表示的数是;(3)数轴上点A表示的数为m.则点A向左移动n个单位长度所表示的数为;(二)翻折:将一个图形沿着某一条直线折叠的运动.(4)若折叠纸条,表示﹣2的点与表示1的点重合,则表示﹣4的点与表示的点重合;(5)若数轴上A、B两点之间的距离为8,点A在点B的左侧,A、B两点经折叠后重合,折痕与数轴相交于表示﹣2的点,则A点表示的数为;(6)在数轴上,点P表示的数为4,点Q表示的数为x,将点P、Q两点折叠后重合,折痕与数轴交于M点;将点P与点M折叠后重合,新的折痕与数轴交于N点,若此时点P与点N的距离为3,数x的值为.。
阅读理解及定义型问题--中考数学重难点题型专题汇总1.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=()A.2-B.1-C.2D.3【答案】A 【分析】先根据新定义,可得9m+4n=0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”,∴2323m n m n ++=+,整理得9m+4n=0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A.【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.2.(山东省菏泽市2021年中考数学真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.【答案】①②③.【分析】利用二次函数的性质根据特征数[],1,2m m m --,以及m 的取值,逐一代入函数关系式,然判断后即可确定正确的答案.【详解】解:当1m =时,把1m =代入[],1,2m m m --,可得特征数为[]1,0,1∴1a =,0b =,1c =,∴函数解析式为21y x =+,函数图象的对称轴是y 轴,故①正确;当2m =时,把2m =代入[],1,2m m m --,可得特征数为[]2,1,0-∴2a =,1b =-,0c =,∴函数解析式为22y x x =-,当0x =时,0y =,函数图象过原点,故②正确;函数()()212y mx m x m =+-+-当0m >时,函数()()212y mx m x m =+-+-图像开口向上,有最小值,故③正确;当0m <时,函数()()212y mx m x m =+-+-图像开口向下,对称轴为:1121112222m m m x m m --=-==->∴12x >时,x 可能在函数对称轴的左侧,也可能在对称轴的右侧,故不能判断其增减性,故④错误;综上所述,正确的是①②③,故答案是:①②③.【点睛】本题考查了二次函数的图像与性质,二次函数的对称轴等知识点,牢记二次函数的基本性质是解题的关键.3.(四川省雅安市2021年中考数学真题)定义:{}()min ,()a a b a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为()A.0B.2C.3D.4【答案】C 【分析】根据题目中所给的运算法则,分两种情况进行求解即可.【详解】令(),y min a b =,当2123x x x +≤-++时,即220x x --≤时,1y x =+,令22w x x =--,则w 与x 轴的交点坐标为(2,0),(-1,0),∴当0w ≤时,12x -≤≤,∴1y x =+(12x -≤≤),∵y 随x 的增大而增大,∴当x=2时,3y =最大;当2123x x x +>-++时,即220x x -->时,2y x 2x 3=-++,令22w x x =--,则w 与x 轴的交点坐标为(2,0),(-1,0),∴当0w >时,2x >或1x <-,∴2y x 2x 3=-++(2x >或1x -),∵2y x 2x 3=-++的对称轴为x=1,∴当2x >时,y 随x 的增大而减小,∵当x=2时,2y x 2x 3=-++=3,∴当2x >时,y<3;当1x <-,y 随x 的增大而增大,∴当x=-1时,2y x 2x 3=-++=0;∴当1x <-时,y<0;综上,()2min 123y x x x =+-++,的最大值为3.故选C.【点睛】本题是新定义运算与二次函数相结合的题目,解题时要注意分情况讨论,不要漏解.4.(内蒙古通辽市2021年中考数学真题)定义:一次函数y ax b =+的特征数为[],a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A,B 两点,且点A,B 关于原点对称,则一次函数2y x m =-+的特征数是()A.[]2,3B.[]2,3-C.[]2,3-D.[]2,3--【答案】D 【分析】先求出平移后的直线解析式为23y x m =-++,根据与反比例函数3y x=-的图象交于A,B 两点,且点A,B 关于原点对称,得到直线23y x m =-++经过原点,从而求出m,根据特征数的定义即可求解.【详解】解:由题意得一次函数2y x m =-+的图象向上平移3个单位长度后解析式为23y x m =-++,∵直线23y x m =-++与反比例函数3y x=-的图象交于A,B 两点,且点A,B 关于原点对称,∴点A,B,O 在同一直线上,∴直线23y x m =-++经过原点,∴m+3=0,∴m=-3,∴一次函数2y x m =-+的解析式为23y x =--,∴一次函数2y x m =-+的特征数是[]2,3--.故选:D 【点睛】本题考查了新定义,直线的平移,一次函数与反比例函数交点,中心对称等知识,综合性较强,根据点A,B 关于原点对称得到平移后直线经过原点是解题关键.5.(2021·广西来宾市·中考真题)定义一种运算:,,a a b a b b a b ≥⎧*=⎨<⎩,则不等式(21)(2)3x x +*->的解集是()A.1x >或13x <B.113x -<<C.1x >或1x <-D.13x >或1x <-【答案】C 【分析】根据新定义运算规则,分别从212x x +≥-和212x x +<-两种情况列出关于x 的不等式,求解后即可得出结论.【详解】解:由题意得,当212x x +≥-时,即13x ≥时,(21)(2)21x x x +*-=+,则213x +>,解得1x >,∴此时原不等式的解集为1x >;当212x x +<-时,即13x <时,(21)(2)2x x x +*-=-,则23x ->,解得1x <-,∴此时原不等式的解集为1x <-;综上所述,不等式(21)(2)3x x +*->的解集是1x >或1x <-.故选:C.【点睛】本题主要考查解一元一次不等式,解题的关键是根据新定义运算规则列出关于x 的不等式.6.(2021·湖北中考真题)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根,则k 的取值范围是()A.54k <且0k ≠B.54k ≤C.54k ≤且0k ≠D.54k ≥【答案】C 【分析】按新定义规定的运算法则,将其化为关于x 的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.【详解】解:∵[x 2+1,x]※[5−2k,k]=0,∴()()21520k x k x ++-=.整理得,()2520kx k x k +-+=.∵方程有两个实数根,∴判别式0≥ 且0k ≠.由0≥ 得,()225240k k --≥,解得,54k ≤.∴k 的取值范围是54k ≤且0k ≠.故选:C 【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点,正确理解新定义的运算法则是解题的基础,熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制,要引起高度重视.7.(广西贵港市2021年中考数学真题)我们规定:若()()1122,,,a x y b x y →→==,则1212a b x x y y →→⋅=+.例如(1,3),(2,4)a b →→==,则123421214a b →→⋅=⨯+⨯=+=.已知(1,1),(3,4)a x x b x →→=+-=-,且23x -,则a b →→⋅的最大值是________.【答案】8【分析】根据平面向量的新定义运算法则,列出关于x 的二次函数,根据二次函数最值的求法解答即可.【详解】解:根据题意知:2(1)(3)4(1)(1)8a b x x x x ⋅=+-+-=+-.因为23x -≤≤,所以当3x =时,2(31)88a b ⋅=+-=.即a b ⋅的最大值是8.故答案是:8.【点睛】本题主要考查了平面向量,解题时,利用了配方法求得二次函数的最值.8.(2021·湖北中考真题)对于任意实数a、b,定义一种运算:22a b a b ab ⊗=+-,若()13x x ⊗-=,则x 的值为________.【答案】1-或2【分析】根据新定义的运算得到()()()221113x x x x x x ⊗-=+---=,整理并求解一元二次方程即可.【详解】解:根据新定义内容可得:()()()221113x x x x x x ⊗-=+---=,整理可得220x x --=,解得11x =-,22x =,故答案为:1-或2.【点睛】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.9.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N 的坐标分别为(0,1),(0,-1),P 是二次函数y=14x 2的图象上在第一象限内的任意一点,PQ 垂直直线y=-1于点Q,则四边形PMNQ 是广义菱形.其中正确的是.(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN∥PQ,设P(m,0)(m>0),∵PM==214m +1,PQ=214m -(-1)=214m +1,∴PM=PQ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.10.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A=80°,则它的特征值k=.【答案】85或14.【解析】当∠A 是顶角时,底角是50°,则k=808505= ;当∠A 是底角时,则底角是20°,k=201804= ,故答案为:85或14.11.(2019•济宁)阅读下面的材料:如果函数y=f(x)满足:对于自变量x 的取值范围内的任意x 1,x 2,(1)若x 1<x 2,都有f(x 1)<f(x 2),则称f(x)是增函数;(2)若x 1<x 2,都有f(x 12f(x)是减函数.例题:证明函数f(x)=6x(x>0)是减函数.证明:设0<x 1<x 2,f(x 1)–f(x 2)=()212112121266666x x x x x x x x x x ---==.∵0<x 1<x 2,∴x 2–x 1>0,x 1x 2>0.∴()21126x x x x ->0.即f(x 1)–f(x 2)>0.∴f(x 1)>f(x 2),∴函数f(x)═6x(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=21x+x(x<0),f(–1)=21(1)-+(–1)=0,f(–2)=21(2)-+(–2)=–74.(1)计算:f(–3)=__________,f(–4)=__________;(2)猜想:函数f(x)=21x +x(x<0)是__________函数(填“增”或“减”);(3)请仿照例题证明你的猜想.【答案】(1)–269,–6316;(2)增;(3)见解析.【解析】(1)∵f(x)=21x+x(x<0),∴f(–3)=21(3)-–3=–269,f(–4)=21(4)-–4=–6316,故答案为:–269,–6316;(2)∵–4<–3,f(–4)>f(–3),∴函数f(x)=21x +x(x<0)是增函数,故答案为:增;(3)设x 1<x 2<0,∵f(x 1)–f(x 2)=12221211x x x x +--=(x 1–x 2)(1–122212x x x x +)∵x 1<x 2<0,∴x 1–x 2<0,x 1+x 2<0,∴f(x 1)–f(x 2)<0,∴f(x 1)<f(x 2),∴函数f(x)=21x+x(x<0)是增函数.【名师点睛】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.12.(2022·四川凉山)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1,x 2,则x 1+x 2=b a-,x 1x 2=c a材料2:已知一元二次方程x 2-x-1=0的两个实数根分别为m,n,求m 2n+mn 2的值.解:∵一元二次方程x 2-x-1=0的两个实数根分别为m,n,∴m+n=1,mn=-1,则m 2n+mn 2=mn(m+n)=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x-1=0的两个根为x 1,x 2,则x 1+x 2=;x 1x 2=.(2)类比应用:已知一元二次方程2x 2-3x-1=0的两根分别为m、n,求n mm n+的值.(3)思维拓展:已知实数s、t 满足2s 2-3s-1=0,2t 2-3t-1=0,且s≠t,求11s t-的值.【答案】(1)32;12-(2)132-或【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n mm n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s-t 的值,然后将11s t -进行变形求解即可.【解析】(1)解:∵一元二次方程2x 2-3x-1=0的两个根为x 1,x 2,∴123322b x x a -+=-=-=,1212c x x a ⋅==-.故答案为:32;12-.(2)∵一元二次方程2x 2-3x-1=0的两根分别为m、n,∴3322b m n a -+=-=-=,12c mn a ==-,∴22n m m n m n mn ++=()22m n mn mn +-=23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=-132=-(3)∵实数s、t 满足2s 2-3s-1=0,2t 2-3t-1=0,∴s、t 可以看作方程2x 2-3x-1=0的两个根,∴3322b s t a -+=-=-=,12c st a ==-,∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭924=+174=∴2t s -=或2t s -=-,当2t s -=时,11212t s s t st --===-当2t s -=时,11212t s s t st --===-11s t -或【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出2t s -=或2t s -=-,是解答本题的关键.13.(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为mn ,易知mn =10m+n;同理,一个三位数、四位数等均可以用此记法,如abc =100a+10b+c.【基础训练】(1)解方程填空:①若2x +3x =45,则x=__________;②若7y –8y =26,则y=__________;③若93t +58t =131t ,则t=__________;【能力提升】(2)交换任意一个两位数mn 的个位数字与十位数字,可得到一个新数nm ,则mn +nm 一定能被__________整除,mn –nm 一定能被__________整除,mn •nm –mn 一定能被__________整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc (不妨设a>b>c),试说明其均可产生该黑洞数.【答案】(1)①2.②4.③7.(2)11;9;10.【解析】(1)①∵mn =10m+n,∴若2x +3x =45,则10×2+x+10x+3=45,∴x=2,故答案为:2.②若7y–8y=26,则10×7+y–(10y+8)=26,解得y=4,故答案为:4.③由abc=100a+10b+c,及四位数的类似公式得若93t+58t=131t,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1,∴100t=700,∴t=7,故答案为:7.(2)∵mn+nm=10m+n+10n+m=11m+11n=11(m+n),∴则mn+nm一定能被11整除,∵mn–nm=10m+n–(10n+m)=9m–9n=9(m–n),∴mn–nm一定能被9整除.∵mn•nm–mn=(10m+n)(10n+m)–mn=100mn+10m2+10n2+mn–mn=10(10mn+m2+n2)∴mn•nm–mn一定能被10整除.故答案为:11;9;10.(3)①若选的数为325,则用532–235=297,以下按照上述规则继续计算,972–279=693,963–369=594,954–459=495,954–459=495,…故答案为:495.②当任选的三位数为abc时,第一次运算后得:100a+10b+c–(100c+10b+a)=99(a–c),结果为99的倍数,由于a>b>c,故a≥b+1≥c+2,∴a–c≥2,又9≥a>c≥0,∴a–c≤9,∴a–c=2,3,4,5,6,7,8,9,∴第一次运算后可能得到:198,297,396,495,594,693,792,891,再让这些数字经过运算,分别可以得到:981–189=792,972–279=693,963–369=594,954–459–495,954–459=495…,故都可以得到该黑洞数495.【名师点睛】本题是较为复杂的新定义试题,题目设置的问题较多,但解答方法大同小异,总体中等难度略大.14.(2021·北京中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.【答案】(1)22B C ;(2)t =min 1OA =时,此时BC =;当max 2OA =时,此时2BC =.【分析】(1)以点A 为圆心,分别以112233,,,,,AB AC AB AC AB AC 为半径画圆,进而观察是否与O 有交点即可;(2)由旋转的性质可得AB C ''△是等边三角形,且B C ''是O 的弦,进而画出图象,则根据等边三角形的性质可进行求解;(3)由BC 是O 的以点A 为中心的“关联线段”,则可知,B C ''都在O 上,且1,2AB AB AC AC ''====,然后由题意可根据图象来进行求解即可.【详解】解:(1)由题意得:通过观察图象可得:线段22B C 能绕点A 旋转90°得到O 的“关联线段”,1133,B C B C 都不能绕点A 进行旋转得到;故答案为22B C ;(2)由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C ''△是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C ''与y 轴的交点为D,连接OB ',易得B C y ''⊥轴,∴12B D DC ''==,∴2OD ==,2AD ==,∴OA =∴t =;当点A 在y 轴的正半轴上时,如图所示:同理可得此时的OA =∴t =;(3)由BC 是O 的以点A 为中心的“关联线段”,则可知,B C ''都在O 上,且1,2AB AB AC AC ''====,则有当以B '为圆心,1为半径作圆,然后以点A 为圆心,2为半径作圆,即可得到点A 的运动轨迹,如图所示:由运动轨迹可得当点A 也在O 上时为最小,最小值为1,此时AC '为O 的直径,∴90AB C ''∠=︒,∴30AC B ''∠=︒,∴cos30BC B C AC '''==⋅︒=;由以上情况可知当点,,A B O '三点共线时,OA 的值为最大,最大值为2,如图所示:连接,OC B C ''',过点C '作C P OA '⊥于点P,∴1,2OC AC OA ''===,设OP x =,则有2AP x =-,∴由勾股定理可得:22222C P AC AP OC OP '''=-=-,即()222221x x --=-,解得:14x =,∴4C P '=,∴34B P OB OP ''=-=,在Rt B PC '' 中,2B C ''==,∴2BC =;综上所述:当min 1OA =时,此时BC =;当max 2OA =时,此时2BC =.【点睛】本题主要考查旋转的综合、圆的基本性质、三角函数及等边三角形的性质,熟练掌握旋转的性质、圆的基本性质、三角函数及等边三角形的性质是解题的关键.15.(江苏省南通市2021年中考数学试题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”.(1)分别判断函数22,y x y x x =+=-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0),y x y x b x=>=-+的图象的“等值点”分别为点A,B,过点B 作BC x ⊥轴,垂足为C.当ABC 的面积为3时,求b 的值;(3)若函数22()y x x m =-≥的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.【答案】(1)函数y=x+2没有“等值点”;函数2y x x =-的“等值点”为(0,0),(2,2);(2)b =-;(3)98m <-或12m -<<..【分析】(1)根据定义分别求解即可求得答案;(2)根据定义分别求),B(2b ,2b ),利用三角形面积公式列出方程求解即可;(3)由记函数y=x 2-2(x≥m)的图象为W 1,将W 1沿x=m 翻折后得到的函数图象记为W 2,可得W 1与W 2的图象关于x=m 对称,然后根据定义分类讨论即可求得答案.【详解】解:(1)∵函数y=x+2,令y=x,则x+2=x,无解,∴函数y=x+2没有“等值点”;∵函数2y x x =-,令y=x,则2x x x -=,即()20x x -=,解得:1220x x ==,,∴函数2y x x =-的“等值点”为(0,0),(2,2);(2)∵函数3y x=,令y=x,则23x =,解得:x =(负值已舍),∴函数3y x =的“等值点”为);∵函数y x b =-+,令y=x,则x x b =-+,解得:2b x =,∴函数y x b =-+的“等值点”为B(2b ,2b );ABC 的面积为11•••32222B A b b BC x x -=,即2240b --=,解得:b =-;(3)将W 1沿x=m 翻折后得到的函数图象记为W 2.∴W 1与W 2两部分组成的函数W 的图象关于x m =对称,∴函数W 的解析式为()()22222()y x x m y m x x m ⎧=-≥⎪⎨=--<⎪⎩,令y=x,则22x x -=,即220x x --=,解得:1221x x ==-,,∴函数22y x =-的“等值点”为(-1,-1),(2,2);令y=x,则2(2)2m x x --=,即()2241420x m x m -++-=,当2m ≥时,函数W 的图象不存在恰有2个“等值点”的情况;当12m -<<时,观察图象,恰有2个“等值点”;当1m <-时,∵W 1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W 2没有“等值点”,∴()()224141420m m ⎡⎤=-+-⨯⨯-<⎣⎦ ,整理得:890m +<,解得:98m <-.综上,m 的取值范围为98m <-或12m -<<.【点睛】本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.16.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满是x=3a c +,y=3b d +,那么称点T是点A,B的融合点。
中考数学阅读理解题试题练习题1. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.3. 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分)()0,0,10log log >>≠>=+N M a a N M a a 且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4. 先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.5. 式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果).6. 定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位。
专题五 阅读理解型问题类型一 新定义型问题(2018·浙江湖州中考)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD 的边长为65,此时正方形EFGH 的面积为5.问:当格点弦图中的正方形ABCD 的边长为65时,正方形EFGH 的面积的所有可能值是____________________(不包括5).【分析】当DG =13,CG =213时,满足DG 2+CG 2=CD 2,此时HG =13,可得正方形EFGH 的面积为13.当DG =8,CG =1时,满足DG 2+CG 2=CD 2,此时HG =7,可得正方形EFGH 的面积为49.当DG =7,CG =4时,此时HG =3,四边形EFGH 的面积为9. 【自主解答】1.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形. (1)已知△ABC 是比例三角形,AB =2,BC =3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD 中,AD∥BC,对角线BD 平分∠ABC,∠BAC=∠ADC.求证:△ABC 是比例三角形. (3)如图2,在(2)的条件下,当∠ADC=90°时,求BDAC的值.图1 图2类型二 新知识学习型问题(2018·湖南张家界中考)阅读理解题在平面直角坐标系xOy 中,点P(x 0,y 0)到直线Ax +By +C =0(A 2+B 2≠0)的距离公式为:d =|Ax 0+By 0+c|A 2+B 2, 例如,求点P(1,3)到直线4x +3y -3=0的距离. 解:由直线4x +3y -3=0知:A =4,B =3,C =-3,所以P(1,3)到直线4x +3y -3=0的距离为:d =|4×1+3×3-3|42+32=2. 根据以上材料,解决下列问题:(1)求点P 1(0,0)到直线3x -4y -5=0的距离;(2)若点P 2(1,0)到直线x +y +C =0的距离为2,求实数C 的值. 【分析】(1)根据点到直线的距离公式即可求解; (2)根据点到直线的距离公式,列出方程即可解决问题. 【自主解答】2.(2018·山东济宁中考)知识背景 当a >0且x >0时,因为(x -a x)2≥0,所以x -2a +a x ≥0,从而x +ax ≥2a(当x =a 时取等号).设函数y =x +ax (a >0,x >0),由上述结论可知,当x =a 时,该函数有最小值为2 a.应用举例已知函数y 1=x(x >0)与函数y 2=4x (x >0),则当x =4=2时,y 1+y 2=x +4x 有最小值为24=4.解决问题(1)已知函数y 1=x +3(x >-3)与函数y 2=(x +3)2+9(x >-3),当x 取何值时,y 2y 1有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x 天,则当x 取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?类型三 迁移发展型问题(2018·山东淄博中考)(1)操作发现:如图1,小明画了一个等腰三角形ABC ,其中AB =AC ,在△ABC 的外侧分别以AB ,AC 为腰作了两个等腰直角三角形ABD ,ACE ,分别取BD ,CE ,BC 的中点M ,N ,G ,连结GM ,GN.小明发现了:线段GM 与GN 的数量关系是________________;位置关系是________________. (2)类比思考:如图2,小明在此基础上进行了深入思考.把等腰三角形ABC 换为一般的锐角三角形,其中AB >AC ,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图3,小明在(2)的基础上,又作了进一步探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给与证明.【分析】(1)利用S A S判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BD C+∠DBH=90°,即∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【自主解答】此类题型要从提供的材料中,通过阅读理解其复杂的思想方法,将其概括成数学模型去解决同类或更高层次的另一类相关命题,在解题过程中,类比材料所给的原有问题,从中将相关的知识、思想方法、解题策略迁移到新的问题中,是解决此类问题的关键所在.3.问题背景:如图1,△AB C为等边三角形,作AD⊥BC于点D,将∠ABC绕点B顺时针旋转30°后,BA,BC边与射线AD 分别交于点E,F,求证:△BEF为等边三角形.迁移应用:如图2,△ABC 为等边三角形,点P 是△ABC 外一点,∠BPC=60°,将∠BPC 绕点P 逆时针旋转60°后,PC 边恰好经过点A ,探究PA ,PB ,PC 之间存在的数量关系,并证明你的结论; 拓展延伸:如图3,在菱形ABCD 中,∠ABC=60°,将∠ABC 绕点B 顺时针旋转到如图所在的位置得到∠MBN,F 是BM 上一点,连结AF ,DF ,DF 交BN 于点E ,若B ,E 两点恰好关于直线AF 对称. (1)证明△BEF 是等边三角形; (2)若DE =6,BE =2,求AF 的长.类型四 方法模拟型问题(2018·贵州贵阳中考)如图1,在Rt △ABC 中,以下是小亮探究asin A 与b sin B 之间关系的方法:∵sin A =a c ,sin B =bc ,∴c=asin A ,c =b sin B , ∴asin A =b sin B. 根据你掌握的三角函数知识.在图2的锐角△ABC 中,探究asin A ,b sin B ,c sin C 之间的关系,并写出探究过程.图1 图2【分析】三式相等,理由为:过A 作AD⊥BC,过点B 作BE⊥AC,在Rt △ABD 中,利用锐角三角函数定义表示出AD ,在Rt △ADC 中,利用锐角三角函数定义表示出AD ,两者相等即可得证. 【自主解答】4.(2018·山西中考)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD =2AB ,E 是AB 延长线上一点,且BE =AB ,连结DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连结AM.试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法: 证明:∵BE=AB ,∴AE=2AB. ∵AD=2AB ,∴AD=AE.∵四边形ABCD 是矩形,∴AD∥BC. ∴EM DM =EBAB.(依据1) ∵BE=AB ,∴EMDM =1.∴EM=DM.即AM 是△ADE 的DE 边上的中线, 又∵AD=AE ,∴AM⊥DE.(依据2) ∴AM 垂直平分DE. 反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连结CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:(3)如图3,连结CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.参考答案类型一【例1】 当DG =13,CG =213时,满足DG 2+CG 2=CD 2,此时HG =13,可得正方形EFGH 的面积为13. 当DG =8,CG =1时,满足DG 2+CG 2=CD 2,此时HG =7,可得正方形EFGH 的面积为49. 当DG =7,CG =4时,此时HG =3,四边形EFGH 的面积为9.故答案为9,13和49. 变式训练1.解:(1)∵△ABC 是比例三角形,且AB =2,BC =3, ①当AB 2=BC·AC 时,得4=3AC ,解得AC =43;②当BC 2=AB·AC 时,得9=2AC ,解得AC =92;③当AC 2=AB·BC 时,得AC 2=6,解得AC =6(负值舍去), ∴当AC =43或92或6时,△ABC 是比例三角形.(2)∵AD∥BC,∴∠ACB=∠CAD. 又∵∠BAC=∠ADC,∴△ABC∽△DCA, ∴BC CA =CA AD,即CA 2=BC·AD. ∵AD∥BC,∴∠ADB=∠CBD. ∵BD 平分∠ABC,∴∠ABD=∠CBD, ∴∠ADB=∠ABD,∴AB=AD , ∴CA 2=BC·AB, ∴△ABC 是比例三角形.(3)如图,过点A 作AH⊥BD 于点H.∵AB=AD ,∴BH=12BD.∵AD∥BC,∠ADC=90°,∴∠BCD=90°, ∴∠BHA=∠BCD=90°. 又∵∠ABH=∠DBC, ∴△ABH∽△DBC, ∴AB DB =BHBC,即AB·BC=BH·DB,∴AB·BC=12BD 2.又∵AB·BC=AC 2, ∴12BD 2=AC 2,∴BD AC = 2. 类型二【例2】 (1)d =|3×0-4×0-5|32+42=1. (2)2=|1×1+1×0+C|2,∴|C+1|=2,∴C+1=±2,∴C 1=-3,C 2=1. 变式训练2.解:(1)y 2y 1=(x +3)2+9x +3=(x +3)+9x +3,∴当x +3=9x +3时,y 2y 1有最小值,∴x=0或-6(舍弃)时,有最小值6.(2)设该设备平均每天的租赁使用成本为w 元, 则w =490+200x +0.001x2x=490x+0.001x +200, ∴当490x=0.001x 时,w 有最小值,∴x=700或-700(舍弃)时,w 有最小值,最小值为201.4元. 类型三【例3】 (1)MG =NG MG⊥NG 如图,连结BE ,CD 相交于H.∵△ABD 和△ACE 都是等腰直角三角形, ∴AB=AD ,AC =AE ,∠BAD=∠CAE=90°, ∴∠CAD=∠BAE, ∴△ACD≌△AEB(SAS), ∴CD=BE ,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°, ∴∠BHD=90°,∴CD⊥BE. ∵点M ,G 分别是BD ,BC 的中点, ∴MG 綊12CD.同理NG 綊12BE ,∴MG=NG ,MG⊥NG,∴MG=NG ,MG⊥NG.(2)连结CD ,BE 相交于点H ,同(1)的方法得MG =NG ,MG⊥NG. (3)如图,连结EB ,DC ,延长线相交于H ,同(1)的方法得MG =NG , 同(1)的方法得△ABE≌△ADC, ∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH-∠AEC+180°-∠ACD-∠ACE=∠ACD-45°+180°-∠ACD-45°=90°, ∴∠DHE=90°, 同(1)的方法得MG⊥NG, ∴△GMN 是等腰直角三角形. 变式训练3.解:问题背景:证明:∵△ABC 为等边三角形, ∴AB=AC =BC ,∠BAC=∠ABC=∠ACB=60°. 由题意得∠ABE=30°,∠EBF=60°, ∴∠EBD=∠FBD=30°. ∵BD⊥AD,∴∠BED=60°, ∴△BEF 为等边三角形. 迁移应用:PC =PA +PB.证明:如图,在PC 上截取PG =PB ,连结BG.∵∠BPC=60°,∴△BPG 为等边三角形,∴BG=BP ,∠PBG=60°,PB =BG ,∴∠PBA+∠ABG=∠ABG+∠GBC=60°,∴∠PBA=∠GBC.又AB =BC ,∴△APB≌△CBG,∴PA=GC ,∴PC=PG +CG =PB +PA.拓展延伸:(1)如图,∵B,E 两点关于直线AF 对称,∴FE=FB.∵∠EBF=60°,∴△BEF 是等边三角形.(2)由(1)知,△BEF 是等边三角形,如图,连结AE ,过点A 作AH⊥DE 于点H.∵B,E 两点关于直线AF 对称,∴AE=AB.∵四边形ABCD 是菱形,∴AB=AD ,∴A E =AD ,∴DH=HE =12DE =3,∴HF=HE +EF =3+2=5.由(1)知,△BEF 是等边三角形,FA⊥EB,∴∠EFA=12∠EFB=30°.在Rt△AHF 中,cos∠HFA=HF AF =32, ∴AF=HFcos 30°=103=1033.类型四 【例4】 a sin A =b sin B =csin C .理由如下:如图,过A 作AD⊥BC,过点B 作BE⊥AC.在Rt△ABD 中,sin B =AD c , 即AD =csin B ,在Rt△ADC 中,sin C =AD b, 即AD =bsin C ,∴csin B=bsin C ,即b sin B =c sin C, 同理可得a sin A =c sin C, 则a sin A =b sin B =c sin C. 变式训练4.解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例). 依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”). ②点A 在线段GF 的垂直平分线上.(2)证明:如图,过点G 作GH⊥BC 于点H.∵四边形ABCD 是矩形,点E 在AB 的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG 为正方形,∴CG=CE ,∠GCE=90°,∴∠BCE +∠BCG=90°,∴∠BEC=∠BCG,∴△GHC≌△CBE,∴HC=BE.∵四边形ABCD 是矩形,∴AD=BC.∵AD=2AB ,BE =AB ,∴BC=2BE=2HC,∴HC=BH,∴GH垂直平分BC,∴点G在BC的垂直平分线上.(3)点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证明:如图,过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM为矩形.∴BM=EN,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°,∴∠2+∠3=90°,∴∠1=∠3.∵∠CBE=∠ENF=90°,∴△ENF≌△EBC,∴NE=BE,∴BM=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,AB=BE,∴BC=2BM,∴BM=MC,∴FM垂直平分BC,∴点F在BC边的垂直平分线上.。
中考数学阅读理解题型汇总边角平分线,且∠AED=90°,则四边形ABCD是一个(填“什么”).解析:1.(1) 能被13整除;(2) 任意六位连接数都不能被13整除,因为13不能整除任何一个以0结尾的数,而六位连接数的最后一位一定是与第一位相同的数字,所以一定以0结尾;(3) 四位连接数有4个,分别为3079、7039、9379、9739.2.(1) 点P是和谐点;(2) 图中的点坐标为(0,1)、(1,0)、(1,2)、(2,1)、(1,1)、(1/2,1/2);(3) 边的度数为60°。
3.(1) (①) 点A与点B的“非常距离”为1;(②) 点B的坐标为(1,1);(③) 点A与点B的“非常距离”的最小值为1.(2) 点C与点D的“非常距离”的最小值为1,点C的坐标为(4,1)。
4.四边形ABCD是一个平行四边形。
平分线问题可以通过延长平分线交另一边的延长线得到等量关系。
具体地,对于四边形ABCD中的AB、AD、DC,我们可以延长AE交DC的延长线于点F,易证△AEB≌△___,得到AB=FC。
然后我们可以转化问题到△ADF中,从而判断AB、AD、DC之间的等量关系。
在四边形ABCD中,已知AB∥DC,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线。
我们需要探究AB、AF、CF之间的等量关系,并证明结论。
根据(a-b)²≥0可得a-2ab+b≥0,进一步推导可得a+b≥2ab,只有当a=b时,等号成立。
因此,在a+b≥2ab(a、b均为正实数)中,若ab为定值p,则a+b≥2p只有当a=b时,a+b有最小值2p。
在平面直角坐标系中,已知点A(xA,yA)和点C(xC,yC),点M为线段AC的中点。
利用三角形全等的知识,有△AMP≌△CMQ,则有PM=MQ,PA=QC,即xM-xA=xC-xM,yA-yM=yM-yC。
因此,中点M的坐标为(xA+xC)/2,(yA+yC)/2.0.4可以直接写成2/5的分数形式。
中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。
专题训练十 阅读理解型问题一、选择题1.火车票上的车次号有两个意义,一是数字越小表示车速越快,1—98次为特快列车,101—198次为直快列车,301—398次为普快列车,401—498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是A.20B.119C.120D.319 2.阅读下面文字后,解答问题.有这样一道题目:“已知二次函数y=x 2+bx+c 的图象经过点(1,0)_________________,求证:这个二次函数图象关于直线x=2对称.”题目中的横线部分是一段被墨水污染了无法辨认的文字. 根据现有信息,题目中二次函数图象不具有的性质是A.过点(3,0)B.顶点是(2,-2)C.在x 轴上截得的线段长是2D.与y 轴交点是(0,3)3.扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步:从左边一堆拿出两张,放入中间一堆; 第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆的张数是A.4B.5C.6D.无法确定二、填空题4.自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R ,它会掉入一个数字“陷阱”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数R=__________________.5.据指令[s,A ](s ≥0,0°≤A<360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s.现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是____________________________. 三、解答题6.阅读下列解题过程:题目:已知方程x 2+3x+1=0的两个根为α、β,求βα+αβ的值.解:∵Δ=32-4×1×1=5>0,∴α≠β. (1) 由一元二次方程的根与系数的关系,得α+β=-3,αβ=1. (2) ∴βα+αβ=βα+αβ=αββα+=13-=-3.(3)阅读后回答问题:上述的解题过程是否正确?若不正确,指出错在哪一步,并写出正确的解题过程. 7.阅读下列材料:如图3-20,在四边形ABCD 中,对角线AC ⊥BD ,垂足为P.图3-20求证: S四边形ABCD=21AC ·BD.证明:AC ⊥BD ⇒⎪⎪⎩⎪⎪⎨⎧∙=∙=∆∆.21,21PB AC S PD AC S ACBACD∴S四边形ABCD=S △ACD +S △ACB =21AC(PD+PB)=21AC ·BD.解答问题:(1)上述证明得到的性质可叙述为_________________________________________.(2)如图3-21,已知等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 且相交于点P ,AD=3 cm,BC=7 cm ,利用上述的性质求梯形的面积.图3-218.规定a 、b 两数之间的一种运算,记作(a ,b):如果a c =b ,那么(a ,b)=c.比如:(2,8)=3.对于任意的自然数n ,可以证得(3n ,4n )=(3,4).证明如下:设(3n ,4n )=x ,则3n x=4n ,即(3x )n =4n ,因此3x =4,即(3,4)=x ,从而(3n ,4n )=(3,4). 现在请你证明下面等式:(3,4)+(3,5)=(3,20). 9.阅读下列材料,按要求解答问题:在△ABC ,∠A 、∠B 、∠C 所对的边分别用a 、b 、c 表示.(1)如图3-22,在△ABC 中,∠A=2∠B ,且∠A=60°,求证:a 2=b(b+c).图3-22(2)若一个三角形的一个内角是另一个内角的两倍,则称这种三角形为倍角三角形.本题图3-23中的三角形是特殊的倍角三角形,那么对于任意的倍角三角形(如图3-23),当∠A=2∠B 时,关系式a 2=b(b+c)是否仍然成立?若成立,证明你的结论;若不成立,举出反例.图3-23一、选择题1答案:C提示:由直快列车车次号为101—198之间,再由杭州开往北京车次号为双数即为120. 2答案:B提示:相当于“二次函数y=x 2+bx+c 的图象经过点(1,0),对称轴为直线x=2,判断四个选项的对错”.3答案:B提示:设各堆牌的张数相同,为a,然后根据题意用含a 的代数式表示中间的牌的数目. 二、填空题4答案:13提示:可以随意找一个数(比如12),按步骤操作即可. 5答案:[32,225°]提示:由点(-3,3)在第二象限平分线上,则机器人需逆时针旋转225°,再向前行走32. 6答案:不正确. 解:第(3)步错.正确的解题过程是:∵Δ=32-4×1×1=5>0,∴α≠β.由一元二次方程的根与系数的关系,得α+β=-3<0,αβ=1>0, ∴α<0,β<0. ∴βα+αβ=-ββα∙-αβα∙=-βα∙·αββα+=3.7答案:(1)对角线互相垂直的四边形的面积等于对角线长的乘积的一半(2)25 cm2.提示:(2)中,可以过P点作两底的垂线,即高,运用直角三角形斜边中线等于斜边一半分别求出两垂线段的长,即高的大小.从而可求出面积.另一种方法是平移对角线.8证明:设(3,4)=x,(3,5)=y,∵3x=4,3y=5,∴3x·3y=5·4=20.从而3x+y=20,∴(3,20)=x+y.∴(3,4)+(3,5)=(3,20).9提示:(1)设b=x,则c=2x,a=3x,然后可证.(2)思路一:延长CA至D,使AD=AB,连结BD,证明△CAB∽△CBD.思路二:延长BA至D,使AD=AC,连结CD,证明△CAD∽△BCD.。
2022届全国中考数学专项(新定义与阅读理解创新型问题)真题汇编一.选择题(共3小题)1.(2022•娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN).例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为( )A.5 B.2 C.1 D.02.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n =x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是( )A.0 B.1 C.2 D.33.(2022•常德)我们发现:=3,=3,=3,…,=3,一般地,对于正整数a,b,如果满足=a时,称(a,b)为一组完美方根数对.如上面(3,6)是一组完美方根数对,则下面4个结论:①(4,12)是完美方根数对;②(9,91)是完美方根数对;③若(a,380)是完美方根数对,则a=20;④若(x,y)是完美方根数对,则点P(x,y)在抛物线y=x2﹣x上,其中正确的结论有( )A.1个B.2个C.3个D.4个二.填空题(共1小题)4.(2022•内江)对于非零实数a,b,规定a⊕b=﹣.若(2x﹣1)⊕2=1,则x的值为.三.解答题(共23小题)5.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.6.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.7.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.8.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.9.(2022•盐城)【发现问题】小明在练习簿的横线上取点O为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验,以圆心O为原点,过点O的横线所在直线为x轴,过点O且垂直于横线的直线为y轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为.【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P(0,m),m为正整数,以OP为直径画⊙M,是否存在所描的点在⊙M上.若存在,求m的值;若不存在,说明理由.10.(2022•遂宁)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如(﹣1,1),(2022,﹣2022)都是“黎点”.(1)求双曲线y=上的“黎点”;(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,当a>1时,求c的取值范围.11.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=和k2=两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<,请直接写出a的取值范围.12.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).13.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则△ABC 和△A'B'C'是等高三角形.【性质探究】如图①,用S △ABC,S△A'B'C′分别表示△ABC和△A′B′C′的面积,则S△ABC=BC•AD,S△A'B'C′=B′C′•A′D′,∵AD=A′D′∴S△ABC:S△A'B'C′=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC= ;(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC= ,S△CDE= ;(3)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE= .14.(2022•常州)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD=4,OA=5,BC=12,连接AC,求AC的长;(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求的值.15.(2022•青海)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BD=CE;(2)解决问题:如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.16.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.17.(2022•兰州)如图,在Rt△ABC中,∠ACB=90°,AC=3cm,BC=4cm,M为AB边上一动点,BN ⊥CM,垂足为N.设A,M两点间的距离为xcm(0≤x≤5),B,N两点间的距离为ycm(当点M和B 点重合时,B,N两点间的距离为0).小明根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:下表的已知数据是根据A,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm 0 0.5 1 1.5 1.8 2 2.5 3 3.5 4 4.5 5y/cm 4 3.96 3.79 3.47 a 2.99 2.40 1.79 1.23 0.74 0.33 0请你通过计算,补全表格:a= ;(2)描点、连线:在平面直角坐标系中,描出表中各组数值所对应的点(x,y),并画出函数y关于x 的图象;(3)探究性质:随着自变量x的不断增大,函数y的变化趋势: ;(4)解决问题:当BN=2AM时,AM的长度大约是cm.(结果保留两位小数)18.(2022•深圳)二次函数y=2x2,先向上平移6个单位,再向右平移3个单位,用光滑的曲线画在平面直角坐标系上.y=2x2 y=2(x﹣3)2+6(0,0) (3,m)(1,2) (4,8)(2,8) (5,14)(﹣1,2) (2,8)(﹣2,8) (1,14)(1)m的值为;(2)在坐标系中画出平移后的图象并写出y=﹣x2+5与y=x2的交点坐标;(3)点P(x1,y1),Q(x2,y2)在新的函数图象上,且P,Q两点均在对称轴同一侧,若y1>y2,则x1x2.(填不等号)19.(2022•潍坊)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017﹣2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如图.小亮认为,可以从y=kx+b(k>0),y=(m>0),y=﹣0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选y=(m>0).你认同吗?请说明理由;(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少?20.(2022•潍坊)为落实“双减”,老师布置了一项这样的课后作业:二次函数的图象经过点(﹣1,﹣1),且不经过第一象限,写出满足这些条件的一个函数表达式.【观察发现】请完成作业,并在直角坐标系中画出大致图象.【思考交流】小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”小莹说:“满足条件的函数图象一定在x轴的下方.”你认同他们的说法吗?若不认同,请举例说明.【概括表达】小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数y=ax2+bx+c的图象与系数a,b,c的关系,得出了提高老师作业批阅效率的方法.请你探究这个方法,写出探究过程.21.(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm ),确定支点O ,并用细麻绳固定,在支点O 左侧2cm 的A 处固定一个金属吊钩,作为秤钩;第二步:取一个质量为0.5kg 的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤砣挂在支点O 右侧的B 处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB 的长度随之变化.设重物的质量为xkg ,OB 的长为ycm .写出y 关于x 的函数解析式;若0<y <48,求x 的取值范围.(2)调换秤砣与重物的位置,把秤砣挂在秤钩上,重物挂在支点O右侧的B处,使秤杆平衡,如图2.设重物的质量为xkg,OB的长为ycm,写出y关于x的函数解析式,完成下表,画出该函数的图象.x/kg …… 0.25 0.5 1 2 4 ……y/cm …… ……22.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|= ;②min|﹣,﹣4|= .(2)如图,已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.23.(2022•赤峰)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长AD=4m,宽AB=1m的长方形水池ABCD 进行加长改造(如图①,改造后的水池ABNM仍为长方形,以下简称水池1).同时,再建造一个周长为12m的矩形水池EFGH(如图②,以下简称水池2).【建立模型】如果设水池ABCD的边AD加长长度DM为x(m)(x>0),加长后水池1的总面积为y1(m2),则y1关于x的函数解析式为:y1=x+4(x>0);设水池2的边EF的长为x(m)(0<x<6),面积为y2(m2),则y2关于x的函数解析式为:y2=﹣x2+6x(0<x<6),上述两个函数在同一平面直角坐标系中的图象如图③.【问题解决】(1)若水池2的面积随EF长度的增加而减小,则EF长度的取值范围是(可省略单位),水池2面积的最大值是m2;(2)在图③字母标注的点中,表示两个水池面积相等的点是,此时的x(m)值是;(3)当水池1的面积大于水池2的面积时,x(m)的取值范围是;(4)在1<x<4范围内,求两个水池面积差的最大值和此时x的值;(5)假设水池ABCD的边AD的长度为b(m),其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积y3(m2)关于x(m)(x>0)的函数解析式为:y3=x+b(x>0).若水池3与水池2的面积相等时,x(m)有唯一值,求b的值.24.(2022•鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点F(0,)的距离MF,始终等于它到定直线l:y=﹣的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣叫做抛物线的准线方程.其中原点O为FH的中点,FH=2OF=.例如:抛物线y=x2,其焦点坐标为F(0,),准线方程为l:y=﹣.其中MF=MN,FH=2OH =1.【基础训练】(1)请分别直接写出抛物线y=2x2的焦点坐标和准线l的方程: , .【技能训练】(2)如图2所示,已知抛物线y=x2上一点P到准线l的距离为6,求点P的坐标;【能力提升】(3)如图3所示,已知过抛物线y=ax2(a>0)的焦点F的直线依次交抛物线及准线l于点A、B、C.若BC=2BF,AF=4,求a的值;【拓展升华】(4)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C将一条线段AB分为两段AC和CB,使得其中较长一段AC是全线段AB与另一段CB的比例中项,即满足:==.后人把这个数称为“黄金分割”数,把点C称为线段AB的黄金分割点.如图4所示,抛物线y=x2的焦点F(0,1),准线l与y轴交于点H(0,﹣1),E为线段HF的黄金分割点,点M为y轴左侧的抛物线上一点.当=时,请直接写出△HME的面积值.25.(2022•贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD 中,AN为BC边上的高,=m,点M在AD边上,且BA=BM,点E是线段AM上任意一点,连接BE,将△ABE沿BE翻折得△FBE.(1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,则= ;(2)问题探究:如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;(3)拓展延伸:当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.26.(2022•呼和浩特)下面图片是八年级教科书中的一道题.如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF 于点F.求证AE=EF.(提示:取AB的中点G,连接EG.)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件: ;(2)如图1,若点E是BC边上任意一点(不与B、C重合),其他条件不变.求证:AE=EF;(3)在(2)的条件下,连接AC,过点E作EP⊥AC,垂足为P.设=k,当k为何值时,四边形ECFP是平行四边形,并给予证明.27.(2022•潍坊)【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.参考答案一.选择题(共3小题)1.(2022•娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN).例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为( )A.5 B.2 C.1 D.0【要点分析】首先根据定义运算提取公因式,然后利用定义运算计算即可求解.【答案解析】原式=lg5(lg5+lg2)+lg2=lg5×lg(5×2)+lg2=lg5lg10+lg2=lg5+lg2=lg10=1.故选:C.2.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是( )A.0 B.1 C.2 D.3【要点分析】根据“加算操作”的定义可知,当只给x﹣y加括号时,和原式相等;因为不改变x,y的运算符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,因为z,m,n中只有加减两种运算,求出即可.【答案解析】①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;∴当x =7或8时,w 取最大值,最大值为7.6,答:①号田和②号田总年产量在2023年或2024年最大,最大是7.6吨.20.(2022•潍坊)为落实“双减”,老师布置了一项这样的课后作业:二次函数的图象经过点(﹣1,﹣1),且不经过第一象限,写出满足这些条件的一个函数表达式.【观察发现】请完成作业,并在直角坐标系中画出大致图象.【思考交流】小亮说:“满足条件的函数图象的对称轴一定在y 轴的左侧.”小莹说:“满足条件的函数图象一定在x 轴的下方.”你认同他们的说法吗?若不认同,请举例说明.【概括表达】小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数y =ax 2+bx +c 的图象与系数a ,b ,c 的关系,得出了提高老师作业批阅效率的方法.请你探究这个方法,写出探究过程.。
阅读型试题近几年中考试题中,阅读理解型试题题型新颖,形式多样,知识覆盖面较大,它可以是总计课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法、思想,然后把握本质,理解实质的基础上作出回答例1、(2005年台州)我国古代数学家秦九韶在《算书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积。
用现代式子表示即为:])2([41222222cb a b a s -+-=……①(其中a 、b 、c 为三角形的三边长,s 为面积)。
而另一个文明古国古希腊也有求三角形面积的海伦公式: ))()((c p b p a p p s ---=……②(其中2cb a p ++=)。
(1)若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积。
(2)你能否由公式①推导出公式②?请试试。
分析:这是一道阅读理解题,它要求学生通过阅读理解“三斜求积术”的现在代公式,第(1)小题是检验学生的阅读能力及学以致用的能力,第(2)题是考查学生是创新能力。
1243F EDD DCCCBBBAAA练习1.(2005年贵州市)阅读下面操作过程,回答后面问题:在一次数学实践探究活动中,小强过A 、C 两点画直线AC 把平行四边形ABCD 分割成两个部分(a ),小刚过AB 、AC 的中点画直线EF ,把平行四边形ABCD 也分割成两个部分(b );(a ) (b ) (c )(1)这两种分割方法中面积之间的关系为:21____S S ,43____S S ;(2)根据这两位同学的分割方法,你认为把平行四边形分割成满足以上面积关系的直线有 条,请在图(c )的平行四边形中画出一种;(3)由上述实验操作过程,你发现了什么规律?(4)经过平行四边形对称中心的任意直线,都可以把平行四边形分成满足条件的图形;2.(2005年资阳市)阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF 即为△ABC 的“友好矩形”. 显然,当△ABC 是钝角三角形时,其“友好矩形”只有一个 .(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”; (2) 如图8②,若△ABC 为直角三角形,且∠C=90°,在图8②中画出△ABC 的所有“友好矩形”,并比较这些矩形面积的大小;(3) 若△ABC 是锐角三角形,且BC>AC>AB ,在图8③中画出△ABC 的所有“友好矩形”,指出其中周长最小的矩形并加以证明.3.(2005年玉林)阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c .过A 作AD ⊥BC 于D(如图),则sinB=c AD ,sinC=bAD ,即AD=csinB ,AD=bsinC ,于是csinB=bsinC ,即Cc Bb s in s in =.同理有A aC csin sin =,B bA asin sin =.所以CcB b A a sin sin sin ==………(*) 即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论(*)和有关定理就可以求出其余三个未知元素c 、∠B 、∠C ,请你按照下列步骤填空,完成求解过程:第一步:由条件a 、b 、∠A ∠B ;第二步:由条件 ∠A 、∠B . ∠C ;第三步:由条件.c .(2)一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以28.4海里/时的速度按北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西70°的方向上(如图),求此时货轮距灯塔A 的距离AB(结果精确到0.1.参考数据:sin40°=0.6 4 3,sin65°=0.90 6,sin70°=0.940,sin7 5°=0.9 6 6).4、(2005年佛山)“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB .(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).5、(2005年福州)已知:如图8,AB 是⊙O 的直径,P 是AB 上的一点(与A 、B 不重合),QP ⊥AB ,垂足为P ,直线QA 交⊙O 于C 点,过C 点作⊙O 的切线交直线QP 于点D 。
阅读理解题1.(2019·重庆中考A卷22题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.解(1)2019不是“纯数”,2020是“纯数”.理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”.(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共3个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数字是0,1,2,共9个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”有13个.2.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(5+3)(5-3)=-4,(3+2)(3-2)=1,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决问题:(1)比较大小:16-2________15-3(用“>”“<”或“=”填空); (2)计算:23+3+253+35+275+57+…+29997+9799; (3)设实数x ,y 满足(x +x 2+2019)(y +y 2+2019)=2019,求x +y +2019的值.解 (1)16-2=6+2(6-2)(6+2)=6+22, 15-3=5+3(5-3)(5+3)=5+32, ∵6+2>5+3,∴16-2>15-3. (2)原式=2⎝ ⎛⎭⎪⎫3-36+53-3530+75-5770+…+9997-979999×97×2=2⎝ ⎛⎭⎪⎫12-36+36-510+510-714+…+97194-99198=2⎝ ⎛⎭⎪⎫12-99198=1-9999=1-1133. (3)∵(x + x 2+2019)(y + y 2+2019)=2019,∴x + x 2+2019=2019y + y 2+2019=2019(y - y 2+2019)-2019= y 2+2019-y ,①同理可得y + y 2+2019=2019x + x 2+2019 =2019(x - x 2+2019)-2019= x 2+2019-x ,②①+②得x +y =0,∴x +y +2019=2019.3.阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解:x2-x+3x+1=x(x+1)-2(x+1)+5x+1=x(x+1)x+1-2(x+1)x+1+5x+1=x-2+5x+1.这样,分式x2-x+3x+1就拆分成一个整式x-2与一个分式5x+1的和的形式.解决问题:(1)将分式x2+6x-3x-1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为________;(2)已知整数x使分式2x2+5x-20x-3的值为整数,则满足条件的整数x=________;(3)若关于x的方程2x2+(1-2a)x+(4-3a)=0有整数解,求正整数a的值.解(1)x+7+4x-1[解法提示]x2+6x-3x-1=(x-1)2+8(x-1)+4x-1=x-1+8+4x-1=x+7+4x-1.故结果为x+7+4x-1.(2)2,4,16,-10 [解法提示]2x2+5x-20x-3=2x2-6x+11x-33+13x-3=2x(x-3)+11(x-3)+13x-3=2x+11+13x-3.要使原式的值为整数,则13x-3为整数,故x=2,4,16,-10.(3)∵2x2+(1-2a)x+(4-3a)=0,∴2x 2+x -2ax +4-3a =0,即(2x +3)a =2x 2+x +4,∴a =2x 2+x +42x +3=7+(2x +3)(x -1)2x +3=x -1+72x +3. 又∵a ,x 均为整数,∴2x +3是7的约数,∴2x +3=±1,±7,∴⎩⎨⎧ x =-1,a =5或⎩⎨⎧ x =-2,a =-10或⎩⎨⎧ x =2,a =2或⎩⎨⎧ x =-5,a =-7.又∵a 为正整数,∴a =5或2.4.阅读下列材料:已知实数m ,n 满足(2m 2+n 2+1)(2m 2+n 2-1)=80,试求2m 2+n 2的值. 解:设2m 2+n 2=t ,则原方程变为(t +1)(t -1)=80,整理得t 2-1=80,t 2=81,∴t =±9,因为2m 2+n 2>0,所以2m 2+n 2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.解决问题:(1)已知实数x ,y 满足(2x 2+2y 2+3)(2x 2+2y 2-3)=27,求x 2+y 2的值;(2)若四个连续正整数的积为11880,求这四个连续正整数.解 (1)令2x 2+2y 2=t ,则原方程变为(t +3)(t -3)=27,整理得,t 2-9=27,t 2=36.t =±6.∵2x 2+2y 2≥0,∴2x 2+2y 2=6,∴x 2+y 2=3.(2)设四个连续正整数为k -1,k ,k +1,k +2(k ≥2且k 为整数).由题得(k -1)k (k +1)(k +2)=11880,∴(k -1)(k +2)k (k +1)=11880,∴(k 2+k -2)(k 2+k )=11880.令t =k 2+k ,则(t -2)·t =11880,t 2-2t -11880=0,∴t 1=110,t 2=-108(舍去),则k2+k=110,得k1=10,k2=-11(舍去).综上,四个连续正整数为9,10,11,12.5.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b时,T(a,b)=a+b;当a≥b时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+(3+98)+…+(100+1)100个=100×(1+100)=10100,即S=100×(1+100)2=5050.解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.解(1)∵x+y=10,且x>y,∴x>5,y<5.∴T(5,x)-T(5,y)=(5+x)-(5-y)=x+y=10.(2)∵m2+1>-1,∴m2+1-(-1)=3,∵m>0,∴m=1,∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=T(1,100)+T(2,100)+T(3,100)+…+T(199,100)=(1+100)+(2+100)+…+(99+100)+(100-100)+(101-100)+…+(199-100)=(1+2+3+…+199)-100=199×(1+199)2-100=19900-100=19800.6.(热点信息)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+x2-4x-4因式分解的结果为(x +1)(x +2)(x -2),当x =15时,x +1=16,x +2=17,x -2=13,此时可以得到数字密码161713.(1)根据上述方法,当x =20,y =17时,对于多项式x 2y +x 2+xy +x 分解因式后可以形成哪些数字密码?(写出三个)(2)若多项式x 3+(m -3n )x 2-nx -21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m ,n 的值.解 (1)x 2y +x 2+xy +x =x (xy +x +y +1)=x (x +1)(y +1).∴当x =20,y =17时,x =20,x +1=21,y +1=18.∴形成的数字密码可以是202118,211820,182021(其他结果合理即可).(2)由题意得,x 3+(m -3n )x 2-nx -21=(x -3)(x +1)(x +7),∵(x -3)(x +1)(x +7)=x 3+5x 2-17x -21,∴x 3+(m -3n )x 2-nx -21=x 3+5x 2-17x -21.∴⎩⎨⎧ m -3n =5,n =17,解得⎩⎨⎧ m =56,n =17.∴m ,n 的值分别是56,17.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22-12,∴321是“谐数”,∴321是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a =10m +4n +716(0≤m ≤7,1≤n ≤3,且m ,n 均为正整数)是一个“和数”,请求出所有a 的值.解 (1)证明:设“谐数”的百位数字为x ,十位数字为y ,个位数字为z (1≤x ≤9,0≤y ≤9,0≤z ≤9且y >z ,x ,y ,z 均为整数),由题意知x =y 2-z 2=(y +z )(y -z ),∴x +y +z =(y +z )(y -z )+y +z =(y +z )(y -z +1).∵y +z ,y -z 的奇偶性相同,∴y +z ,y -z +1必然一奇一偶.∴(y +z )(y -z +1)必是偶数.∴任意“谐数”的各个数位上的数字之和一定是偶数.(2)∵0≤m ≤7,∴2≤m +2≤9.∵1≤n ≤3,∴4≤4n ≤12.∴10≤4n +6≤18,∴a =10m +4n +716=7×100+(m +1)×10+(4n +6)=7×100+(m +2)×10+(4n +6-10)=7×100+(m +2)×10+(4n -4),∵a 为“和数”,∴7=m +2+4n -4,即m +4n =9.∵0≤m ≤7,1≤n ≤3,且m ,n 均为正整数,∴⎩⎨⎧ m =1,n =2或⎩⎨⎧ m =5,n =1,∴a 的值为734或770.8.如果一个正整数m 能写成m =a 2-b 2(a ,b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a ,b 为m 的一个平方差分解,规定:F (m )=b a. 例如:8=8×1=4×2,由8=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =8,a -b =1或⎩⎨⎧ a +b =4,a -b =2.因为a ,b 为正整数,解得⎩⎨⎧ a =3,b =1,所以F (8)=13. 又例如:48=132-112=82-42=72-12,所以F (48)=1113或12或17. (1)判断:6________平方差数(填“是”或“不是”),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x ,y 是整数),且满足s +t 是11的倍数,求F (t )的最大值.解 (1)不是[解法提示] 根据题意,6=2×3=1×6,由6=a 2-b 2=(a +b )(a -b )可得,⎩⎨⎧ a +b =3,a -b =2或⎩⎨⎧ a +b =6,a -b =1,因为a ,b 为正整数,则可判断出6不是平方差数.根据题意,45=3×15=5×9=1×45,由45=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =15,a -b =3或⎩⎨⎧ a +b =9,a -b =5或⎩⎨⎧ a +b =45,a -b =1.∵a 和b 都为正整数,解得⎩⎨⎧ a =9,b =6或⎩⎨⎧ a =7,b =2或⎩⎨⎧ a =23,b =22,∴F (45)=23或27或2223.(2)根据题意,s =100x +5,t =10y +x ,∴s +t =100x +10y +x +5.∵1≤x ≤4,1≤y ≤9,x ,y 是整数,∴100≤100x ≤400,10≤10y ≤90,6≤x +5≤9,∴116≤s +t ≤499.∵s +t 为11的倍数,∴s +t 最小为11的11倍,最大为11的45倍.∵100x 末位为0,10y 末位为0,x +5末位为6到9之间的任意一个整数, ∴s +t 的末位是6到9之间的任意一个整数.①当x =1时,x +5=6,∴11×16=176,此时x =1,y =7,∴t =71.根据题意,71=71×1,由71=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =71,a -b =1,解得⎩⎨⎧ a =36,b =35,∴F (t )=3536. ②当x =2时,x +5=7,∴11×27=297,此时x =2,y =9.∴t =92.根据题意,92=92×1=46×2=23×4,由92=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =92,a -b =1或⎩⎨⎧ a +b =46,a -b =2或⎩⎨⎧ a +b =23,a -b =4. 解得⎩⎨⎧ a =24,b =22.∴F (t )=1112. ③当x =3时,x +5=8,∴11×38=418,此时x =3,y 没有符合题意的值,∴11×28=308,此时x =3,y 没有符合题意的值.④当x =4时,x +5=9,∴11×39=429,此时x =4,y =2.∴t =24.根据题意,24=24×1=12×2=8×3=6×4,由24=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =24,a -b =1或⎩⎨⎧ a +b =12,a -b =2或⎩⎨⎧ a +b =8,a -b =3或⎩⎨⎧ a +b =6,a -b =4.解得⎩⎨⎧ a =7,b =5或⎩⎨⎧ a =5,b =1,∴F (t )=57或15. 11×49=539不符合题意.综上,F (t )=3536或1112或57或15. ∴F (t )的最大值为3536. 9.(1)问题发现:如图1,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接EC ,则①∠ACE 的度数是________;②线段AC ,CD ,CE 之间的数量关系是________;(2)拓展探究:如图2,在△ABC 中,AB =AC ,∠BAC =90°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接EC ,请写出∠ACE 的度数及线段AC ,CD ,CE 之间的数量关系,并说明理由;(3)解决问题:如图3,在四边形ADBC 中,∠ABC =∠ACB =45°,∠BDC =90°.若BD =3,CD =5,请直接写出AD 的长.解 (1)①60° ②AC =CD +CE[解法提示] 由题意,得△ABC 和△ADE 均为等边三角形,∴AB =AC =BC ,AD =AE ,∠BAC =∠DAE =∠B =60°.∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE .∴△BAD ≌△CAE (SAS).∴∠ACE =∠B =60°,BD =CE .∴AC =BC =CD +BD =CD +CE .(2)∠ACE =45°,2AC =CD +CE .理由:由题意,得∠BAC =∠DAE =90°,AB =AC ,AD =AE .∴∠BAC -∠DAC =∠DAE -∠DAC .即∠BAD =∠CAE .∴△BAD≌△CAE.∴BD=CE,∠ACE=∠B=45°.∴BC=CD+BD=CD+CE.∵BC=2AC,∴2AC=CD+CE.(3)AD的长为 2.[解法提示] 过点A作AE⊥AD交DC于点E,则∠DAB=∠EAC.∵∠BDC=90°,∴∠DBA+∠ABC+∠DCB=90°.∴∠DBA+45°+(45°-∠ECA)=90°.∴∠DBA=∠ECA.又AB=AC.∴△BAD≌△CAE(ASA).∴BD=CE,AD=AE,∴CD-BD=CD-CE=DE,而DE=2AD,∴CD-BD=2AD,∴AD= 2.。
迷惑了,世界世界是什么?小时侯,世界是爸爸宽厚的肩膀,是爸爸有力的大手,经爸爸的大手我总能腾空在他的肩膀上,然后世界便在我的足下变得渺小了;世界是外婆那慈爱的目光,亲切的皱纹,可爱的白发,在外婆的怀抱里我总可以和欢乐尽情地牵手。
那时候的世界是天真,是无忧无虑,我喜欢。
渐渐长大,世界是儿时的伙伴,是风雨中的追逐嬉戏,是晚霞中的红蜻蜓,是头上的花冠,是手中的柳笛,还是那田地里老牛犁出的一行行局外人很难读懂的诗,这时的世界是长大,是童趣,我留恋。
等到上学,世界是整个书堂,是整个历史,是整个天地,是岳飞背上的“精忠报国”,是他挥毫的“收拾旧河山”,是他用生命塑成的岳武墓和那莫测的武穆遗书;世界是文天祥“人生自古谁无死,留取丹心照汗青”的英雄气概;是李清照“才下眉头,却上心头”的缠绵忧思;是李后主“问君能有几多愁,恰似一江春水向东流” 的浩浩愁思,是他“桃花谢了春红,太匆匆,无奈朝来寒雨晚来风”的惆怅;是陶渊明“采菊东篱下,悠然见南山”的恬淡⋯⋯世界是什么?我追寻着,探索着。
思想像一匹野马在窗驰骋,我不是好骑士,我握不住缰绳,所以我不知道我探索的世界到底是什么。
一位美丽的少女品茗书房,凝脂般的纤纤玉手轻翻书面,茶香和着书香⋯⋯这是世界吗?在秋风萧萧、秋雨萧萧,球心亦萧萧的日子,独自一人漫步在田间小路上,天色昏暗,寻找一个无人无语的地方坐下,伴着那飘飘落下的萧萧落叶,一同感受着那未知名的一切⋯⋯这就是世界吗?或者,都不是,世界就是那“霸王别姬”的凄美,是“衣带渐宽终不悔,为伊消得人憔悴” 的哀柔,是“十年生死两茫茫” 的悲怆,是春花、夏日、冬雪⋯⋯哦,不,世界,世界是司汤达墓碑上的三句话:“活过了写过了爱过了。
”1、本文的线索是什么?它是哪一种形式出现的?答:2、阅读短文,按要求填写下表。
内容概括我对世界的认识我对世界的感情时间小时候童年(渐渐长大)少年(等到上学)《迷惑了,世界》1. 线索是:世界是什么?是以某一问题为线索的形式出现的。
第45 章阅读理解型1. (2011 江苏南京,28,11 分)问题情境已知矩形的面积为a(a 为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x,周长为y,则y 与x 的函数关系式为y = 2(x +a)(x>0) .x 探索研究⑴我们可以借鉴以前研究函数的经验,先探索函数y =x +1(x>0) 的图象性质.x① 填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还1 可以通过配方得到.请你通过配方求函数y =x + 解决问题(x>0)的最小值.x⑵用上述方法解决“问题情境”中的问题,直接写出答案.1xx x 1 xa a ⎩, ,, , 【答案】解:⑴① 17 , 10 5 2 5 10 , 17 .1 4 32 23 4函 数 y = x +(x > 0) 的图象如图.x②本题答案不唯一,下列解法供参考.当0 < x < 1时, y 随 x 增大而减小;当 x > 1 时, y 随 x 增大而增大;当 x = 1 时函数y = x + 1(x > 0) 的最小值为 2.x③ y = x + 1x= ( x )2 + (= ( x )2 + (1 )2 x1 )2 -2xx ⋅+ 2 x ⋅= ( -1 )2 + 2x当 - =0,即 x = 1 时,函数 y = x + 1 x(x > 0) 的最小值为 2.⑵当该矩形的长为 时,它的周长最小,最小值为4 .2. (2011 江苏南通,27,12 分)(本小题满分 12 分)已知 A (1,0), B (0,-1),C (-1,2),D (2,-1),E (4,2)五个点,抛物线 y =a (x -1)2+k (a >0),经过其中三个点.(1) 求证:C ,E 两点不可能同时在抛物线 y =a (x -1)2+k (a >0)上; (2) 点 A 在抛物线 y =a (x -1)2+k (a >0)上吗?为什么? (3) 求 a 和 k 的 值.【答案】(1)证明:将 C ,E 两点的坐标代入 y =a (x -1)2+k (a >0)得,⎧4a + k = 2⎨9a + k = 2 ,解得 a =0,这与条件 a >0 不符, ∴C ,E 两点不可能同时在抛物线 y =a (x -1)2+k (a >0)上.1 x⎨(2)【法一】∵A 、C 、D 三点共线(如下图),∴A 、C 、D 三点也不可能同时在抛物线 y =a (x -1)2+k (a >0)上. ∴同时在抛物线上的三点有如下六种可能: ①A 、B 、C ; ②A 、B 、E ; ③A 、B 、D ; ④A 、D 、E ; ⑤B 、C 、D ;⑥B 、D 、E .将①、②、③、④四种情况(都含 A 点)的三点坐标分别代入 y =a (x -1)2+k (a >0),解得:①无解;②无解;③a =-1,与条件不符,舍去;④无解.所以 A 点不可能在抛物线 y =a (x -1)2+k (a >0)上.【法二】∵抛物线 y =a (x -1)2+k (a >0)的顶点为(1,k )假设抛物线过 A (1,0),则点 A 必为抛物线 y =a (x -1)2+k (a >0)的顶点,由于抛物线的开口向上且必过五点 A 、B 、C 、D 、E 中的三点,所以必过 x 轴上方的另外两点 C 、E ,这与(1)矛盾,所以 A 点不可能在抛物线 y =a (x -1)2+k (a >0) 上.(3)Ⅰ.当抛物线经过(2)中⑤B 、C 、D 三点时,则⎧⎨a + k = -1 ,解得⎨⎧a = 1 4a + k = 2 k = -2 ⎩ ⎩⎧a = 3Ⅱ. 当抛物线经过(2)中⑥B 、D 、E 三点时,同法可求: 811 ⎪k = - ⎩ 8 .a = 3 ∴ ⎧⎨a = 1 k = -2 或⎨ 8 11 ⎩ ⎪k = -⎩8 .3. (2011 四川凉山州,28,12 分)如图,抛物线与 x 轴交于 A ( x 1 ,0)、 B ( x 2 ,0) 两点,且 x < x ,与 y 轴交于点C (0, -4),其中 x ,x 是方程 x 2 - 4x -12 = 0 的两个根。
1212(1) 求抛物线的解析式;(2) 点 M 是线段 AB 上的一个动点,过点 M 作 MN ∥ BC ,交 AC 于点 N ,连接CM ,当△CMN 的面积最大时,求点 M 的坐标;⎧(3) 点 D(4, k )在(1)中抛物线上,点 E 为抛物线上一动点,在 x 轴上是否存在点 F ,使以 A 、、、E F 为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F 的坐标,若不存在,请说明理由。
【答案】(1)∵ x 2 - 4x -12 = 0 ,∴ x = -2 , x = 6 。
12∴ A (-2, 0) , B (6, 0) 。
又∵抛物线过点 A 、 B 、C ,故设抛物线的解析式为 y = a (x + 2)(x - 6) ,将点1C 的坐标代入,求得 a = 。
3∴抛物线的解析式为 y = 1 x 2 - 4x - 4 。
33(2)设点 M 的坐标为( m ,0),过点 N 作 NH ⊥ x 轴于点 H (如图(1))。
∵点 A 的坐标为( -2 ,0),点 B 的坐标为(6,0), ∴ AB = 8 , AM = m + 2 。
∵ MN B C ,∴△∥N △ABC 。
∴ NH = AM ,∴NH = m + 2,∴ NH = m + 2 。
CO AB 4 8 2∴ S △△M △N = S ACM- S = 1 AM C O - 1 AM NH AMN 2 2= 1 (m + 2)(4 - m + 2) = - 1 m 2 + m + 3 2 2 4 = - 1(m - 2)2 + 4 。
4∴当 m = 2 时, S △CMN 有最大值 4。
此时,点 M 的坐标为(2,0)。
7 A N B xC 图M H O yABxE D图F 2OF 1yAOBxE D图F 4F 3E 'E 'y(3)∵点 D (4, k )在抛物线 y = 1 x 2 - 4x - 4 上,3 3∴当 x = 4 时, k = -4 ,∴点 D 的坐标是(4, -4 )。
① 如图(2),当 AF 为平行四边形的边时, AFDE ,∵ D (4, -4 ),∴错误!链接无效。
DE = 4 。
∴ F 1(-6, 0) , F 2 (2, 0) 。
② 如图(3),当 AF 为平行四边形的对角线时,设 F (n , 0) , n - 2 则平行四边形的对称中心为(,0)。
2∴ E ' 的坐标为( n - 6 ,4)。
把 E ' ( n - 6 ,4)代入 y = 1 x 2 - 4x - 4 ,得 n 2 -16n + 36 = 0 。
33解得 n = 8 ± 2 。
F 3 (8 - 2 7, 0) , F 4 (8 + 2 7, 0) 。
4. (2011 江苏苏州,28,9 分)(本题满分9 分)如图①,小慧同学吧一个正三角形纸片(即△OAB)放在直线l1上,OA 边与直线l1重合,然后将三角形纸片绕着顶点A 按顺时针方向旋转120°,此时点O 运动到了点O1处,点B 运动到了点B1处;小慧又将三角形纸片AO1B1绕B1点按顺时针方向旋转120°,点A 运动到了点A1处,点O1运动到了点O2处(即顶点O 经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O 运动所形成的图形是两段圆弧,即弧OO1和弧O1O2,顶点O 所经过的路程是这两段圆弧的长度之和,并且这两端圆弧与直线l1 围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1 的正方形纸片OABC 放在直线l2上,OA 边与直线l2重合,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O1处(即点B 处),点C 运动到了点C1处,点B 运动到了点B1处;小慧又将正方形纸片AO1C1B1绕B1点按顺时针方向旋转90°,……,按上述方法经过若干次旋转后,她提出了如下问题:问题①:若正方形纸片OABC 按上述方法经过3 次旋转,求顶点O 经过的路程,并求顶点O 在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形OABC 按上述方法经过5 次旋转,求顶点O 经过的路程;问题②:正方形纸片OABC 按上述方法经过多少次旋转,顶点O 经过的路程是41 + 20 2π?2请你解答上述两个问题.【答案】解问题①:如图,正方形纸片OABC 经过3 次旋转,顶点O 运动所形成的图形是三段弧,即弧OO1、弧O1O2以及弧O2O3,∴顶点O 运动过程中经过的路程为90⋅⋅1⨯2+90⋅⋅ 2 = (1 + 2 ).180 180 2当我被上帝造出来时,上帝问我想在人间当一个怎样的人,我不假思索的说,我要做一个伟大的世人皆知的人。
于是,我降临在了人间。
我出生在一个官僚知识分子之家,父亲在朝中做官,精读诗书,母亲知书答礼,温柔体贴,父母给我去了一个好听的名字:李清照。
顶点 O 在此运动过程中所形成的图形与直线 l 2 围成图形的面积为90 ⋅⋅12⨯ 2 + 90 ⋅⋅ ( 2)2 360 360 + 2 ⨯ 1 ⨯1⨯1 =1+π.2正方形 OABC 经过 5 次旋转,顶点 O 经过的路程为90⋅⋅1⨯3 + 90⋅⋅ 2 = ( 3 + 2 ).180 180 2 2 问题②:∵方形 OABC 经过 4 次旋转,顶点 O 经过的路程为90⋅⋅1⨯ 2 + 90⋅⋅ 2 = (1 + 2 )180 180 241 + 20 2 ∴2π=20× (1+2 ) π+ 1 π. 22∴正方形纸片 OABC 经过了 81 次旋转.小时侯,受父母影响的我饱读诗书,聪明伶俐,在朝中享有“神童”的称号。
小时候的我天真活泼,才思敏捷,小河畔,花丛边撒满了我的诗我的笑,无可置疑,小时侯的我快乐无虑。
“兴尽晚回舟,误入藕花深处。
争渡,争渡,惊起一滩鸥鹭。
”青春的我如同一只小鸟,自由自在,没有约束,少女纯净的心灵常在朝阳小,流水也被自然洗礼,纤细的手指拈一束花,轻抛入水,随波荡漾,发髻上沾着晶莹的露水,双脚任水流轻抚。
身影轻飘而过,留下一阵清风。
可是晚年的我却生活在一片黑暗之中,家庭的衰败,社会的改变,消磨着我那柔弱的心。