三.2+多普勒雷达径向速度场的识别
- 格式:ppt
- 大小:43.07 MB
- 文档页数:119
多普勒天气雷达回波辨别和剖析之降水回波1.层状云降水雷达回波特色——片状回波层状云是水平尺度远远大于垂直尺度云团,由这种云团所产生的降水称之为稳固性层状云降水。
降水区拥有水平范围较大、连续时间较长、强度比较均匀和连续时间较长等特色。
⑴回波强度特色:①在 PPI 上,层状云降水回波表现出范围比较大、呈片状、边沿零落不规则、强度不大但散布均匀、无显然的强中心等特色。
回波强度一般在 20-30dBz,最强的为45dBz。
②在 RHI 上,层状云降水回波顶部比较平坦,没有显然的对流单体崛起,底部及地,强度散布比较均匀,所以色彩差别比较小。
一个显然的特色是常常能够看到在其内部有一条与地面大概平行的相对强的回波带。
进一步的观察还发现这条亮带位于大气温度层结0 度层以下几百米处。
因为使用早起的模拟天气雷达探测时,回波较强则显示越亮,所以称之为零度层亮带。
回波高度一般在 8 公里以下,自然会跟着纬度,季节的不一样有所变化。
⑵回波径向速度特色:因为层状云降水范围较大,强度与气流相对照较均匀,所以相应其径向速度散布范围也较大,径向速度等值线散布比较稀少,切向梯度不大。
在零径向速度型双侧常散布着范围不大的正、负径向速度中心,此外还常存在着流场辐合或辐散区。
⑶零度层亮带:如前所述,在 PPI 仰角较高或许 RHI 扫面时,总能在零度层以下几百米处看到一圈亮环或许亮带回波,亮带内的回波比上下两个层面都强。
因为亮带回波老是陪伴层状云降水出现,所以是层状云降水的一个重要特色。
(零度层亮带形成的原由:冰晶、雪花着落的过程中,经过零度层时,表示开始消融,一方面介电常数增大,另一方面出现碰并聚合作用,使粒子尺寸增大,散射能力加强,所以回波强度增大。
当冰晶雪花完整消融后,快速变为球形雨滴,受雨滴破裂和下降速度的影响,回波强度减小。
这样就存在一个强回波带,说明层状云降水中存在显然的冰水变换区,也表示层状云降水中气流稳固,无显然的对流活动。
mtd多普勒维fft的点数径向速度解释说明1. 引言1.1 概述本文主要研究关于MTD(多普勒维)FFT(快速傅里叶变换)的点数以及径向速度的解释说明。
MTD在雷达系统中广泛应用,可以实时检测目标物体的动态信息。
而FFT作为一种常用的信号处理方法,被广泛应用于雷达信号处理中。
1.2 文章结构本文共分为四个部分进行讨论。
首先是引言部分,概述了文章的背景和研究内容。
其次是第2部分,探讨了MTD多普勒维FFT的点数选择问题,包括相关概念、选择因素以及选择方法和准则。
第3部分则着重介绍了径向速度的概念、测量方法和原理以及相关技术应用场景。
最后,在第4部分中对研究内容和结果进行总结,并指出当前研究不足之处,并展望未来的发展方向。
1.3 目的本文旨在通过对MTD多普勒维FFT点数选择和径向速度解释说明的深入研究,提供对于雷达信号处理相关领域从业人员更加全面详尽的知识体系。
通过阐明点数选择的理论依据和方法,以及径向速度的测量原理和应用场景,有助于读者深入了解相关技术背后的原理,并为实际项目中的应用提供参考和指导。
2. MTD多普勒维FFT的点数2.1 MTD多普勒维FFT的概念MTD(Moving Target Detection)多普勒维FFT(Fast Fourier Transform)是一种信号处理技术,用于探测和分析移动目标在雷达回波中引起的频率变化。
通过将雷达接收到的信号进行FFT计算,可以得到不同速度下目标回波的频谱信息,进而实现对移动目标的检测和定位。
2.2 FFT的点数选择因素在进行MTD多普勒维FFT分析时,选择适当的FFT点数非常重要。
FFT点数决定了频率分辨率以及所能覆盖的最高和最低频率范围。
点数越大,频率分辨率越高,但计算复杂度也会增加。
选择FFT点数需要考虑以下因素:- 目标速度范围:目标速度范围较大时,需要选择更高的FFT点数来保证对所有速度区间进行准确检测。
- 必要平滑度:如果需要更平滑且精确的速度谱估计结果,则需要使用较大的FFT点数。
多普勒雷达测速原理多普勒雷达是一种利用多普勒效应测量速度的无线电信号探测设备。
这种设备最早用于军事领域,用于测量飞机或导弹的速度和方向,现在也广泛应用于民用领域,如测量车辆、船只等的速度。
多普勒效应是一种物理现象,当射向运动物体的信号被反弹回来时,由于物体的运动会导致信号的频率发生变化。
具体来说,当物体向前运动时,信号的频率会变高,反之亦然。
这种变化的现象称为多普勒效应。
多普勒雷达使用这种效应来测量物体的速度。
多普勒雷达的工作原理是,向运动的物体发射一束电磁波,这个电磁波会反弹回来并被接收器接收。
接收器会检测到反弹回来的电磁波的频率,然后根据多普勒效应计算出物体的速度。
多普勒雷达的精度受到一些因素的影响,其中最明显的就是多普勒频移的大小。
这个频移的大小取决于物体的速度、雷达和物体之间的距离、以及电磁波的频率。
如果距离太远或者电磁波的频率太高,可能会导致多普勒频移过小,从而影响速度的测量精度。
另一个影响多普勒雷达精度的因素是多径效应。
当电磁波碰到物体后,它可能会反弹多次,导致接收器接收到多个信号。
这些信号可能会产生干扰,从而影响速度的测量精度。
为了解决这些问题,多普勒雷达通常会采用一些技术来提高测量精度。
可以使用更高精度的频率合成器来发射电磁波,或者使用数字信号处理技术来滤除多径效应。
除了测量速度,多普勒雷达还可以用于其他的应用,如测量距离、探测气象现象、探测海洋生物等。
测量距离是多普勒雷达最常见的应用之一。
它通过测量电磁波从雷达发射器到物体再返回到接收器的时间来计算距离。
多普勒雷达还可以用于探测气象现象,如暴风雨、雷暴等。
在这种情况下,雷达会发射电磁波,然后接收反弹回来的信号。
气象现象会导致反射信号的强度、频率和相位发生变化,从而使雷达可以识别出不同的气象现象。
多普勒雷达还可以用于探测海洋生物,如鱼类和海豚等。
在这种应用中,雷达会发射电磁波,然后监听反弹回来的信号。
当电磁波碰到鱼类或海豚等生物时,会反弹回来,产生一个信号。
民航气象雷达执照考试题解答1多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么?答:主要由雷达数据采集子系统(RDA ),雷达产品生成子系统(RPG ),主用户终端子系统(PUP )三部分构成。
RDA 的主要功能是:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据。
RPG 的主要功能是:由宽带通讯线路从RDA 接收数字化的基本数据,对其进行处理和生成各种产品,并将产品通过窄带通讯线路传给用户,是控制整个雷达系统的指令中心。
PUP 的主要功能是:获取、存储和显示产品,预报员主要通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上。
2多普勒天气雷达的应用领域主要有哪些?答:一、对龙卷、冰雹、雷雨大风、暴洪等多种强对流天气进行监测和预警;二、利用单部或多部雷达实现对某个区域或者全国的降水监测;三、进行较大范围的降水定量估测;四、获取降水和降水云体的风场信息,得到垂直风廓线;五、改善高分辨率数值预报模式的初值场。
3我国新一代天气雷达主要采用的体扫模式有哪些?答:主要有以下三个体扫模式:VCP11——规定5分钟内对14个具体仰角的扫描,主要对强对流天气进行监测;VCP21——规定6分钟内对9个具体仰角的扫描,主要对降水天气进行监测;VCP31——规定10分钟内对5个具体仰角的扫描(使用长脉冲),主要对无降水的天气进行监测。
4天气雷达有哪些固有的局限性?答:一、波束中心的高度随距离的增加而增加;二、波束宽度随距离的增加而展宽;三、静锥区的存在。
5给出雷达气象方程的表达式,并解释其中各项的意义。
答: P t 为雷达发射功率(峰值功率); G 为天线增益;h、:天线在水平方向和垂直方向的波束宽度;r 为降水目标到雷达的距离;:波长;m :复折射指数;Z 雷达反射率因子。
6给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。
答:∑=单位体积6i D z ,反射率因子指在单位体积内所有粒子的直径的六次方的总和,与波长无关。