二次根式的性质与运算
- 格式:doc
- 大小:418.00 KB
- 文档页数:6
二次根式乘除法则1. 二次根式的定义与性质二次根式是指形如√a的数,其中a是一个非负实数。
二次根式可以表示为分数形式,即a的平方根除以b的平方根,其中a和b是正实数。
下面是一些二次根式的性质: - 乘法性质:√a * √b = √(a * b) - 除法性质:√a / √b = √(a / b),其中b不等于0 - 同底数相加减:√a ± √b = √(a± b)2. 二次根式的乘法法则a) 同底数相乘当两个二次根式具有相同的底数时,可以将它们相乘,并将底数保持不变。
例如:√2 * √3 = √(2 * 3) = √6b) 不同底数相乘当两个二次根式具有不同的底数时,可以将它们相乘,并合并为一个二次根式。
例如:√2 * √6 = √(2 * 6) = √12 = 2√33. 二次根式的除法法则a) 同底数相除当两个二次根式具有相同的底数时,可以将它们相除,并将底数保持不变。
例如:√6 / √2 = √(6 / 2) = √3b) 不同底数相除当两个二次根式具有不同的底数时,可以将它们相除,并合并为一个二次根式。
例如:√12 / √2 = √(12 /2) = √64. 二次根式乘除法的综合运用a) 乘法与除法的结合运算在一个表达式中同时使用乘法和除法时,我们可以先进行乘法运算,再进行除法运算。
例如:(√3 * √5) / (√2 * √4) = (√15) / (√8)b) 化简复杂的二次根式当一个二次根式较为复杂时,我们可以通过化简来简化计算。
例如:√(18/9) = (√18) / (√9) = (√2 * √9) / (√3 * √3) = (3√2) / 3 = √25. 实际问题中的应用二次根式乘除法经常在解决实际问题中被使用。
下面是一些实际问题的例子:a) 计算面积和体积当计算图形的面积或体积时,我们经常会遇到涉及二次根式乘除法的问题。
例如,计算一个圆的面积可以使用公式A = πr²,其中r是圆的半径。
二次根式的运算二次根式是数学中常见的概念,它在代数学、几何学和物理学等领域都得到广泛应用。
本文将为您详细介绍二次根式的运算过程和相关概念。
一、定义与性质二次根式,顾名思义,就是一个数的根号形式,其中根号下是一个有理数。
一般形式为√a,其中a表示一个非负实数。
在二次根式中,根号下的数被称为被开方数。
二次根式的性质如下:1. 二次根式的运算结果是一个实数,要么是有理数,要么是无理数。
2. 二次根式的和差运算只有当根号下的被开方数相同时,才能进行。
3. 二次根式的乘法运算可以进行,即√a × √b= √(a × b)。
4. 二次根式的除法运算可以进行,即√a ÷ √b = √(a ÷ b),其中b不等于零。
二、二次根式的运算法则1. 化简当二次根式出现在分母中时,为了方便计算,我们通常会进行化简。
具体来说,如果根号下的被开方数可以被因式分解,我们就将其进行简化。
例如,对于√12,可以进行因式分解得到√(4 × 3),进而简化成2√3。
2. 相加相减当根号下的被开方数相同时,我们可以进行二次根式的相加与相减。
例如,√5 + √5 = 2√5,√7 - √7 = 0。
3. 乘法二次根式的乘法运算非常简单,只需要将根号下的被开方数相乘即可。
例如,√2 × √3 = √(2 × 3) = √6。
4. 除法二次根式的除法运算也很简单,只需要将根号下的被开方数相除即可。
例如,√8 ÷ √2 = √(8 ÷ 2) = √4 = 2。
三、例题解析为了更好地理解二次根式的运算过程,我们举几个例题进行解析。
例题1:化简下列二次根式。
(1) √72(2) √50 ÷ √2解析:(1) √72 = √(4 × 18) = √4 × √18 = 2√18。
由于18不能再进一步分解,所以2√18为最简形式的答案。
二次根式知识点总结二次根式是高中数学中重要的知识点之一,它在解决一元二次方程、求解勾股定理以及图形的面积计算等问题中起到了重要的作用。
本文将对二次根式的定义、性质以及相关的数学运算进行总结,并探讨其在实际问题中的应用。
一、二次根式的定义二次根式是指形如√a的代数式,其中a为非负实数。
它可以表示为一个单独的根号表达式,也可以是两个或多个二次根式之间的运算。
二、二次根式的性质1. 二次根式与有理数的关系:二次根式可以是有理数或无理数。
当根号内的数可以化简为有理数时,二次根式即为有理数;否则,二次根式为无理数。
2. 二次根式的相等性:两个二次根式相等的条件是它们的被开方数相等。
3. 二次根式的大小比较:对于非负实数a和b,若a > b,则有√a >√b。
4. 二次根式的运算性质:对于非负实数a和b,有以下运算性质:- 加法:√a + √b = √(a + b)- 减法:√a - √b = √(a - b),其中a ≥ b- 乘法:√a * √b = √(a * b)- 除法:√a / √b = √(a / b),其中b ≠ 0三、二次根式的化简当二次根式存在可以化简的情况时,可以通过以下方法进行化简:1. 提取因子法:将根号内的数分解为两个数的乘积,其中一个数是完全平方数,并提取出完全平方数的根号作为整体。
2. 有理化分母法:对于含有二次根式的分数,可以通过有理化分母的方法化简,即将分母有理化为一个有理数或二次根式。
四、二次根式的应用1. 解一元二次方程:一元二次方程的形如ax^2 + bx + c = 0,其中a ≠ 0。
通过二次根式的求解方法,可以求得方程的解,并通过图像分析得到方程的根的性质。
2. 求解勾股定理:在平面几何中,勾股定理是指在直角三角形中,直角边的平方等于两个其他边的平方之和。
通过二次根式的运算,可以准确计算出直角三角形的边长。
3. 计算图形的面积:在几何问题中,经常需要计算图形的面积,而某些图形的面积计算涉及到二次根式。
二次根式的性质二次根式是数学中的一个重要概念,也是代数学中的一个常见表达式。
它们具有一些特殊的性质,我们来详细探讨一下。
一、定义二次根式是指形如√a的表达式,其中a是一个非负实数。
这里√称为根号,a称为被开方数。
当然,a可以是一个整数、小数或者分数。
二、性质1. 非负性:二次根式的被开方数a必须是非负实数,即a≥0。
因为√a是要求开方的数是非负的,否则就没有实数解。
2. 唯一性:对于给定的非负实数a,它的二次根式√a是唯一确定的。
这是因为非负实数平方的结果只有一个非负实数。
例如,√9=3,√25=5,√36=6,等等。
3. 运算性质:(1)加法与减法:二次根式可以进行加法和减法运算。
当两个二次根式的被开方数相同时,它们可以相加或相减。
例如,√a + √a = 2√a,√25 - √16 = √9 = 3。
(2)乘法:二次根式可以进行乘法运算。
两个二次根式相乘时,被开方数相乘,根号下的系数可以相乘。
例如,√a × √b = √(ab),2√3 × 3√5 = 6√15。
(3)除法:二次根式可以进行除法运算。
两个二次根式相除时,被开方数相除,根号下的系数也可以相除。
例如,√a ÷ √b = √(a/b),6√15 ÷ 3√5 = 2√3。
4. 化简与整理:(1)化简:有时候二次根式可以化简为更简单的形式。
例如,√4 = 2,√9 = 3,等等。
化简的关键是找到被开方数的平方因子,然后将依次提取出来。
(2)整理:有时候需要将二次根式按照一定的规则整理,使得表达式更具可读性。
例如,将√3 × 2√5整理为2√15,将5√a + 3√a整理为8√a,等等。
3. 近似值:对于无理数的二次根式,我们可以用近似值来表示。
这里的近似值可以使用小数形式或者分数形式。
四、应用二次根式是数学中广泛应用的一个概念,它在几何、代数、物理等领域都有重要作用。
1. 几何:二次根式在几何中常常用来表示线段的长度。
二次根式总结一、引言二次根式是数学中一个重要的概念,涉及到对平方根的运算和性质。
掌握好二次根式的基本知识对于理解和解决数学问题至关重要。
本文将对二次根式进行总结,从定义、性质到应用方面进行探讨。
二、定义与基本性质二次根式可以表示为√a(其中a≥0),这里√a称为二次根,a称为被开方数。
在二次根式中,一些基本性质需要予以关注。
首先,二次根式满足乘法分配律。
对于任意的非负实数a和b,有√(ab)=√a × √b。
这个性质与平方根的性质一致,可以利用它对二次根式进行简化。
其次,二次根式可以进行合并化简。
如果a和b都是非负实数,则√a + √b可以合并成一个根式。
例如,√2 + √3 = √(2+3) = √5。
这一点在化简二次根式的过程中常常应用到。
另外,二次根式的乘法也有一定的规律。
对于任意非负实数a 和b,有(√a × √b) = √(ab)。
同样地,在乘法的过程中可以利用这一性质对二次根式进行化简。
三、进一步探讨与应用1. 二次根式的化简化简二次根式是使用二次根式的基本性质,将复杂的根式表示简化为更简洁的形式。
例如,√8可以化简为2√2,√5 × √3可以化简为√15。
化简二次根式有助于简化运算和解决数学问题。
在化简二次根式时,可以利用约束性质,并通过提取公因数的方式进行。
例如,对于√8,可以提取公因数2,即√(2 × 4) = 2√2。
2. 二次根式的加减运算二次根式的加减运算可以通过化简和合并根式进行。
对于√a + √b,如果a和b无法合并,则不能再继续进行简化。
例如,对于√2 + √3,不能再进行进一步的运算。
但是可以计算其近似值,如√2 ≈ 1.414,√3 ≈ 1.732,因此√2 + √3 ≈ 1.414 + 1.732 ≈ 3.146。
3. 二次根式的乘除运算二次根式的乘除运算可以利用乘法分配律和二次根式的乘法规律进行。
利用这两个性质,可以轻松地计算复杂的二次根式。
二次根式的认识在数学中,二次根式是指形如√a的数,其中a是一个非负实数。
二次根式是数学中的一个重要概念,它在解方程、计算和几何等领域中具有广泛的应用。
本文将深入探讨二次根式的定义、性质和应用,帮助读者更好地认识和理解二次根式。
一、二次根式的定义二次根式的定义相对简单,就是非负实数的平方根。
其表示形式为√a,其中a ≥ 0,并且√表示根号符号。
例如,√4 = 2,因为2的平方等于4。
同样地,√9 = 3,因为3的平方等于9。
在这些例子中,4和9都是非负实数。
二、二次根式的性质二次根式具有以下几个重要的性质:1. 二次根式的运算规则:二次根式具有与平方根相似的运算规则。
例如,√a * √b = √(ab),√a / √b = √(a/b)。
这些运算规则在化简和计算二次根式时非常有用。
2. 二次根式的化简:有时,二次根式可以通过化简来简化其表达形式。
例如,√9 = 3,因为9是一个完全平方数。
类似地,√16 = 4,√25 = 5。
通过将二次根式转化为它们的平方形式,可以使计算更加方便。
3. 二次根式的加减运算:对于相同根的二次根式,可以进行加减运算。
例如,√2 + √2 =2√2,√3 - √3 = 0。
注意,根号下的数字必须相同才能进行此类运算。
4. 二次根式的大小比较:对于非负实数a和b,如果a < b,则√a <√b。
这意味着二次根式的大小顺序与根号下的数字的大小顺序相同。
三、二次根式的应用二次根式在数学中有广泛的应用,下面列举几个常见的应用场景:1. 解方程:二次根式可以用于解关于二次根式的方程。
例如,方程√(x+2) = 4的解为x = 18。
2. 几何问题:二次根式可以用于计算几何图形的边长、面积和体积。
例如,在计算正方形的对角线长、圆的半径和球的体积时,常常会涉及到二次根式的计算。
3. 物理学中的运动问题:二次根式可以用于描述自由落体运动、弹射运动等物理过程中的速度、加速度和位移等量。
二次根式的性质与计算在数学的世界里,二次根式是一个重要的概念,它不仅在代数运算中频繁出现,也在解决实际问题中发挥着关键作用。
接下来,让我们一起深入探究二次根式的性质与计算。
二次根式,简单来说,就是形如√a(a≥0)的式子。
其中,“√”称为二次根号,a 称为被开方数。
先来说说二次根式的性质。
性质一:双重非负性。
即二次根式的被开方数a 是非负的(a≥0),同时二次根式的值也是非负的(√a≥0)。
这就好比一个房子,里面住的人数(被开方数)不能是负数,而且从这个房子走出来的人(二次根式的值)也不能是负数。
性质二:(√a)²= a(a≥0)。
这个性质可以理解为,一个数先开平方再平方,就等于它本身。
就像一个人先出门再回家,还是原来那个人。
性质三:√(a²)=|a|。
当a≥0 时,√(a²)= a;当 a<0 时,√(a²)= a。
这就好像一个人的正面和背面,虽然看起来不一样,但都是这个人。
性质四:√ab =√a×√b(a≥0,b≥0)。
这个性质告诉我们,两个非负实数的乘积的算术平方根,等于这两个数的算术平方根的乘积。
比如说,计算√12,我们可以把 12 分解为 4×3,那么√12 =√4×√3 =2√3。
性质五:√a÷√b =√(a÷b)(a≥0,b>0)。
这就像是把一个大蛋糕(a)按照一定比例(b)切开,得到的每一份的大小(√(a÷b)),和先分别计算每一份蛋糕的大小(√a 和√b)再相除是一样的。
了解了这些性质,我们再来看看二次根式的计算。
二次根式的加减法,首先要把二次根式化为最简二次根式。
最简二次根式需要满足两个条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式。
比如√8,就不是最简二次根式,因为 8 可以分解为 4×2,所以√8 =2√2,2√2 就是最简二次根式。
在进行二次根式的加减运算时,只有同类二次根式才能合并。
二次根式的运算和性质二次根式是指具有平方根的数,它是数学中的重要概念,与一次根式不同,二次根式的运算涉及到平方根的加减乘除,以及二次根式的化简和简化等操作。
本文将围绕二次根式的运算和性质展开讨论,帮助读者更好地理解和应用二次根式。
一、二次根式的运算1. 二次根式的加减运算对于同类项,即根号下的数相同的二次根式,可以进行加减运算。
例如:√2 + √2 = 2√2√5 - √2 = √5 - √2 (不可化简)不同类项的二次根式无法进行加减运算,如√2 + √3。
2. 二次根式的乘法二次根式的乘法运算可以通过合并同类项、利用乘法公式等方法进行。
例如:√2 × √3 = √6(√2 + √3) × (√2 - √3) = √2^2 - √2√3 + √2√3 - √3^2 = 2 - 3 = -13. 二次根式的除法二次根式的除法运算可以通过有理化的方法进行。
例如:√2 ÷ √3 = (√2 × √3) ÷ (√3 × √3) = √6 ÷ 3 = √6/3 = √6/3 × √3/√3 =√18/3 = √2/√3二、二次根式的性质1. 二次根式的化简当二次根式中的根号下的数为完全平方数时,可以进行化简。
例如:√4 = 2√9 = 3√16 = 4通过化简可以简化计算过程,使得计算更加方便快捷。
2. 二次根式的大小比较对于两个二次根式的大小比较,可以通过平方的方法进行。
例如:(√2)^2 = 2(√3)^2 = 3(√4)^2 = 4可以通过比较二次根式的平方大小来确定它们的大小关系。
3. 二次根式的应用二次根式在实际应用中有广泛的用途,常见于几何学、物理学等领域的计算中。
例如,在三角形的勾股定理中,就涉及到二次根式的运算。
综上所述,二次根式的运算和性质是数学学习中的重要内容。
掌握二次根式的运算规则,了解二次根式的性质,有助于提高数学计算能力,并能应用于实际问题的解决中。
二次根式的性质与化简二次根式是指含有平方根的表达式,它在数学中有着重要的应用。
本文将探讨二次根式的性质以及化简方法。
一、二次根式的性质1. 二次根式的定义与表示:二次根式是指形如√a的表达式,其中a为非负实数。
二次根式可以用分数指数表示,即a的1/2次方。
2. 二次根式的运算性质:(1)加法与减法:当二次根式的根数相同时,可以进行加法或减法运算。
例如√a + √b = √(a + b),√a - √b = √(a - b)。
(2)乘法与除法:当二次根式的根数相同时,可以进行乘法或除法运算。
例如√a × √b = √(a × b),√a / √b = √(a / b)。
3. 二次根式的化简与分解:对于二次根式而言,有时可以进行化简与分解。
例如√(a^2) = a,√(a/b) = √a / √b。
二、二次根式的化简方法1. 化简含有相同根数的二次根式:当两个二次根式具有相同根数时,可以根据运算规律进行化简。
例如√(a) × √(b) = √(a × b),√(a) / √(b) = √(a / b)。
2. 化简含有不同根数的二次根式:当两个二次根式具有不同根数时,可以通过有理化的方法进行化简。
有理化的目的是将二次根式的分母消去。
具体操作步骤如下:(1)将含有二次根式的分母有理化,即将分母中的二次根式去除。
(2)将有理化后的分母进行分配。
(3)将相同根数的二次根式合并,并进行运算。
3. 示例:化简二次根式√(15) / √(3):(1)将含有二次根式的分母进行有理化,即√(3) × √(3) = 3。
(2)有理化后的分母为3。
(3)利用有理化后的分母,进行分配运算,即(√(15) × √(3)) / 3。
(4)合并二次根式,即√(45) / 3。
(5)化简二次根式,即3√(5) / 3。
(6)最终得到化简后的结果:√(5)。
4. 注意事项:化简二次根式时,需要注意分母不能为零,同时要注意因式分解的方法,以便于简化运算步骤。
二次根式的性质与运算二次根式是指形如√a的数,其中a是非负实数。
在数学中,二次根式是一种常见的数学表达式,它具有一些特定的性质与运算规则。
本文将探讨二次根式的性质与运算,帮助读者更好地理解和运用二次根式。
1. 二次根式的简化与化简二次根式可以通过简化和化简来使得表达更简洁、易读。
简化是指通过寻找因式分解或者找到平方数的形式来减少根号下的数字。
例如,√12可以简化为2√3。
化简是指将数的乘方分解成不包含二次根式的形式。
例如,√16可以化简为4。
2. 二次根式的加减运算在进行二次根式的加减运算时,需要满足被加减数的被开方数相同。
例如,√2 + √3无法进行直接运算,但可以通过换元化简为(√2 + √3)(√2 + √3)。
运用公式(a + b)(a + b) = a² + 2ab + b²,可以得到√2 + √3 = √2 +√3 + (√2)(√3)。
因此,二次根式的加减运算可以转化为求和的形式。
3. 二次根式的乘法运算二次根式的乘法运算可以通过将两个二次根式相乘,并通过关键的化简步骤来简化最终结果。
例如,√2 * √3 = √6。
如果需要计算更复杂的二次根式乘法,可以利用公式√a * √b = √(ab)进行化简。
4. 二次根式的除法运算二次根式的除法运算也是通过适当的化简步骤来求解。
例如,√6 /√2 = √3。
类似于乘法运算,可以利用公式√a / √b = √(a/b)进行化简。
5. 二次根式的幂运算二次根式也可以进行幂运算,即将二次根式的指数设置为非负整数。
例如,(√2)² = 2。
值得注意的是,在进行幂运算时,需要将指数应用于根号内的数字,并对结果进行简化。
6. 二次根式的有理化有理化是将二次根式与分母中的二次根式相消,使得根号仅出现在被开方数中。
例如,将分数1/√3有理化,可以通过乘以√3 / √3进行,得到√3 / 3。
综上所述,二次根式具有许多特定的性质与运算规则。
什么是二次根式
= 常用二次根式运算法则:
(1)ab b a =•(0≥a ,0≥b )
(2)b a b
a =(0≥a ,0>
b ) 相关考点
类型一 二次根式的“双重非负性”
例1(1)要使代数式x
x 1+有意义,x 的取值范围是( ). A .1-≠x B .0≠x C .1->x 且0≠x D .1-≥x 且0≠x
(2)要使代数式34232+---x x x 有意义,那么x 的取值范围是 .
【变式题组】1.二次根式42+-x 有意义,则实数x 的取值范围是( ).
A .2-≥x
B .2->x
C .2<x
D .2≤x
2.若代数式3-x 在实数范围内有意义,则x 的取值范围是( ).
A .3-≥x
B .3>x
C .3≥x
D .3≤x
3.函数x
x y 2-=中自变量x 的取值范围是( ). A .0≠x B .2≥x C .2>x 且0≠x D .2≥x 且0≠x 例2 (1)已知2+-+=
x x y ,求x y 的值. (2)已知2244x x y -+-=
,求y x +得值. (3)若4342-=-+-b a a ,则=-b a 22 .
【变式题组】6.若02=++-y y x ,则x 、y 的值分别为 .
7.已知x 、y 为实数,且49922+---=
x x y ,则=-y x . 9.已知实数a 满足a a a =-+-20152014,那么=-22014a .
二次根式的规律和性质:(a ≥0),
类型二 最简二次根式与同类二次根式
例3 (1)下列二次根式a 45,30,2
12,240b ,54,()2217b a +中,为最简二次根式的是 . (2)在下列二次根式中,与a 是同类二次根式的是( )
A .a 2
B .23a
C .3a
D .4a 【变式题组】10.在下列根式a 54,32a ,6,x 8中,最简二次根式有( )
A .4个
B .3个
C .2个
D .1个
11.下列四组根式中,是同类二次根式的一组是( )
A . 2.5和0.52
B .a a 3和b b 3
C .b a 2和2ab
D .3abc 和ab c 3
类型三 利用二次根式的性质化简
例4 如果式子()212-+-x x 化简的结果为32-x ,则x 的取值范围是( ).
A .1≤x
B .2≥x
C .21≤≤x
D .0>x
【变式题组】12.若代数式
()()2231a a -+-的值是常数2,则a 的取值范围
是 .
类型四 简单的二次根式的化简与求值 例5 (1)计算:()5313532
0-⎪⎭⎫ ⎝⎛-+----π (2)计算:⎪⎪⎭
⎫ ⎝⎛-+483137512 (3)把()a
b b a --1根号外的因式移到根号内结果为( ).
A .b a -
B .a b -
C .a b --
D .b a --
15.计算:
5022
145.0821+--
16.计算:()1
03131312-⎪⎭⎫ ⎝⎛--+--
(1)化简:
x x x x 1246932-+,并将自己喜欢的x 的值代入化简结果进行计算.
(2)代数式a
a 1-化简为( ). A .a - B .a -- C .a D .a -(3)化简22x x x --•
的结果为( ). A .2--x B .2+x C .2+-
x D .2---x
例6 (1)先化简,再求值:⎪⎪⎭
⎫ ⎝⎛+-÷+-ab b a ab b a b a 21222222,其中32+=a ,32-=b (2)已知正实数a ,b 满足:1=+b a ,且
41111-=+---+--+-a b a b a b a b ,则=b a
【变式题组】18.(1)已知13+=x ,13-=y ,则=-22y x .
(2)先化简,再求值:1221132+--÷⎪⎭
⎫ ⎝⎛---x x x x x ,其中2-=x 19.已知⎪⎭⎫ ⎝⎛-=n n x 20071200721,n 是大于1的自然数,那么()
n x x 21+-的值是( ).
A .20071
B .20071-
C .()200711n -
D .()2007
11n -- 20.设0>m ,m x x =--
+13,则代数式13-++x x 的值是 (用m 表示).
跟踪训练
1.函数1
1--=x x y 自变量x 的取值范围是 . 2.若代数式()2
31-+x x 有意义,则实数x 的取值范围是( ). A .1-≥x B .1-≥x 且3≠x C .1->x D .1->x 且3≠x
3.计算:9182132--+⎪⎭
⎫ ⎝⎛--
4.先化简,再求值:
⎪⎪⎭⎫ ⎝⎛-÷-x y y x 111,其中23+=x ,23-=y
5.若
11=-a a ,则a a +1的值为( )
A .5
B .5±
C .3
D .3±
6.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如()2
21223+=+.善于思考的小明进行了以下探索: 设()222n m b a +=+(其中a 、b 、m 、n 均为整数), 则有22222
2mn n m b a ++=+.
∴222n m a +=,mn b 2=.这样小明就找到了一种把类似2b a + 的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a 、b 、m 、n 均为正整数时,若()2
33n m b a +=+,用含m 、n 的式子分别表示a 、b ,得:=a ,=b .
(2)利用探索的结论,找一组正整数a 、b 、m 、n 填空: + ( + )2; (3)若()2
334n m a +=+,且a 、m 、n 均为正整数,求a 得值.
补充训练 一、填空题:
1.要使根式有意义,则字母x 的取值范围是______.
2.当x ______时,式子有意义.
3.要使根式有意义,则字母x 的取值范围是______.
4.若有意义,则a 能取得的最小整数值是______.
5.若有意义,则______.
6.使等式成立的x 的值为______.
7.一只蚂蚁沿图1中所示的折线由A 点爬到了C 点,则蚂蚁一共爬行了
______cm .(图中小方格边长代表1cm)
图1
二、选择题:
8.使式子有意义的实数x 的取值范围是( )
(A)x ≥0 (B) (C) (D)
9.使式子有意义的实数x 的取值范围是( )
(A)x ≥1 (B)x >1且x ≠-2 (C)x ≠-2 (D)x ≥1且x ≠-2
10.x 为实数,下列式子一定有意义的是( )
(A)(B) (C) (D)
11.有一个长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )
(A) (B) (C) (D)
12.如图2,点E、F、G、H、I、J、K、N分别是正方形各边的三等分点,要使中间阴影部分的面积是5,那么大正方形的边长应是( )
图2
(A) (B) (C) (D)
17.(1)已知,求的值;
(2)已知,求y x的值.。