武汉大学考研高等数学试卷及答案!答案!
- 格式:doc
- 大小:42.10 MB
- 文档页数:12
一、选择题:1~10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.已知函数f (x ,y )=ln (y +|xsiny|),则()。
A .f f不存在,存在y 0,1 x 0,1f f存在,不存在y 0,1 x 0,1f f,均存在 x 0,1 y 0,1f f,均不存在 x 0,1 y 0,1B .C .D .1,x 0 22.函数f x 1 x的原函数为()。
x 1 cos x ,x 0 ln 1 x 2x ,x 0A .F xx 1 cos x sin x ,x 0 ln 1 x 2x 1,x 0B .F xx 1 cos x sin x ,x 0 ln 1 x 2x ,x 0C .F xx 1 sin x cos x ,x 0 ln 1 x 2x 1,x 0D .F xx 1 sin x cos x ,x 03.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则()。
A .a <0,b >0B .a >0,b >0C .a =0,b >0D .a =0,b <02023年考研《数学三》真题及答案【解析版】4.已知a n <b n (n =1,2,...),若级数 an 1n与bn 1n均收敛,则“级数an 1n绝对收敛”是“bn 1n绝对收敛”的()。
A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件*5.设A ,B 为n 阶可逆矩阵,E 为n 阶单位矩阵,M *为矩阵M 的伴随矩阵,则A E0B =(A .A B *B *A *0B A * B .B A * A *B *0A B * C .B A * B *A *0A B * D .A B * A *B *B A *。
)6.二次型f (x 1,x 2,x 3)=(x 1+x 2)2+(x 1+x 3)2-4(x 2-x 3)2的规范形为()。
1+ x 2 1+ e 2 x ⎰⎰《高等数学 B1》考试试卷(A 卷)一、 计算题:(每题 7 分,共 56 分)1. 求由方程ln xy = e x + y 所确定的隐函数 y = y (x ) 的导数dy .dx2. 求lim 2 - 1+ cos x .3. 求 limxsin t 3dt0 .x →0-1x →0+x cos t 2dtlim 1 ⎡⎛ x + 2 ⎫ + ⎛ x + 4 ⎫ + + ⎛ x + 2n ⎫⎤ 4. 求n →∞ n ⎢ n ⎪ n⎪ n ⎪⎥ . ⎣⎝⎭ ⎝⎭⎝⎭⎦5. 求不定积分⎰ 1dx .π6. 求定积分 2 x (1- sin x )dx .7. 求方程 y '+2xy = xe - x 2的通解.8. 设 f '(x ) = e - x2,lim x →+∞f (x ) = 0, 求 +∞x 2f (x )dx . 0 二、(7 分) 证明当0 < x < π 时, sin x > 2x .2 π三、(10 分) 设抛物线 y = ax 2 + bx + c 过原点,当0 ≤ x ≤ 1时,y ≥ 0. 又已知 该抛物线与x 轴及直线 x = 1所围成的图形的面积为1,试确定a ,b , c , 使3 此图形绕x 轴旋转一周而成的旋转体的体积V 最小。
四、(7 分) 试判断函数 f (x ) = lim x2n -1 -1 2n的间断点及其类型。
n →∞x +1五、(10 分) 设函数 f (x ), g (x ) 满足 f '(x ) = g (x ), g '(x ) = 2e x - f (x ), 且f (0) = 0,g (0) = 2, 求 f (x ), g (x ) 的表达式。
六、(10 分)设函数 f (x ) 在[0, 3] 上连续,在(0, 3) 内可导,且f (0) + f (1) + f (2) = 3, f (3) = 1 ,试证:必存在ξ ∈(0,3), 使 f '(ξ ) = 0.⎰ ⎰1+ e 2 x +11+ e 2 x -⎨《高等数学 B1》标准答案(A 卷)一、1、y (xe x + y -1);2、 1;3 、 0; 4、 + ;5、 1x (1- ye x + y)+ 2 2 ;6、π 2 - ;7、x = 1 2 +1- x 2;ln C 2 1 y ( 8 2 x C )e8、⎰+∞ x 2f (x )dx = 1x 3 f (x ) +∞ - 1 ⎰+∞ x 3 f '(x )dx3 0 3 0= 1limf (x ) + 1 (x 2e - x 2 + e - x 2 -1) +∞ = - 1 + 1 lim f '(x ) = - 1 3 x →+∞ x -3 60 6 3 x →+∞ -3x -4 6 二、证明:设 f (x ) = sin x ,则 f '(x ) = x cos x -sin x = cos x(x - tan x ) < 0 ,x所以在(0, π) 内 f (x ) 单调递减,故 f (x ) > 2三、a = - 5 ,b = 3, c = 04 2⎧⎪-1, | x |< 1, x = -1, x 2 π f ( ) 2 x 2 = 2 . 即证得结论。
一、武汉大学873线性代数考研真题汇编1.武汉大学873线性代数1998、2000、2002-2023、2023年考研真题,其中2023-2023、2023年有答案。
说明:分析历年考研真题可以把握出题脉络,了解考题难度、风格,侧重点等,为考研复习指明方向。
二、2023年武汉大学873线性代数考研资料2.北京大学《高等代数》考研相关资料(1)北京大学《高等代数》[笔记+课件+提纲]①2023年武汉大学873线性代数之北京大学《高等代数》考研复习笔记。
说明:本书重点复习笔记,条理清晰,重难点突出,提高复习效率,基础强化阶段必备资料。
②2023年武汉大学873线性代数之北京大学《高等代数》本科生课件。
说明:参考书配套授课PPT课件,条理清晰,内容详尽,非本校课件,版权归属制作教师,本项免费赠送。
③2023年武汉大学873线性代数之北京大学《高等代数》复习提纲。
说明:该科目复习重难点提纲,提炼出重难点,有的放矢,提高复习针对性。
(2)北京大学《高等代数》考研核心题库(含答案)①2023年武汉大学873线性代数考研核心题库之北京大学《高等代数》解答题精编。
说明:本题库涵盖了该考研科目常考题型及重点题型,根据历年考研大纲要求,结合考研真题进行的分类汇编并给出了详细答案,针对性强,是考研复习首选资料。
(3)北京大学《高等代数》考研题库[仿真+强化+冲刺]①2023年武汉大学873线性代数之高等代数考研专业课五套仿真模拟题。
说明:严格按照本科目最新专业课真题题型和难度出题,共五套全仿真模拟试题含答案解析。
②2023年武汉大学873线性代数之高等代数考研强化五套模拟题及详细答案解析。
说明:专业课强化检测使用。
共五套强化模拟题,均含有详细答案解析,考研强化复习必备。
③2023年武汉大学873线性代数之高等代数考研冲刺五套模拟题及详细答案解析。
说明:专业课冲刺检测使用。
共五套冲刺预测试题,均有详细答案解析,最后冲刺必备资料。
武汉大学2020-2021第一学期高等数学B1期末试卷 A 卷1、(9分) 求极限: 011lim e 1x x x →⎛⎫− ⎪−⎝⎭. 2、(9分)已知曲线满足方程2e 0xy x y ++=,求曲线在点(0,1)−处的法线方程. 3、(10分)求由曲线e ,ln ,1,2x y y x x x ====所围成的图形的面积. 4、(10分)(1)求齐次线性微分方程20y y y ''''''−−=的通解;(2)求该方程满足初始条件(0)0,(0)(0)3y y y '''===的特解.(3)对于非齐次方程221e x y y y x ''''''−−=+,用待定系数法给出特解的形式(无需求出其中的待定系数的数值).5、(9分)求极限lim nn n →∞⎛ ⎪⎝⎭.6、(7分)求不定积分x ⎰.7、(7分)设2()ln(1)f x x =+,计算反常积分20()d ()+2()5f x x f x f x +∞'+⎰.8、(7分) 求极限:2cos 1e d lim (sin )xt x tx x x −→+⎰.9、(7分)等角螺线的极坐标方程为e θρ=,在0θ=附近,其在直角坐标系下可由函数()y y x =表示,试求0d d y x θ=以及220d d yx θ=.10、(7分)计算星形线33cos ,sin x a t y a t⎧=⎪⎨=⎪⎩的弧长,其中0,[0,2]a t π>∈. 11、(7分)计算函数231sin ,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩的导函数;并讨论:是否存在0δ>,使得函数()f x 在区间(,)δδ−内单调递增?说明理由. 12、(6分)求解常微分方程:532e 0x xy y x y '++=.13、(5分)设函数()f x 在区间[],a b 上有连续的二阶导数,证明:至少存在一点(,)a b ξ∈使得3()()d ()()224baa b b a f x x b a f f ξ+−⎛⎫''=−+⎪⎝⎭⎰.武汉大学2019-2020第一学期高等数学B1期末试卷 A 卷 参考解答1、(9分) 求极限011lim e 1xx x →⎛⎫− ⎪−⎝⎭. 解: 200011e 1e 1lim lim lim e 1(e 1)x x x xx x x x x x x x →→→⎛⎫⎛⎫−−−−⎛⎫−== ⎪ ⎪ ⎪−−⎝⎭⎝⎭⎝⎭ 5分0e 11lim 22x x x →⎛⎫−== ⎪⎝⎭ 9分2、(9分)已知曲线满足方程2e 0xy x y ++=,求曲线在点(0,1)−处的法线方程. 解:对方程2e 0xy x y ++=两边关于x 求导得:212e ()0xy y y xy ''+++=,4分 代入0,1x y ==−解得0,11x y y ==−'=.7分 因此,法线的斜率为1−,在点(0,1)−处的法线方程为:1y x =−−.9分3、(10分)求由曲线e ,ln ,1,2x y y x x x ====所围成的图形的面积. 解:显然当[1,2]x ∈时有e ln x x >,因此面积()21e ln d x S x x =−⎰5分22221111e d ln d e ln d x x x x x x x =−=−⎰⎰⎰8分 222211e e ln d ln e e 2ln 21x x x x =−−+=−−+⎰10分4、(10分)(1)求齐次线性微分方程20y y y ''''''−−=的通解;(2)求该方程满足初始条件(0)0,(0)(0)3y y y '''===的特解.(3)对于非齐次方程221e x y y y x ''''''−−=+,用待定系数法给出特解的形式(无需求出其中的待定系数的数值).解:(1) 该微分方程的特征方程为:3220λλλ−−=, 4分它有特征根:00,λ=21,λ=−32,λ=故而该齐次线性微分方程的通解为:2123e e x x y C C C −=++6分 (2)代入初值条件得方程组:12323230,23,43C C C C C C C ++=−+=+=,解得:1230,1,1C C C ==−=,得微分方程的特解为:2e e x x y −=−. 8分 (3)特解的形式为:2123()e x y C x x C C x *=++.10分5、(9分)求极限lim nn →∞⎝⎭.解: lim ln lim 1lim een n nn n n n →∞→∞⎫⎪⎪⎝⎭⎝⎭→∞== ⎪⎝⎭5分12eee n n n===9分6、(7分)求不定积分x ⎰.解:()21d arcsin arcsin x x x =⎰4分 1arcsin C x=−+7分7、(7分)设2()ln(1)f x x =+,计算反常积分2()d ()+2()5f x x f x f x +∞'+⎰. 解: 2200()1d d ()()+2()5(()+1)4f x x f x f x f x f x +∞+∞'=++⎰⎰ 3分 2001()11ln(1)1arctan arctan 2222f x x +∞+∞+++==5分 11arctan 222π⎛⎫=− ⎪⎝⎭7分8、(7分) 求极限:2cos 1e d lim (sin )xt x tx x x −→+⎰.解:22cos cos 112e d e d lim lim(sin )2xxt t x x ttx x x x−−→→=+⎰⎰3分2cos 0e sin lim 4x x xx−→−= 5分11e 4−=− 7分9、(7分)等角螺线的极坐标方程为e θρ=,在0θ=附近,其在直角坐标系下可由函数()y y x =表示,试求0d d y x θ=以及220d d yx θ=.解:可以将方程改写成参数方程e cos e sin x y θθθθ⎧=⎪⎨=⎪⎩,则d d d 0d 0e cos e sin cos sin e co 1s e sin cos d n d si y xyx θθθθθθθθθθθθθθθθθθ=======+−−=+4分()()222(cos sin )(cos sin )cos sin (cos sin )2s d d d 2d d d d d d d co s n 0i d c =2e os e sin d y x x x yx θθθθθθθθθθθθθθθθθθθθθθ====−+++−−=−== 7分10、(7分)计算星形线33cos ,sin x a t y a t⎧=⎪⎨=⎪⎩的弧长,其中0,[0,2]a t π>∈. 解:曲线弧长220s t t ππ==⎰⎰4分220312cos sin d 6a t a t t t a ππ===⎰⎰7分11、(7分)计算函数231sin ,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩的导函数;并讨论:是否存在0δ>,使得函数()f x 在区间(,)δδ−内单调递增?说明理由.解:当0x ≠时,323131()12sincos f x x x x x'=+−,另一方面, 2301sin(0)lim1x x x x f x→+'==,因此32313112sin cos ,0()1,0x x f x x x x x ⎧+−≠⎪'=⎨⎪=⎩ 3分对任意0δ>,取0x =,显然00x δ<<且01x <,代入()f x '可得: 003()10f x x '=−<,由于导函数()f x '在0x 处连续,存在0ε>使得00[,](,)x x εεδδ−+⊂−,且()f x '在区间00[,]x x εε−+内小于0,即有()f x 在区间00[,]x x εε−+单调递减,因此,不存在0δ>,使得函数()f x 在区间(,)δδ−内单调递增.7分12、(6分)求解常微分方程:532e 0x xy y x y '++=.解:显然0y ≡是方程的特解;当0y ≠时方程两边同除以3xy 的方程:3242e 0x y y y x x−−'++=, 令2z y −=,有3d d 2d d z y y x x−=−,原方程就可化为如下线性方程: 3分2442e x z y x x−'=+,用一阶线性微分方程的求解公式得:24(2e )x y z x C −==+ 6分13、(5分)设函数()f x 在区间[],a b 上有连续的二阶导数,证明:至少存在一点(,)a b ξ∈使得3()()d ()()224baa b b a f x x b a f f ξ+−⎛⎫''=−+⎪⎝⎭⎰. 证明:令()()d x aF x f t t =⎰,由于()f x 在区间[],a b 上有连续的二阶导数,因此()F x 在区间[],a b 上有连续的三阶导数,取02a bx +=,由泰勒公式得: 23010000010()()()()()()()(),(,)2!3!F x F F a F x F x a x a x a x a x ξξ''''''=+−+−+−∈ 23020000020()()()()()()()(),(,)2!3!F x F F b F x F x b x b x b x x b ξξ''''''=+−+−+−∈3分利用00()b x a x −=−−,上述两式相减得:31201020()()()()()(),(,),(,)3!2F F b a F b F a F x b a a x x b ξξξξ''''''+−⎛⎫'−=−+∈∈ ⎪⎝⎭即有:312()()()()d ()2242baf f a b b a f x x b a f ξξ''''++−⎛⎫⎛⎫=−+ ⎪ ⎪⎝⎭⎝⎭⎰. 由于()f x ''在区间[],a b 上连续,由介值定理可知至少存在一点(,)a b ξ∈使得12()()()2f f f ξξξ''''+''=. 因此3()()d ()()224baa b b a f x x b a f f ξ+−⎛⎫''=−+⎪⎝⎭⎰. 5分。