曲线运动知识点与考点总结
- 格式:docx
- 大小:435.55 KB
- 文档页数:16
高中物理曲线运动知识点总结一、曲线运动的基本规律1. 曲线运动的概念曲线运动是指物体在一定时间内沿着曲线路径运动的现象。
在这种运动过程中,物体的速度和加速度都是随时间变化的。
因此,曲线运动是一种复杂的运动形式,需要通过物理学知识进行分析和研究。
2. 曲线运动的基本特征曲线运动有许多与之相关的基本特征,例如曲线的凹凸性、切线与速度、速度与加速度的关系等。
通过对这些基本特征的分析,可以更好地理解和解释曲线运动的规律和特点。
3. 曲线运动的描述方法曲线运动的描述主要有两种方法,一种是参数方程法,另一种是运动学方程法。
这两种方法可以通过不同的数学和物理模型对曲线运动进行描述和分析,从而得到更准确的运动规律和轨迹。
二、曲线运动的数学模型1. 参数方程参数方程是一种描述曲线运动的数学方法。
它将物体的运动状态描述为时间t的函数,并通过参数化的形式来描述曲线轨迹。
参数方程可以更直观地展现出曲线运动的规律,对于复杂的曲线路径来说,参数方程更容易进行运动规律的分析。
2. 运动学方程运动学方程是描述曲线运动的另一种数学模型。
它是根据牛顿运动定律和匀变速直线运动的知识推导出来的。
通过运动学方程可以得出物体在曲线轨迹上的速度和加速度的关系,从而对曲线运动进行定量的分析和计算。
三、曲线运动的速度和加速度1. 曲线运动的速度在曲线运动中,物体的速度是随着时间和位置的变化而变化的。
通常情况下,物体的速度可以分解为切向速度和法向速度两个分量。
切向速度是描述物体在曲线路径上的速度,而法向速度则是描述物体在曲线路径上的加速度。
这两个分量结合起来可以更全面地描述曲线运动中的速度规律。
2. 曲线运动的加速度曲线运动的加速度也是随着时间和位置的变化而变化的。
在曲线路径上,物体的加速度可以分解为切向加速度和法向加速度两个分量。
切向加速度是描述物体在曲线路径上的加速度,而法向加速度则是描述物体在曲线路径上的加速度。
这两个分量结合起来可以更全面地描述曲线运动中的加速度规律。
曲线运动知识点总结曲线运动是物体在运动过程中沿着曲线轨迹移动的运动形式。
在物理学中,曲线运动是一个重要的研究领域,涉及到许多关键概念和原理。
本文将对曲线运动的各种知识点进行总结和归纳。
1. 曲线运动的概念和特点曲线运动是指物体在运动过程中不沿着直线轨迹移动,而是沿着曲线轨迹移动的运动形式。
曲线运动的特点包括方向变化、速度变化和加速度变化等。
物体在曲线运动中的速度和加速度可以随着时间的推移而改变,因此曲线运动需要使用向量和微积分等数学工具进行描述和分析。
2. 曲线运动的描述和表示方法曲线运动可以使用向量、参数方程和函数方程等多种方法进行描述和表示。
其中,向量法是最常用的方法,通过向量的起点和终点来描述物体在空间中的位置变化。
参数方程则是通过给出变量关于时间的函数来描述物体在曲线上的位置变化。
函数方程是将曲线上的点的坐标表示为关于某个变量(通常是横坐标或纵坐标)的函数。
3. 匀速曲线运动和非匀速曲线运动曲线运动可以进一步分为匀速曲线运动和非匀速曲线运动。
匀速曲线运动是指物体在运动过程中,沿着曲线轨迹保持着恒定的速度。
非匀速曲线运动则是指物体在运动过程中,沿着曲线轨迹速度不断变化。
非匀速曲线运动可以进一步分为加速曲线运动和减速曲线运动,根据速度的变化情况可分别使用加速度和减速度进行描述。
4. 曲线运动的半径和曲率在曲线运动中,半径和曲率是两个重要的概念。
半径是指曲线上某一点到曲线上某一固定点的距离。
在曲线运动中,半径可以用来描述物体在曲线运动中绕着某一中心点旋转的情况。
曲率是指曲线在某一点处的弯曲程度。
曲率的大小取决于曲线在该点的切线的方向和曲线的弯曲程度。
5. 圆周运动和曲线运动的关系。
曲线运动知识点总结(MYX)一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。
2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。
4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。
若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大;当0°<θ<180°,速度增大;当θ=90°,速度大小不变。
5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。
【例1】如图5-11所示,物体在恒力F作用下沿曲线从A运动到B,这时突然使它所受力反向,大小不变,即由F变为-F.在此力作用下,物体以后()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线返回到A点【例2】关于曲线运动性质的说法正确的是()A.变速运动一定是曲线运动B.曲线运动一定是变速运动C.曲线运动一定是变加速运动D.曲线运动一定是加速度不变的匀变速运动【例3】关于曲线运动, 以下说法正确的是()图5-11A.曲线运动是一种变速运动B.做曲线运动的物体合外力一定不为零C.做曲线运动的物体所受的合外力一定是变化的D.曲线运动不可能是一种匀变速运动6、关于运动的合成与分解(1)合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。
那几个运动叫做这个实际运动的分运动.特征:①等时性;②独立性;③等效性;④同一性。
(2)运动的合成与分解的几种情况:①两个任意角度的匀速直线运动的合运动为匀速直线运动。
②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。
曲线运动知识点总结曲线运动是高中物理中较为重要的一部分内容,它涉及到物体运动轨迹不是直线的情况。
下面我们来详细总结一下曲线运动的相关知识点。
一、曲线运动的定义与特点曲线运动是指物体运动的轨迹为曲线的运动。
其特点主要有:1、轨迹是曲线:这是曲线运动最直观的表现。
2、速度方向不断变化:因为曲线的走向在不断改变,所以速度方向也必然随之变化。
3、一定存在加速度:速度方向的改变意味着速度发生了变化,而速度变化就一定有加速度。
二、曲线运动的条件当物体所受合外力的方向与它的速度方向不在同一条直线上时,物体将做曲线运动。
合外力的作用是改变速度的方向,使其偏离原来的直线轨迹。
三、运动的合成与分解1、合运动与分运动的关系等时性:合运动与分运动经历的时间相等。
独立性:一个物体同时参与几个分运动,各分运动独立进行,互不影响。
等效性:合运动是各分运动的叠加,具有相同的效果。
2、运动的合成与分解遵循平行四边形定则:已知分运动求合运动叫运动的合成;已知合运动求分运动叫运动的分解。
四、平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下所做的运动。
2、特点水平方向:做匀速直线运动,速度大小不变,方向不变。
竖直方向:做自由落体运动,加速度为重力加速度 g。
3、平抛运动的规律水平方向:x = v₀t竖直方向:y = 1/2gt²合速度:v =√(v₀²+(gt)²)合位移:s =√(x²+ y²)4、平抛运动的飞行时间 t =√(2h/g),只与下落高度 h 有关,与初速度 v₀无关。
五、匀速圆周运动1、定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2、特点线速度大小不变,方向时刻改变。
角速度不变。
周期和频率不变。
3、描述匀速圆周运动的物理量线速度 v:v = s/t =2πr/T角速度ω:ω =θ/t =2π/T周期 T:物体运动一周所用的时间。
必修二知识点第一章曲线运动(一)曲线运动的位移研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v0方向为x轴的正方向,以竖直方向向下为y轴的正方向,如下图所示.当物体运动到A点时,它相对于抛出点O的位移是OA,用l表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A点的坐标(x A、y A)就能表示它,于是使问题简化.(二)曲线运动的速度1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向.2.对曲线运动速度方向的理解如图所示, AB割线的长度跟质点由A运动到B的时间之比,即v=ΔxAB,等于AB过程中平均速度的大小,其平均速度的方向由A指向B.当B Δt非常非常接近A时,AB割线变成了过A点的切线,同时Δt变为极短的时间,故AB间的平均速度近似等于A点的瞬时速度,因此质点在A点的瞬时速度方向与过A点的切线方向一致.(三)曲线运动的特点1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线运动)2、做曲线运动的物体一定具有加速度曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)(四)物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动)当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.(五)曲线运动的轨迹做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法1、合运动与分运动的定义如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,那几个运动就是分运动.物体的实际运动一定是合运动,实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度是它的分位移、分速度、分加速度.2、合运动与分运动的关系3、合运动与分运动的求法运动的合成与分解的方法:运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们都是矢量,遵循平行四边形定则(或进行正交分解).(1)如果两个分运动都在同一条直线上,需选取正方向,与正方向同向的量取“+”,与正方向反向的量取“-”,则矢量运算简化为代数运算.(2)如果两个分运动互成角度,则遵循平行四边形定则(如图所示).(3)两个相互垂直的分运动的合成:如果两个分运动都是直线运动,且互成角度为90°,其分位移为s1、s2,分速度为v1、v2,分加速度为a1、a2,则其合位移s、合速度v和合加速度a,可以运用解直角三角形的方法求得,如图所示.合位移大小和方向为s=s21+s22,tanθ=s 1 s 2 .合速度大小和方向为v=v21+v22,tanφ=v 1 v 2 .合加速度的大小和方向为:a=a21+a22,tanα=a 1 a 2 .(4)运动的分解方法:理论上讲一个合运动可以分解成无数组分运动,但在解决实际问题时不可以随心所欲地随便分解.实际进行运动的分解时,需注意以下几个问题:①确认合运动,就是物体实际表现出来的运动.②明确实际运动是同时参与了哪两个分运动的结果,找到两个参与的分运动.③正交分解法是运动分解最常用的方法,选择哪两个互相垂直的方向进行分解是求解问题的关键.特别提醒a合运动一定是物体的实际运动(一般是相对于地面的).b不是同一时间内发生的运动、不是同一物体参与的运动不能进行合成.c对速度进行分解时,不能随意分解,应该建立在对物体的运动效果进行分析的基础上.d合速度与分速度的关系当两个分速度v1、v2大小一定时,合速度的大小可能为:|v1-v2|≤v≤v1+v2,故合速度可能比分速度大,也可能比分速度小,还有可能跟分速度大小相等.4、运动的合成与分解是研究曲线运动规律最基本的方法,它的指导思想就是化曲为直,化变化为不变,化复杂为简单的等效处理观点.在实际问题中应注意对合运动与分运动的判断.合运动就是物体相对于观察者所做的实际运动,只有深刻挖掘物体运动的实际效果,才能正确分解物体的运动.(七)如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题.当v 1垂直河岸时(即船头垂直河岸),渡河时间最短1v d t =,船渡河的位移θsin d s =。
1、曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。
(注意:合外力为零只有两种状态:静止和匀速直线运动。
)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。
2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动:加速度(大小和方向)不变的运动。
也可以说是:合外力不变的运动。
4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
即曲线运动物体所受合外力方向一定指向曲线的凹侧。
(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。
①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
③当合力方向与速度方向垂直时,物体的速率不变。
(举例:匀速圆周运动)2.运动的合成与分解1、合运动与分解已知物体的分运动求合运动叫运动的合成,已知物体的合运动求分运动叫运动的分解。
运动的合成和分解是解决曲线运动问题的基本方法,即较复杂的运动可以看作较简单的运动的合运动。
必须明确:运动的合成和分解遵循矢量合成和分解的平行四边形定则;2、合运动与分运动的关系(1)等时性:各分运动经历的时间与合运动经历的时间相等。
(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其它运动的影响。
(3)等效性:各分运动的规律叠加起来与合运动规律有完全相同的效果。
曲线运动要点归纳要点一曲线运动的特点1.轨迹是一条曲线.2.曲线运动的速度方向(1)质点在某一点(或某一时刻)的速度方向沿曲线在该点的切线方向.(2)曲线运动的速度方向时刻改变.速度是描述运动的一个重要的物理量,它既有大小,又有方向.如果物体在运动过程中只有速度大小的改变,而速度方向不变,那么物体只能做直线运动.因此,假设物体做曲线运动,说明物体的速度方向时刻变化.3.运动性质是变速运动(1)无论物体做怎样的曲线运动,由于轨迹上各点的切线方向不同,物体的速度时刻发生变化,因此,曲线运动一定是变速运动.(2)曲线运动是否为匀变速运动决定于物体是否受到恒力作用,如抛体运动中,由于物体只受重力作用,其加速度不变,故物体做匀变速运动,这与物体的运动轨迹无关.要点二物体做曲线运动的条件1.曲线运动是变速运动,凡物体做变速运动必有加速度,而加速度是由于力的作用产生的,因而做曲线运动的物体在任何时刻所受合外力皆不为零,不受力的物体不可能做曲线运动.2.当物体受到的合外力的方向与运动方向在一条直线上时,运动方向(速度方向)只能沿该直线(或正或反),其运动依然是直线运动.3.当物体受到合外力的方向跟物体的速度方向不在一条直线上,而是成一定角度时,合外力产生的加速度方向跟速度方向也成一定角度.一般情况下,这时的加速度不仅反映了速度大小的变化快慢,还包含了速度方向的变化快慢.其运动必然是曲线运动.4.当合外力为恒力(F与v不共线)时,加速度也恒定,物体的速度均匀变化,物体做匀变速曲线运动;当合外力变化时,物体做非匀变速曲线运动(变加速度的曲线运动).应该注意的是,曲线运动不一定要求合外力变化.因此,一个物体是否做曲线运动,与力的大小及力是否变化无关,关键是看合外力的方向与速度方向是否在同一直线上.在比拟中可知:(1)在变速直线运动(加速直线运动或减速直线运动)中,加速度方向(即合外力方向)与速度方向在同一直线上,加速度只改变速度的大小,不改变速度的方向.(2)在曲线运动中,加速度方向(合外力方向)与速度方向不在同一条直线上,加速度可以改变速度的大小,也可以改变速度的方向.1.运动轨迹和外力、速度的关系(1)把加速度和合力F都分解到沿曲线切线和法线(与曲线切线垂直)方向上,沿切线方向的分力F1使质点产生切线方向的加速度a1,当a1和v同向时,速度增大,如图5-1-3甲所示,此时的合力方向一定与速度方向成锐角;当a1和v反向时,速度减小,如图乙所示,此时的合力方向一定与速度方向成钝角;如果物体做曲线运动的速率不变,说明a1=0,即F1=0,此时的合力方向一定与速度方向垂直.沿法线方向的分力F2产生法线方向上的加速度a2,它使质点改变了速度的方向.由于曲线运动的速度方向时刻在改变,合力的这一作用效果对任何曲线运动总是存在的.可见,在曲线运动中合力的作用效果可分成两个方面:产生切线方向的加速度a1,改变速度的大小;产生法线方向的加速度a2,改变速度的方向,这正是物体做曲线运动的原因.假设a1=0,那么物体的运动为匀速率曲线运动;而假设a2=0,那么物体的运动为直线运动.(2)运动轨迹确实定①物体的轨迹与初速度和合外力有关,物体的运动轨迹一定夹在合外力与速度方向之间.②运动轨迹与速度相切,并偏向合外力一侧,因此轨迹是平滑的曲线.(3)合外力方向确实定物体所受合外力的方向指向轨迹的弯曲方向的内侧.即运动轨迹必夹在速度方向与合力方向之间.2.力与运动的关系(1)认识这个问题,应分清物体做曲线运动的条件和做匀变速运动的条件,物体做曲线运动的条件是加速度与初速度不在同一直线上,而做匀变速运动的条件是加速度的大小和方向恒定不变,二者之间没有必然联系.(2)物体运动的形式,按速度分类有匀速和变速;按径迹分类,有直线和曲线,其原因取决于物体的初速度v0和合外力F,具体分类如下:①F=0,静止或匀速运动.②F≠0,变速运动.③F为恒量,匀变速运动.④F为变量,非匀变速运动.⑤F和v0方向在同一直线上,直线运动.⑥F和v0方向不在同一直线上,曲线运动.归纳总结1.物体做曲线运动时,其速度方向是沿曲线上该点的切线方向.2.速度方向时刻改变,即速度一定时刻改变,所以曲线运动一定是变速运动.3.速度变化包括大小和方向的变化,故变速运动包括曲线运动与直线运动.平抛运动的特点及规律1.平抛运动是水平方向的匀速直线运动和竖直方向自由落体运动的合运动〔运动的合成〕2. 运动的规律 ⎪⎩⎪⎨⎧==2021)1(at y t v x⎪⎪⎩⎪⎪⎨⎧+===220)2(y x y x v v v gt v v v平抛特点总结:1.运动时间只由高度决定设想在高度H 处以水平速度v o 将物体抛出,假设不计空气阻力,那么物体在竖直方向的运动是自由落体,由公式可得:,由此式可以看出,物体的运动时间只与平抛运动开始时的高度有关。
第四章曲线运动第一模块:曲线运动、运动的合成和分解『夯实基础知识』■考点一、曲线运动1、定义:运动轨迹为曲线的运动。
2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。
3、曲线运动的性质由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。
4、物体做曲线运动的条件(1)物体做一般曲线运动的条件物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。
(2)物体做平抛运动的条件物体只受重力,初速度方向为水平方向。
可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。
(3)物体做圆周运动的条件物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。
5、分类⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。
⑴非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。
■考点二、运动的合成与分解1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。
运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。
2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。
3、合运动与分运动的关系:■运动的等效性(合运动和分运动是等效替代关系,不能并存);■等时性:合运动所需时间和对应的每个分运动时间相等■独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律进行,不会因为其它方向的运动是否存在而受到影响。
第一节 曲线运动 运动的合成与分解【基本概念、规律】 一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动. 3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上. 二、运动的合成与分解 1.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响. (3)等效性:各分运动叠加起来与合运动有完全相同的效果. 【重要考点归纳】考点一 对曲线运动规律的理解 1.曲线运动的分类及特点(1)匀变速曲线运动:合力(加速度)恒定不变. (2)变加速曲线运动:合力(加速度)变化. 2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧. 3.速率变化情况判断(1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 考点二 运动的合成及合运动性质的判断 1.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则. 2.合运动的性质判断⎩⎪⎨⎪⎧加速度或合外力⎩⎨⎧变化:变加速运动不变:匀变速运动加速度或合外力与速度方向⎩⎨⎧共线:直线运动不共线:曲线运动3.两个直线运动的合运动性质的判断两个互成角度的分运动 合运动的性质 两个匀速直线运动 匀速直线运动 一个匀速直线运动、匀变速曲线运动进行各量的合成运算.【思想方法与技巧】两种运动的合成与分解实例一、小船渡河模型1.模型特点两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.2.模型分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)两个极值①过河时间最短:v1⊥v2,t min=dv1(d为河宽).②过河位移最小:v⊥v2(前提v1>v2),如图甲所示,此时x min=d,船头指向上游与河岸夹角为α,cos α=v2v1;v1⊥v(前提v1<v2),如图乙所示.过河最小位移为x min=dsin α=v2v1d.3.求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.二、绳(杆)端速度分解模型1.模型特点绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.2.模型分析(1)合运动→绳拉物体的实际运动速度v(2)分运动→⎩⎨⎧其一:沿绳或杆的分速度v 1其二:与绳或杆垂直的分速度v 2(3)关系:沿绳(杆)方向的速度分量大小相等. 3.解决绳(杆)端速度分解问题的技巧(1)明确分解谁——分解不沿绳(杆)方向运动物体的速度; (2)知道如何分解——沿绳(杆)方向和垂直绳(杆)方向分解;(3)求解依据——因为绳(杆)不能伸长,所以沿绳(杆)方向的速度分量大小相等.第二节 抛体运动【基本概念、规律】 一、平抛运动1.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线.2.规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则(1)水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t .(2)竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 2. (3)合运动①合速度:v =v 2x +v 2y ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0. ②合位移:x 合=x 2+y 2,方向与水平方向夹角为α,则tan α=y x =gt2v 0.二、斜抛运动 1.性质加速度为g 的匀变速曲线运动,轨迹为抛物线.2.规律(以斜向上抛为例说明,如图所示)(1)水平方向:做匀速直线运动,v x =v 0cos θ. (2)竖直方向:做竖直上抛运动,v y =v 0sin θ-gt . 【重要考点归纳】考点一 平抛运动的基本规律及应用 1.飞行时间:由t =2hg 知,时间取决于下落高度h ,与初速度v 0无关.2.水平射程:x =v 0t =v 02hg ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x轴正方向的夹角,有tan θ=v y v x =2ghv 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.6.“化曲为直”思想在抛体运动中的应用(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.(2)运用运动合成的方法求出平抛运动的速度、位移等.考点二与斜面相关联的平抛运动1.斜面上的平抛问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下:2.(1)从斜面上某点抛出又落到斜面上,位移与水平方向夹角等于斜面倾角;(2)从斜面外抛出的物体落到斜面上,注意找速度方向与斜面倾角的关系.考点三与圆轨道关联的平抛运动在竖直半圆内进行平抛时,圆的半径和半圆轨道对平抛运动形成制约.画出落点相对圆心的位置,利用几何关系和平抛运动规律求解.平抛运动的临界问题(1)在解决临界和极值问题时,正确找出临界条件(点)是解题关键.(2)对于平抛运动,已知平抛点高度,又已知初速度和水平距离时,要进行平抛运动时间的判断,即比较t1=2hg与t2=xv0,平抛运动时间取t1、t2的小者.(3)本题中,两发子弹不可能打到靶上同一点的说明:若打到靶上同一点,则子弹平抛运动时间相同,即t =Lv 0+v =L -90v ,L =3 690 m ,t =4.5 s >2hg =0.6 s ,即子弹0.6 s 后就已经打到地上.第三节 圆周运动【基本概念、规律】一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,T =1f . 4.向心加速度:描述线速度方向变化的快慢.a n =rω2=v 2r =ωv =4π2T 2r .5.向心力:作用效果产生向心加速度,F n =ma n . 二、匀速圆周运动和非匀速圆周运动的比较 项目 匀速圆周运动 非匀速圆周运动 定义 线速度大小不变的圆周运动 线速度大小变化的圆周运动 运动特点 F 向、a 向、v 均大小不变,方向变化,ω不变F 向、a 向、v 大小、方向均发生变化,ω发生变化向心力F 向=F 合由F 合沿半径方向的分力提供三、离心运动1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动. 2.供需关系与运动如图所示,F 为实际提供的向心力,则: (1)当F =mω2r 时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出; (3)当F <mω2r 时,物体逐渐远离圆心; (4)当F >mω2r 时,物体逐渐靠近圆心. 【重要考点归纳】考点一 水平面内的圆周运动1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.3.涉及静摩擦力时,常出现临界和极值问题. 4.水平面内的匀速圆周运动的解题方法(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件; (2)确定圆周运动的圆心和半径; (3)应用相关力学规律列方程求解.考点二竖直面内的圆周运动1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒.3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形.考点三圆周运动的综合问题圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.2.分析每个运动过程的受力情况和运动性质,明确遵守的规律.3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.【思想方法与技巧】竖直平面内圆周运动的“轻杆、轻绳”模型1.模型特点在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.2.模型分析绳、杆模型常涉及临界问题,分析如下:(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.(2)确定临界点:v 临=gr ,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N 表现为支持力还是拉力的临界点. (3)定规律:用牛顿第二定律列方程求解.第四节 万有引力与航天【基本概念、规律】 一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2.3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 二、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同. 3.经典力学的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界. 【重要考点归纳】考点一 天体质量和密度的估算 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T 2(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR .(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 3.(1)利用圆周运动模型,只能估算中心天体质量,而不能估算环绕天体质量.(2)区别天体半径R 和卫星轨道半径r :只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二 卫星运行参量的比较与运算 1.卫星的各物理量随轨道半径变化的规律2.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大. 3.极地卫星、近地卫星和同步卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)同步卫星①轨道平面一定:轨道平面和赤道平面重合.②周期一定:与地球自转周期相同,即T =24 h =86 400 s. ③角速度一定:与地球自转的角速度相同. ④高度一定:卫星离地面高度h =3.6×104 km.⑤速率一定:运动速度v=3.07 km/s(为恒量).⑥绕行方向一定:与地球自转的方向一致.考点三卫星(航天器)的变轨问题1.轨道的渐变做匀速圆周运动的卫星的轨道半径发生缓慢变化,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动.解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r是增大还是减小,然后再判断卫星的其他相关物理量如何变化.2.轨道的突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.(1)当卫星的速度突然增加时,G Mmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,G Mmr2>mv2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时增大;卫星的发射和回收就是利用这一原理.不论是轨道的渐变还是突变,都将涉及功和能量问题,对卫星做正功,卫星机械能增大,由低轨道进入高轨道;对卫星做负功,卫星机械能减小,由高轨道进入低轨道.考点四宇宙速度的理解与计算1.第一宇宙速度v1=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMmR2=mv21R,所以v1=GMR. (2)mg=mv21R,所以v1=gR.【思想方法与技巧】双星系统模型1.模型特点(1)两颗星彼此相距较近,且间距保持不变.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.2.模型分析(1)双星运动的周期和角速度相等,各以一定的速率绕某一点转动,才不至于因万有引力作用而吸在一起.(2)双星做匀速圆周运动的向心力大小相等,方向相反.(3)双星绕共同的中心做圆周运动时总是位于旋转中心的两侧,且三者在一条直线上.(4)双星轨道半径之和等于它们之间的距离.3.(1)解决双星问题时,应注意区分星体间距与轨道半径:万有引力定律中的r为两星体间距离,向心力公式中的r为所研究星球做圆周运动的轨道半径.(2)宇宙空间大量存在这样的双星系统,如地月系统就可视为一个双星系统,只不过旋转中心没有出地壳而已,在不是很精确的计算中,可以认为月球绕着地球的中心旋转.求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法. 一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.二、二次函数极值法对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a .也可以采取配方法求解. 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值. 四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值. 五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小. 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.第五节 功和功率【基本概念、规律】 一、功1.做功的两个必要条件:力和物体在力的方向上发生的位移.2.公式:W =Fl cos_α.适用于恒力做功.其中α为F 、l 方向间夹角,l 为物体对地的位移. 3.功的正负判断(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或说物体克服该力做功. (3)α=90°,力对物体不做功.特别提示:功是标量,比较做功多少看功的绝对值. 二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)定义式:P =Wt ,P 为时间t 内的平均功率.(2)推论式:P=Fv cos_α.(α为F与v的夹角)【重要考点归纳】考点一恒力做功的计算1.恒力做的功直接用W=Fl cos α计算.不论物体做直线运动还是曲线运动,上式均适用.2.合外力做的功方法一:先求合外力F合,再用W合=F合l cos α求功.适用于F合为恒力的过程.方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合外力做的功.3.(1)在求力做功时,首先要区分是求某个力的功还是合力的功,是求恒力的功还是变力的功.(2)恒力做功与物体的实际路径无关,等于力与物体在力方向上的位移的乘积,或等于位移与在位移方向上的力的乘积.考点二功率的计算1.平均功率的计算:(1)利用P=W t.(2)利用P=F·v cos α,其中v为物体运动的平均速度.2.瞬时功率的计算:利用公式P=F·v cos α,其中v为t时刻的瞬时速度.注意:对于α变化的不能用P=Fv cos α计算平均功率.3.计算功率的基本思路:(1)首先要明确所求功率是平均功率还是瞬时功率,对应于某一过程的功率为平均功率,对应于某一时刻的功率为瞬时功率.(2)求瞬时功率时,如果F与v不同向,可用力F乘以F方向的分速度,或速度v乘以速度v 方向的分力求解.考点三机车启动问题的分析1.两种启动方式的比较v↑⇒F=P不变v↓⇒a=F-F阻m↓F-F2.三个重要关系式(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速度,即v m=PF min=PF阻(式中F min为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的过程中,匀加速过程结束时,功率最大,速度不是最大,即v=P F<v m=P F阻.(3)机车以恒定功率运行时,牵引力做的功W=Pt.由动能定理:Pt-F阻x=ΔE k.此式经常用于求解机车以恒定功率启动过程的位移大小.3.分析机车启动问题时的注意事项(1)在用公式P=Fv计算机车的功率时,F是指机车的牵引力而不是机车所受到的合力.(2)恒定功率下的加速一定不是匀加速,这种加速过程发动机做的功可用W=Pt计算,不能用W=Fl计算(因为F是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W=Fl计算,不能用W=Pt计算(因为功率P是变化的).【思想方法与技巧】变力做功的求解方法一、动能定理法动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.二、平均力法如果力的方向不变,力的大小对位移按线性规律变化(即F=kx+b)时,F由F1变化到F2的过程中,力的平均值为F=F1+F22,再利用功的定义式W=F l cos α来求功.三、微元法当物体在变力的作用下做曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,可将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和.通过微元法不难得到,在往返的运动中,摩擦力、空气阻力做的功,其大小等于力和路程的乘积.四、等效转换法若某一变力的功和某一恒力的功相等,即效果相同,则可以通过计算该恒力做的功,求出该变力做的功,从而使问题变得简单,也就是说通过关联点,将变力做功转化为恒力做功,这种方法称为等效转换法.五、图象法由于功W=Fx,则在F-x图象中图线和x轴所围图形的面积表示F做的功.在x轴上方的“面积”表示正功,x轴下方的“面积”表示负功.六、用W=Pt计算机车以恒定功率P行驶的过程,随速度增加牵引力不断减小,此时牵引力所做的功不能用W=Fx来计算,但因功率恒定,可以用W=Pt计算.第六节动能动能定理【基本概念、规律】一、动能1.定义:物体由于运动而具有的能.2.表达式:E k =12mv 2.3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. 4.矢标性:标量. 二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =E k2-E k1=12mv 22-12mv 21. 3.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动. (2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用. 【重要考点归纳】考点一 动能定理及其应用 1.对动能定理的理解(1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系: ①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系. ②因果关系:合外力的功是引起物体动能变化的原因.(2)动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理.2.运用动能定理需注意的问题(1)应用动能定理解题时,不必深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程初末的动能.(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式. 3.应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: 受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 考点二 动能定理与图象结合问题 解决物理图象问题的基本步骤1.观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. 2.根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.3.将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.4.解决这类问题首先要分清图象的类型.若是F -x 图象,则图象与坐标轴围成的图形的面积。
高中物理曲线运动知识点一、知识概述《高中物理曲线运动知识点》①基本定义:曲线运动呢,简单说就是物体运动轨迹是曲线的运动。
比如说扔铅球吧,铅球在空中划过一道弧线才落地,这就是曲线运动。
②重要程度:在高中物理里超重要的。
很多自然现象比如行星绕太阳转就是曲线运动,在高考题里也是常常出现的。
③前置知识:你要先理解直线运动,像匀速直线运动、匀变速直线运动,还有力的概念、矢量的概念这些基础知识。
④应用价值:在体育项目中很多的,像跳远运动员起跳后的轨迹就是曲线运动,航天工程里卫星的轨道设计也是基于曲线运动知识的。
二、知识体系①知识图谱:它是力学里的一部分,跟力、加速度等知识密切相关。
就像是枝枝叶叶中的一大片枝叶,和很多东西都有联系。
②关联知识:和牛顿第二定律联系可紧密了,因为有力才有加速度,有加速度物体才会做曲线运动。
还和万有引力相关,毕竟像卫星在天上转是受万有引力才做曲线运动的。
③重难点分析:重难点在于理解曲线运动的条件。
关键就是要弄明白当物体所受合外力与速度方向不在一条直线上的时候就会做曲线运动。
这个挺难理解的,我当时就想了好久,为什么合外力不在速度方向就拐弯了呢。
④考点分析:考试里,选择题、计算题都会考。
选择题可能考曲线运动的基本概念和条件,计算题可能结合动能定理等知识来考曲线运动中的物体速度、位移等问题。
三、详细讲解【理论概念类】①概念辨析:曲线运动就是物体运动轨迹为曲线的运动呗。
这轨迹可不是直的,是弯弯绕绕的。
②特征分析:它的速度方向时刻在变。
就像摩托车在弯道上跑,每个瞬间车头的指向就是它的速度方向,这方向一直改变。
而且它是变速运动,因为速度是矢量,方向变了速度就变了。
③分类说明:可以分为平抛运动这种只受重力、加速度恒为g的曲线运动,还有像匀速圆周运动这种加速度大小不变但方向一直在变的曲线运动。
④应用范围:在抛体运动里适用,像扔篮球什么的,还适用于天体运动领域研究星球轨迹等,不过这些分析都是简化后的理想模型,实际情况可能更复杂。
曲线运动考点梳理:一.曲线运动1.运动性质————变速运动,具有加速度2.速度方向————沿曲线一点的切线方向3.质点做曲线运动的条件〔1〕从动力学看,物体所受合力方向跟物体的速度不再同一直线上,合力指向轨迹的凹侧. 〔2〕从运动学看,物体加速度方向跟物体的速度方向不共线例题:如图5-1-5在恒力F作用下沿曲线从A运动到B,这时突然使它受的力反向,而大小不变,即由F变为-F,在此力作用下,关于物体以后的运动情况的下列说法中正确的是〔〕A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线由B返回A2、图5-1-6簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点.若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是〔〕A.带电粒子所带电荷的符号;B.带电粒子在a、b两点的受力方向;C.带电粒子在a、b两点的速度何处较大;D.带电粒子在a、b两点的电势能何处较大.二.运动的合成与分解1.合运动和分运动:当物体同时参与几个运动时,其实际运动就叫做这几个运动的合运动,这几个运动叫做实际运动的分运动.2.运动的合成与分解<1>已知分运动<速度v、加速度a、位移s>求合运动<速度v、加速度a、位移s>,叫做运动的合成.<2>已知合运动<速度v、加速度a、位移s>求分运动<速度v、加速度a、位移s>,叫做运动的分解.<3>运动的合成与分解遵循平行四边形定则.3.合运动与分运动的关系<1>等时性:合运动和分运动进行的时间相等.<2>独立性:一个物体同时参与几个分运动,各分运动独立进行,各自产生效果.<3>等效性:整体的合运动是各分运动决定的总效果,它替代所有的分运动.三.平抛运动1.定义:水平抛出的物体只在重力作用下的运动.2.性质:是加速度为重力加速度g的匀变速曲线运动,轨迹是抛物线.3.平抛运动的研究方法<1>平抛运动的两个分运动:水平方向是匀速直线运动,竖直方向是自由落体运动.<2>平抛运动的速度图5-1-5ab 图5-1-6s y sφyx vv0v y θs x水平方向:0v v x = ; 竖直方向:gt v y =合速度:22y x v v v +=,方向:xy v v tg =θ<3>平抛运动的位移水平方向水平位移:s x =v 0t 竖直位移:s y =21gt 2合位移:22yx s s s +=,方向:tg φ=xy s s4.平抛运动的轨迹:抛物线;轨迹方程:2202x v g y =5.几个有用的结论<1>运行时间和水平射程:水平方向和竖直方向的两个分运动既有独立性,又有等时性,所以运动时间为ght 2=,即运行时间由高度h 决定,与初速度v 0无关.水平射程ghv x 20=,即由v 0和h 共同决定. <2>相同时间内速度改变量相等,即△v =g △t,△v 的方向竖直向下.[例题]1.证明:<一个有用的推论>平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半.2.一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如右图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为A .1tan θB .12tan θC .tan θD .2tan θ四.匀速圆周运动1.匀速圆周运动<1>定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,叫做匀速圆周运动.<2>运动学特征: v 大小不变,T 不变,ω不变,a 向大小不变; v 和a 向的方向时刻在变.匀速圆周运动是变加速运动.<3>动力学特征:合外力大小恒定,方向始终指向圆心. 2.描述圆周运动的物理量 <1>线速度①物理意义:描述质点沿圆周运动的快慢.②方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向.v 0 v 1 v 2v 1y v 2y△v 图5-2-3 v 0v tv xv yhsαα s /图5-2-4③大小:tsv =<s 是t 时间内通过的弧长>. <2>角速度①物理意义:描述质点绕圆心转动快慢. ②大小:tφω=<单位rad/s>,其中φ是连结质点和圆心的半径在t 时间内转过的角度.<3>周期T 、频率f做圆周运动的物体运动一周所用的时间叫做周期.单位:s.做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.单位:Hz.<4> v 、ω、T 、f 的关系f T 1=,f T ππ22==ω,ωr vr v ==π2 <5>向心加速度①物理意义:描述线速度方向改变的快慢.②大小:22222222444v a w r r f r n rr T πππ=====③方向:总是指向圆心.所以不论a 的大小是否变化,它都是个变化的量.3.向心力F 向①作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,不改变速度的大小.②大小:22222222444v F m mw r m r m f r m n rr T πππ=====③来源:向心力是按效果命名的力.可以由某个力提供,也可由几个力的合力提供,或由某个力的分力提供.如同步卫星的向心力由万有引力提供,圆锥摆摆球的向心力由重力和绳上拉力提供<或由绳上拉力的水平分力提供>.④匀速圆周运动的向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的分力,而合外力沿切线方向的分力改变线速度的大小.4.质点做匀速圆周运动的条件: <1>质点具有初速度;<2>质点受到的合外力始终与速度方向垂直;<3>合外力F 的大小保持不变,且r m rv m F 22ω== 若r m r v m F 22ω=<,质点做离心运动;若r m rv m F 22ω=>,质点做向心运动; 若F =0,质点沿切线做直线运动.问题与方法一.绳子与杆末端速度的分解方法绳与杆问题的要点,物体运动为合运动,分解为沿绳或杆方向和垂直于绳或杆方向的分F=0 F< mr ω2,F= mr ω2,F> mr ω2, 图5-3-1运动例题:1.如图5-1-7岸上用绳拉船,拉绳的速度是v ,当绳与水平方向夹角为θ时,船的速度为多大?2.如图5-1-3车甲以速度v 1拉汽车乙前进,乙的速度为v 2,甲、乙都在水平面上运动,求v 1∶v 2二.小船过河问题1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船d dt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行. 2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角.合速度v 与河岸成α角.可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos =θ,船沿河漂下的最短距离为:v 水v 船θvv 水θ v αA BE v 船 图5-1-7θv甲乙 α v 1 v 2 图5-1-3此时渡河的最短位移:船水v dv ds ==θcos 问题:有没有船速等于水速时,渡河最短位移的情况[例题]河宽d =60m,水流速度v 1=6m /s,小船在静水中的速度v 2=3m /s,问: <1>要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? <2>要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?解析: <1>要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间 <2>渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽; ②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短.可由几何方法求得,即以v 1的末端为圆心,以v 2的长度为半径作圆,从v 1的始端作此圆的切线,该切线方向即为最短航程的方向,如图所示. 设航程最短时,船头应偏向上游河岸与河岸成θ角,则2163cos 12===υυθ, 60=θ 最短行程,m m d s 1202660cos ===θ小船的船头与上游河岸成600角时,渡河的最短航程为120m. 问题三:绳杆模型竖直平面内的圆周运动 〔1〕绳子模型没有物体支持的小球,在竖直平面内做圆周运动过最高点:①临界条件:小球在最高点时绳子的拉力〔或轨道的弹力〕刚好等于零,小球的重力充当圆周运动所需的向心力,设v 临是小球能通过最高点 的最小速度,则:mg =rv m 2,v 临=gr②能过最高点的条件:v ≥v 临③不能通过最高点的条件:v < v 临,实际上物体在到达最高点之前就脱离了圆轨道. 〔2〕轻杆模型.有物体支持的小球在竖直平面内做圆周运动情况①临界条件:由于硬杆或管壁的支撑作用,小球能到达最高点的临界速度v 临=0,轻杆或轨道对小球的支持力:N =mg ②当最高点的速度v =gr 时,杆对小球的弹力为零. ③当0<v <gr 时,杆对小球有支持力:vmv图5-3-4 vm v mN =mg -rv m 2,而且:v ↑→N ↓④当v>gr 时,杆对小球有拉力〔或管的外壁对小球有竖直向下的压力〕:F =rv m 2-mg,而且:v ↑→N ↑例题:如下图所示,光滑管形圆轨道半径为R<管径远小于R>,小球a 、b 大小相同质量均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同的速度υ通过轨道的最低点,且当小球a 在最低点时,小球b 在最高点.以下说法正确的是< >A.速度υ至少为,才能使小球在管内做圆运动B.当υ=,小球b 在轨道最高点对轨道无压力C.当小球b 在轨道最高点对轨道无压力时,小球a 比小球b 所需向心力大4mgD.只要υ>,小球a 对轨道最低点的压力比小球b 对轨道最高点压力都大6mg问题四:水平面内做圆周运动的临界问题在水平面上做圆周运动的物体,当角速度w 变化时,物体有远离或向着圆心运动的趋势,这时,要根据物体的受力情况,判断物体受某个力是否存在以与这个力存在时方向朝哪,特别是一些静摩擦力,绳子的拉力等例题:1.如图所示,细绳一端系着质量为M=0.6kg 的物体,静止在水平面上,另一端通过光滑小孔吊着质量为m=0.3kg 的物体,M 的中点与圆孔距离 为0.2m,并知M 和水平面的最大静摩擦力为2N.现使此平面 绕中心轴转动,问角速度ω在什么范围内m 处于静止状态? 〔取g=10m/s 2〕2.水平转台上放有质量均为m 的两个小物块A 、B,A 离转台的距离为L, A 、B 间用长为L 的细线相连,开始时A 、B 与轴心在同一直线上,线被拉直, A 、B 与水平转台间的动摩擦因数均为μ.当转台的角速度达到多大时线上出现张力? 当转台的角速度达到多大时A 物块开始滑动?问题五:生活中的一些圆周运动1.水流星问题用一根绳子系着盛水的杯子,演员抡起绳子,杯子在竖直平面内做圆周运动,此即为水流星.参照绳子模型 2.火车转弯问题 3.汽车过拱形问题 4.航天器中的失重现象mMr Oω 图5-3-11A Bω图5-3-121.[2012•无锡期中]如图,图甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v -t 图象如图乙所示.人顶杆沿水平地面运动的s -t 图象如图丙所示.若以地面为参考系,下列说法中正确的是 〔 〕 A .猴子的运动轨迹为直线 B .猴子在2s 内做匀变速曲线运动 C .t =0时猴子的速度大小为8m/s D .t =2s 时猴子的加速度为4m/s 2[答案]BD[解析]竖直方向为初速度v y =8m/s 、加速度a =-4m/s 2的匀减速直线运动,水平方向为速度v x =-4m/s 的匀速直线运动,初速度大小为,方向与合外力方向不在同一条直线上,故做匀变速曲线运动,故选项B 正确,选项A 错误;t=2s 时,a x =-4m/s 2,a y =0m/s,则合加速度为-4m/s 2,选项C 错误,选项D 正确. 2.[2012•河南期中]一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h,探照灯以匀角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是〔 〕A .B .C .D .[答案]C[解析]当光束转到与竖直方向夹角为θ时,云层底面上光点转动的线速度为.设云层底面上光点的移动速度为v,则有vcos θ=,解得云层底面上光点的移动速度v=,选项C 正确.3.[2012•重庆联考]如右图所示,一根长为l 的轻杆OA,O 端用铰链固定,另一端固定着一个小球A,轻杆靠在一个高为h 的物块上.若物块与地面摩擦不计,则当物块以速度v 向右运动至杆与水平方向夹角为θ时,物块与轻杆的接触点为B,下列说法正确的是 〔 〕 (1)A 、B 的线速度相同()m /s 544822=+=v h ωcos h ωθ2cos h ωθtan h ωθcos h ωθcos h ωθ2cos h ωθB .A 、B 的角速度不相同C .轻杆转动的角速度为D .小球A 的线速度大小为[答案]C[解析]同轴转动,角速度相同,选项B 错误.设图示时刻杆转动的角速度为ω.对于B 点有.而A 、B两点角速度相同,则有,联立解得,故选项C 正确.4.[2012•##摸底]现在城市的滑板运动非常流行,在水平地面上一名滑板运动员双脚站在滑板上以一定速度向前滑行,在横杆前起跳并越过杆,从而使人与滑板分别从杆的上下通过,如图所示,假设人和滑板运动过程中受到的各种阻力忽略不计,运动员能顺利完成该动作,最终仍落在滑板原来的位置上,要使这个表演成功,运动员除了跳起的高度足够外,在起跳时双脚对滑板作用力的合力方向应该< >A .竖直向下B .竖直向上C .向下适当偏后D .向下适当偏前 [答案]A[解析]由于运动员最终仍落在滑板原来的位置上,所以运动员和滑板在水平方向上的运动不变,双脚对滑板作用力的合力只能沿竖直方向,由题意可以判断应竖直向下,选项A 正确.5.[2012•##期末] 一个物体在光滑水平面上沿曲线MN 运动,如图5所示,其中A 点是曲线上的一点,虚线1、2分别是过A 点的切线和法线,已知该过程中物体所受到的合外力是恒力,则当物体运动到A 点时,合外力的方向可能是〔 〕A .沿1F 或5F 的方向B .沿2F 或4F 的方向C .沿2F 的方向D .不在MN 曲线所决定的水平面内 [答案]C[解析]物体做曲线运动,必须有指向曲线内侧的合外力,或者合外力有沿法线指向内侧的分量,才能改变物体运动方向而做曲线运动,合力沿切线方向的分量只能改变物体运动的速率,故4F 、5F 的方向不可能是合外力的方向,只有1F 、2F 、3F 才有可能,故选项A 、B 是错误的,选项C 是正确的,合外力方向在过M 、N 两点的切线夹角之内的区域里,若合外力不在hvl θ2sin hvl sin2θθhωθv sin sin =ωl v =A hθvl v 2A sin =图5MN 曲线所决定的平面上,则必须有垂直水平面的分量,该方向上应有速度分量,这与事实不符,故合外力不可能不在曲线MN 所决定的水平面内,选项D 是错误的,故本题正确答案为选项C.6.[2012•##模拟]一小球自长为L 倾角为θ的斜面底端的正上方水平抛出如图所示,小球恰好垂直落到斜面中点,则据此可计算< > A.小球在落到斜面时的重力的功率 B.小球平抛过程重力势能的减少量 C.小球抛出点距斜面底端的高度 D.抛出小球时小球的初动能 [答案]C[解析]由末速度方向可知,此时水平速度与竖直速度的关系,即tanθ= v 0/ v y ,v y = v 0/ tanθ=gt 而0sin v t L θ=,所以cos L t g θ=,故平抛的时下落的高度为21122cos 2cos L L h gt g g θθ===;又因 小球落地点距斜面底端的高度的高度为sin 2Lθ,所以选项C 正确. 7.[2012•##期末]如图所示,一长为2L 的木板,倾斜放置,倾角为045,今有一弹性小球,自与木板上端等高的某处自由释放,小球落到木板上反弹时,速度大小不变,碰撞前后,速度方向与木板夹角相等,欲使小球恰好落到木板下端,则小球释放点距木板上端的水平距离为〔 〕 A.12L B. 13L C. 14L D. 15L [答案]D[解析]设小球释放点距木板上端的水平距离为h ,由几何关系可知,045θ=,所以下落高度为h ,根据自由落体运动规律,末速度2v gh =,也就是平抛运动的初速度,设平抛运动的水平位移和位移,分别为x 和y ,因045θ=,所以x y =,由平抛运动规律x vt =θ L212y gt =,联立解得4x h =,由题意可知4222h h L +=,解得15h L =,所以选项D 正确.8.[2012•##期末]在我国乒乓球运动有广泛的群众基础,并有"国球〞的美誉,在20##奥运会上中国选手包揽了四个项目的全部冠军.现讨论乒乓球发球问题,已知球台长L 、网高h,若球在球台边缘O 点正上方某高度处,以一定的垂直球网的水平速度发出,如图1-3-15所示,球恰好在最高点时刚好越过球网.假设乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.则根据以上信息可以求出<设重力加速度为g>< >A .球的初速度大小B .发球时的高度C .球从发出到第一次落在球台上的时间D .球从发出到被对方运动员接住的时间 [答案]ABC[解析]根据题意分析可知,乒乓球在球台上的运动轨迹具有对称性,显然发球时的高度等于h,从发球到运动到P 1点的水平位移等于错误!L,所以可以求出球的初速度大小,也可以求出球从发出到第一次落在球台上的时间.由于对方运动员接球的位置未知,所以无法求出球从发出到被对方运动员接住的时间.9.[2012•四川摸底]如图所示,两个倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等.有三个完全相同的小球a 、b 、c,开始均静止于同一高度处,其中b 小球在两斜面之间,a 、c 两小球在斜面顶端.若同时释放,小球a 、b 、c 到达该水平面的时间分别为t 1、t 2、t 3.若同时沿水平方向抛出,初速度方向如图所示,小球a 、b 、c 到达该水平面的时间分别为t 1′、t 2′、t 3′.下列关于时间的关系正确的是< > A .t 1>t 3>t 2 B .t 1=t 1′、t 2=t 2′、t 3=t 3′ C. t 1′>t 2′>t 3′ D .t 1<t 1′、t 2<t 2′、t 3<t 3′ [答案]AB[解析]设三小球在高为h 的同一高度处.由静止释放三小球时对a :错误!=错误!gsin30°·t 12,则t 12=错误!. 对b :h =错误!gt 22,则t 22=错误!. 对c :错误!=错误!gsin45°·t 32,则t 32=错误!.,所以t 1>t 3>t 2.当平抛三小球时:小球b 做平抛运动,竖直方向运动情况同第一种情况;小球a 、c 在斜面内做类平抛运动,沿斜面向下方向的运动同第一种情况,所以t 1=t 1′、t 2= t 2′、t 3=t 3′.故选A 、B.10.[2012•湖北联考]如图为一个做匀变速曲线运动的质点的轨迹示意图,已知在B 点的速度与加速度相互垂横截面为直角三角形的两个相同斜面紧靠在一起,固定在水平面上,如图1-3-21所示.它们的竖直边长都是底边长的一半.现有三个小球从左边斜面的顶点以不同的初速度向右平抛,最后落在斜面上.其落点分别是a 、b 、c.下列判断正确的是< >A .图中三小球比较,落在a 点的小球飞行时间最短B .图中三小球比较,落在c 点的小球飞行过程速度变化最大C .图中三小球比较,落在c 点的小球飞行过程速度变化最快D .无论小球抛出时初速度多大,落到两个斜面上的瞬时速度都不可能与斜面垂直[答案]D[解析]如图所示,由于小球在平抛运动过程中,可分解为竖直方向的自由落体运动和水平方向的匀速直线运动,由于竖直方向的位移为落在c 点处的最小,而落在a 点处的最大,所以落在a 点的小球飞行时间最长,A 错误;而速度的变化量Δv=gt,所以落在c 点的小球速度变化最小,B 错误;三个小球做平抛运动的加速度都为重力加速度,故三个小球飞行过程中速度变化一样快,C 错误;因为平抛运动可等效为从水平位移中点处做直线运动,故小球不可能垂直落到左边的斜面上.假设小球落在右边斜面的b 点处的速度与斜面垂直,则tan θ=错误!=错误!,由于两斜面的竖直边是底边长的一半,故小球落在左边斜面最低点处时,因为2x =v 0t,x =错误!t,所以v ym =v 0,而v y ≤v ym ,所以tan θ=错误!≥1,与假设矛盾,故在右边斜面上,小球也不可能垂直落在斜面上,D 正确.11.[2012•##联考]如右图所示,质量为m 的小球置于立方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间作用力恰为mg,则 〔 〕A .该盒子做匀速圆周运动的周期一定小于B .该盒子做匀速圆周运动的周期一定等于C .盒子在最低点时盒子与小球之间的作用力大小可能小于3mgD .盒子在最低点时盒子与小球之间的作用力大小可能大于3mg[答案]B[解析]要使在最高点时盒子与小球之间恰好为mg,则盒子顶部对小球必然有向下的弹力mg,则有,解得该盒子做匀速圆周运动的速度,该盒子做匀速圆周运动的g R 2πg R2πR mv mg mg 2=+gR v 2=周期为,选项A 错误,选项B 正确;在最低点时,盒子与小球之间的作用力和小球重力的合力提供小球运动的向心力,由,解得F =3mg,选项C 、D 错误.12.[2012•重庆模拟]如图1所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A 和B,它们与盘间的摩擦因数相同,当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是< >A .两物体均沿切线方向滑动B .两物体均沿半径方向滑动,离圆盘圆心越来越远C .两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D .物体B 仍随圆盘一起做匀速率圆周运动,物体A 发生滑动,离圆盘圆心越来越远[答案]D[解析]在烧断细线前,A 、B 两物体做圆周运动的向心力均是静摩擦力与绳子拉力的合力提供的,且静摩擦力均达到了最大静摩擦力.因为两个物体在同一圆盘上随盘转动,故角速度ω相同.设此时细线对物体的的拉力为T,则有当线烧断时,T=0,A 物体所受的最大静摩擦力小于它所需要的向心力,故A 物体做离心运动.B 物体所受的静摩擦力变小,直至与它所需要的向心力相等为止,故B 物体仍随圆盘一起做匀速圆周运动,选项D 正确.13.[2012•四川期末]如图所示,一只小球在固定的竖直平面内的圆环内侧连续做圆周运动,当它第4次经过最低点时速率为7m/s,第5次经过最低点时速率为5m/s,那么当它第6次经过最低点时速率应该为<在所研究的过程中小球始终没有脱离圆周轨道>< >A .一定是3m/sB .一定是1m/sC .一定大于1m/sD .一定小于1m/s[答案]C[解析]因为圆周运动的速度减小,所以N 减小,所以f 减小.故Ek 4-Ek 5>Ek 5-Ek 6,即49-25>25-Ek 6,解得v 6>1m/s.所以本题只有选项C 正确.14.[2012•河南期中]如图所示,倾斜放置的圆盘绕着中轴匀速转动,圆盘的倾角为37°,g R πv πR T 22==R mv mg F 2=-对物体;对物体A T f m R B f T m R m A m m B +=-=ωω22 B A在距转动中心r = 0.1 m 处放一个小木块,小木块跟随圆盘一起转动,小木块与圆盘间的动摩擦因数为μ= 0.8,假设木块与圆盘的最大静摩擦力与相同条件下的滑动摩擦力相同.若要保持小木块不相对圆盘滑动,圆盘转动的角速度最大不能超过〔 〕 A .2 rad/s B .8 rad/s C .124rad/s D .60rad/s[答案]A[解析]只要小木块转过最低点时不发生相对滑动就能始终不发生相对滑动,设其经过最低点时所受静摩擦力为f,由牛顿第二定律有2sin f mg m r θω-=〔①式〕;为保证不发生相对滑动需要满足cos f mg μθ≤〔②式〕.联立解得ω≤2 rad/s,选项A 正确15.[2012•##期末]如图所示,ABC 为竖直平面内的光滑绝缘轨道,其中AB 为倾斜直轨道,BC 为与AB 相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB 上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则< >A .经过最高点时,三个小球的速度相等B .经过最高点时,甲球的速度最小C .甲球的释放位置比乙球的高D .运动过程中三个小球的机械能均保持不变[答案]CD17.[2012•##模拟]一轻杆下端固定一质量为m 的小球,上端连在光滑水平轴上,轻杆可绕水平轴在竖直平面内运动〔不计空气阻力〕,如图所示.当小球在最低点时给它一个水平初速度v 0,小球刚好能做完整的圆周运动.若小球在最低点的初速度从v 0逐渐增大,则下列判断正确的是〔 〕A.小球能做完整的圆周运动,经过最高点的最小速度为gRB.小球在最高点对轻杆的作用力先减小后增大C.小球在最低点对轻杆的作用力先增大后减小D.小球在运动过程中所受合外力的方向始终指向圆心[答案]B[解析]设轻杆对小球的作用力大小为F,方向向上,小球做完整的圆周运动经过最高点时,对小球,由牛顿第二定律得mg -F=m 2v L,当轻杆对小球的作用力大小F =mg 时,小球的速度最小,图。