(人教版)2020八年级数学上册 第11章 数的开方 11.1 平方根与立方根 1 平方根 第2课时 算术平方根教案
- 格式:doc
- 大小:73.50 KB
- 文档页数:4
11.1 平方根【教学目标】知识与与技能理解一个数的平方根的意义;会用根号表示一个数的平方根过程与方法通过训练,提高学生对概念的明辨能力;通过学习平方根,认识数学与生活的密切关系.情感、态度与价值观通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.【重点难点】重点平方根的概念及求法.难点平方根与一个数的平方的联系与区别.【学前准备】学生剪出面积为25cm2的正方形纸片.【教学过程】一、创设情境,导入新课1.要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?2.如果一个数的平方等于100,那么这个数是多少?3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?这些问题的共同特点:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空:1.( )2=9;2.( )2 =0.25;3.( )2=0.0081.学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.由练习引出平方根的概念.二、师生互动,探究新知1.平方根概念如果一个数的平方等于a,那么这个数叫做a的平方根(二次方根).用数学语言表达即为:若x2=a,则x叫做a的平方根.由练习知:是9的平方根;是0.25的平方根;的平方根是0.由此我们看到+3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:( )2=-4.2 学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论:负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).2.平方根性质(1)一个正数有两个平方根,它们互为相反数.(2)0有一个平方根,它是0本身.(3)负数没有平方根.3.开平方求一个数a 的平方根的运算,叫做开平方运算.由练习我们看到+3与-3的平方是9,9的平方根是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个.4.平方根的表示方法一个正数a 的正的平方根,用符号“a ”表示,a 叫做被开方数,2叫做根指数,正数a 的负的平方根用符号“a - ”表示,a 的平方根合起来记作a ± ,其中“2a ” 读作“二次根号下a ”.根指数为2时,通常将这个2省略不写,所以正数a 的平方根也可记作“a ± ”读作“正、负根号a ”.5.例题探索例1.求100的平方根.(分析:根据定义,考虑( )2=100)例2.将下列各数开平方: (1)49;(2)1.69.(剖题:就是求这些数的平方根)三、随堂练习,巩固新知1.求下列各数的平方根:64;0.25;8149;0.0196;5(注:设计“5”主要是为了让学生明确平方根的表示,同时也为用计算器求平方根打下伏笔).2.下列说法正确吗?为什么?如果不正确,那么请你写出正确答案.(1)0.09的平方根是0.3; (2)525±=.四、课堂小结1.本课主要学习了哪两个重要概念,它们有何区别与联系?2.求一个数的平方根,方法是什么?五、作业设计1.361的平方根是 ; 16的平方根是 .2.若a >0,且3.1 a ,则a = ; 3.若a <10<b ,且A.b 均为整数,则a = ,b =. 六、板书设计。
第11章数的开方课程内容标准1。
了解平方根、算术平方根、立方根的概念,会用根号表示。
2.了解平方与开平方、立方与开立方互为逆运算,会用平方、立方的运算求某些数的平方根与立方根,会用计算器求一个非负数的算术平方根及任意一个数的立方根..3.了解无理数和实数的概念,知道实数与数轴上的点一一对应.4.能估计无理数的大小,培养估算能力,会进行简单的实数运算.单元教学分析§11.1平方根与立方根1。
注意与平方、立方运算的联系与转化;2.注重对基本概念的理解与应用,熟悉必要的数学语言;3。
重视计算器的使用及对估算的教学,防止对学生提出繁难的数字计算要求;4。
注意把握好对已出现无理数的处理。
§11.2 实数与数轴1。
让学生感知无理数的存在,数系扩展的必要.2。
初步理解和接受实数与数轴上的点一一对应的思想.3.理解和接受有理数范围内相关概念和运算法则的自然延伸.11.1.1 平方根(1)教学内容教科书P。
2—-P.3的内容教学目标:1、理解平方根的概念;2、认识平方与开平方的关系;3、会用平方根的概念求某些数的平方根。
教学重点:平方根的概念和开平方运算.教学难点:平方根的概念;利用平方根和平方的关系解题。
教学过程:一、复习引入1、我们将要学习的第12章叫:数的开方,那什么叫“数的开方”呢?我们已学过哪些数的运算?(加、减、乘、除、乘方5种)2、你能写出这些运算的符号吗?请举例说明。
如一个正方形的边长是5米,它的面积是多少?其运算是什么运算? (面积25平方米,运算是乘方运算)3、加法与减法这两种运算之间有什么关系?乘法与除法之间呢?(均为互逆运算)二、创设问题情境,解决问题1、请同学们欣赏本章导图,如果要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?这里该用哪种运算呢?通常这类不易直接列算式计算的问题,我们常用方程解决:设边长为xcm,则有x2=25,显然应取x=5.这个问题实质上就是要找一个数,这个数的平方等于25.2。
平方根教学目标知识与技能了解算术平方根的概念、会用根号表示一个数的平方根与算术平方根。
进一步明确平方与开平方是互为逆运算,会利用开方运算求某些非负数的平方根与算术平方根。
会用计算器求某些非负数的算术平方根。
过程与方法让学生经历概念形成过程,提高学生学习兴趣。
鼓励学生进行探索和交流,培养他们的创新意识和合作精神。
情感态度与价值观培养学生在学习中互相帮助、相互合作的团队精神。
培养学生认真仔细的学习态度,以及思维的严谨性。
教学重点会利用开方运算求某些非负数的平方根与算术平方根。
教学难点如何理解是非负数及被开方数是非负数。
教学内容与过程教法学法设计一. 复习提问,回顾知识,请看下面的问题:1、36、1.44、各是什么数的平方?2.有没有平方得负数的数?为什么?3.数面向全体学生提出相关的问题。
明确要研究,探索的问题是什么,怎样去研究和讨论。
.留给学生一定的思考和回顾知识的时间。
是什么数的平方?4.平方得9的数有几个?是什么数?二. 导入课题,研究知识:今天我们来学习平方的逆运算--------------------开平方。
为学生创设表现才华的平台。
三.归纳知识,培养能力:1、算术平方根定义以及表示。
我们把正数a的正的平方根叫做a的算术平方根,0的算术平方根为0.2、平方根的表示法3.平方根的意义。
正数a的平方根表示为四.运用知识,分析解题:例2将下列各数开平方:(1)49;(2)1.69解(1)因为7=创设问题情境,把学生置于研究新的未知的问题气氛中,使学生提出问题、思考问题、解决问题的动态过程中学习问题。
通过对数的平方根的运算,说明求正数的正的平方根叫做这个正数的算术平方根。
0的算术平方根是0.3、若有意义,则a能取的最小整数为______.六.课后小结:平方根的意义及表示。
七.课后作业:复印给学生必须手写,是检查备课的重要依据。
教学反思。
数的开方
教学目标
知识与技能
通过对试题讲评,应该使学生进一步理解和掌握知识,更好
的利用知识解决问题,提高能力。
过程与方法
查阅试卷,发现问题,提出问题,研究讨论,解决问题,提
高能力。
情感态度与价值观
培养学生良好的学习品质。
教学重点试卷中存在的问题。
教学难点认识错误,正确改正,逐步提高。
教学内容与过程教法学法设计
一.你对本章数的开方知识掌握的如何?请自己估算一下自
己的分数。
二. 本节课我们一起来研究我们的单元考试题。
面向全体学生提出相关的问题。
明确要研究,探索的问题是什么,明确本节课的具体任务。
.
三.学生查阅试卷
四.从中发现问题.
五.学生提出问题.
六.师生研究分析问题. 共同解决问题.
七. 预习下一课的内容.
鼓励学生去研究、分析、探索解决问题的方法。
教
学
反
思
必须手写,是检查备课的重要依据。
11.1平方根与立方根2. 立方根一、教学目标1、知识与技能目标(1)使学生理解立方根的概念,能运用根号正确表示一个数的立方根;(2)掌握用开立方运算求某些数的立方根的方法.2、过程与方法目标(1)通过对比体会平方根、立方根的联系和区别;(2)在学习开立方运算求一个数立方根的过程中,体会开立方运算与立方运算之间的互逆关系.3、情感与态度目标(1)发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确地处理.(2)通过探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情.二、教学重点和难点1.重点:立方根的概念;求某数的立方根的方法.2. 难点:平方根、立方根的概念及区别;求一个数的立方根.三、学法设计在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式.在学习的过程中让学生仔细观察、大胆猜测、交流讨论、分析推理,最后归纳总结.让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.四、教法设计针对八年级学生的知识结构和心理特征,本节课可选择用类比及引导探索法,由浅入深,由特殊到一般地提出问题,注重启发、疏导学生自主探索,合作交流.在探究活动中,引导学生利用概念思考问题,对于学生的回答给予点拨,及时评价.这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性.五、教学过程设计(一)创设情境、复旧导新1、填表:2、思考:若一个正方体的体积是,那么这个正方体的棱长为多少呢?为使学生能更轻松地发现、掌握立方根,先激活学生记忆中有关平方根的知识,在这里设计了让学生回顾平方根的知识,以填空的形式简要归纳,为立方根的引入奠定基础.3、做一做(多媒体展示图片及问题):要制作一种容积为27m3的正方体形状包装箱,这种包装箱的棱长应该是多少?用多媒体展示图片和课件让学生动手做一做.在做的过程中引导学生思考,利用体积等于棱长的立方,将此题转化为求一个数使它的立方等于27,得出边长为3m.这样从现实生活中提出数学问题,把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,使学生积极主动地投入到数学活动中去,同时为学习立方根提供背景和生活素材.4、试一试:你能试着给数的立方根下个定义吗?(学生分组讨论,相互交流,再总结定义,最后由教师补充)一般地,如果一个数a的立方等于a,那么这个数叫做a的立方根或三次方根.即:如果x3=a,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.(强调开立方与立方是逆运算)让学生试着给出立方根和开立方的定义.在这里让学生以原有的知识和经验出发,引导学生通过类比、思考、探索、交流来获取知识和学会学习,同时让学生经历数学知识的形成与应用过程,使他们更好地理解数学概念的形成,发展他们的数学能力.在本次活动中,教师要关注:学生对平方根的了解程度;学生能否正确地利用类比的方法说出立方根和开立方的概念;通过对概念的探究,能否理解立方与开立方是一种互逆的运算;学生在活动中的参与意识及发表个人见解的勇气.(二)启发诱导,探索新知1、探究:根据立方根的意义填空(多媒体展示,学生口答)(1)因为23=8,所以8的立方根是();(2)因为()3=0.125,所以0.125的立方根是();(3)因为()3=0,所以0的立方根是();(4)因为()3=-8,所以-8的立方根是().学生在了解立方根的有关概念的基础上通过对问题的研究,进一步巩固立方根的概念,并能熟练地利用开立方与立方的互逆性,求一个数的立方根.2、说一说(学生分组讨论):以填空的方式让学生计算具体的正数、0和负数的立方根,寻找它们各自的特点,通过小组讨论合作交流,归纳得出立方根的性质.这样让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究的过程中发展思维能力,有效地改变学生原有的学习方式. 3、自主探究:如何表示一个数的立方根?一个数a 的立方根可表示为3a ,读作:三次根号a,其中a 是被开方数,3是根指数. 通过让学生自主探究立方根的表示方法和读法,进一步训练学生利用类比的方法学习立方根,这样将新旧知识联系起来既有利于复习巩固平方根,又有利于理解和掌握立方根. 4、 议一议:你能说说数的平方根与数的立方根有什么不同吗?设计这个问题,可以了解学生对立方根及平方根知识的掌握程度,可以在教的过程中,对于学生不理解的,没掌握的知识点再加以强调.学生在归纳的过程中可能结果不是很完善,教师可以引导学生从各自的定义、性质、表示方法上加以区别.在本次活动中,教师要关注:学生能否根据立方根的概念填空;学生能否准确地归纳出立方根的性质;学生能否正确地用符号表示一个数的立方根;学生能否全面地说出平方根与立方根的区别. (三) 引导探究,延伸知识 1、探究:因为38-= ,-38= ;所以 . (-2,-2 ,=)因为327-= ,-327= ;所以. (-3,-3 ,=) 2、猜一猜:你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗?教师引导学生先分析每个式子所表示的意义再填空.通过这个活动,让学生大胆猜想,训练学生由浅入深,从特殊情形总结一般规律的能力,进一步熟悉立方根的求法,总结出负数的立方根的一个重要性质:3a -=-3a . 3、做一做:例:求下列各式的值:(1)364(2)3125-.设计说明:例题采取学生自己先动手做,再由教师点评,最后师生共同总结的方式完成.这种师生互动的形式激发了学生学习的热情,使学生主动地获取了知识和技能.在(2)、(3)两题中,鼓励学生采用多种方法来做,培养他们的发散思维.解:(1)364表示64的立方根,而43=64,所以364=4.(2)3125-表示-125的立方根,而(-5)3=-125,所以3125-=-5.4、练一练:求下列各式的值:(1)31000 (2)3001.0- (3)31-.答案:(1)10;(2)-0.1;(3)-1.设计说明:考虑到学习知识的过程就是一个由浅入深的过程,这又是学生第一次独立解题,故而练习的题目应以简单为宜.练习题中的被开方数由整数到小数再到分数,由正数到负数设计的比较全面,从学生的解题过程中也能较全面地看出学生对知识的掌握程度.在本次活动中,教师应关注:学生能否真正理解每个根式所表达的意义;学生对立方根的了解程度;学生能否正确的说出一个负数的立方根的求法.(四)归纳小结,深化新知学生总结,教师补充,重点总结平方根和立方根的异同点:让学生在总结过程中自己把本节课的内容进行梳理,小组交流,为学生创造交流的空间,调动学生的积极性,回顾所学知识,发展学生的求同存异思维,使它们能在复杂的环境中明辨是非,并做出正确的处理,通过小结培养学生的概括能力和自主学习的意识.在本次活动中,教师应重点关注不同层次的学生对本节知识的认识程度.(五)作业布置:1、自学用计算器求一个数的立方根;2、教材的练习题和习题.六、板书设计:(课题)复习一、立方根的定义四、探究延伸填表二、表示做一做。
八年级数学上册第11章数的开方11.1 平方根与立方根1 平方根第2课时算术平方根教案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第11章数的开方11.1 平方根与立方根1 平方根第2课时算术平方根教案(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第11章数的开方11.1 平方根与立方根1 平方根第2课时算术平方根教案(新版)华东师大版的全部内容。
第2课时算术平方根【拓展提升】例4 错误!的算术平方根为________;错误!的算术平方根是________.例5 若错误!=2,则(m+2)2=________.例6 算术平方根等于它本身的数有________.例7 若已知错误!+错误!=0,则x-y的算术平方根为________.使学生通过所学的知识,在原来的基础上有拓宽、有提升,并能与过去的知识相结合,达到综合应用的目的。
活动四:课堂总结反思当堂训练:1.求下列各数的算术平方根:36,错误!,15,0.64,错误!。
2.已知错误!+错误!=0,求y x的算术平方根.当堂检测,及时反馈学习效果。
【知识网络】提纲挈领,重点突出。
【教学反思】①[授课流程反思]A.新课导入□B.情景导入□要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化.概反思,更进一步提升。
立方根1教学目标知识与技能:了解立方根的概念,会用根号表示一个数的立方根.了解立方与开立方运算互为逆运算.能利用开立方运算求某些数的立方根.能用计算器求某些数的立方.过程与方法:创设学生熟悉的问题情景,激发学生的求知欲.鼓励学生积极思维,体会类比的数学方法.情感态度与价值观:培养学生积极思维,动口、动手能力.培养学生团结协作的团队精神.教学重点:会用根号表示一个数的立方根,能通过立方运算求某些数的立方根.教学难点:立方根与平方根性质的区分.课堂导入现有一个体积为216立方厘米的正方体纸盒,它的每一条棱长是多少?教学过程一、探索发现问题:1、这个实际问题,是个怎样的计算问题?2、你能找一个数,使这个数的立方等于216吗?3、如果,正方体的体积依次为:64,125,343,那么相应的正方体的棱长为多少?4、从这里可以抽象出一个什么数学概念?概括:立方根的概念如果一个数的立方等于a,那么这个数叫做a的立方根.二、试一试(1) 27的立方根是什么?(2)-27的立方根是什么?(3) 0的立方根是什么?请你自己也编三道求立方根的题目,并给出解答. 思考:通过计算你发现了什么?(和平方根的性质比较.) 概括:立方根的性质和表示方法.正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.为了计算方便,数a 的立方根,记作a ,读作“三次根号a”,a 称为被开方数. 三、举例应用例4求下列各数的立方根:(1)278; (2) -125; (3) -0.008.解(1) 因为(32)3,所以.322783=(2) 因为(-5)3=-125,所以3125-=-5.(3)因为(),008.02.03-=-所以2.0008.03-=-例5用计算器求下列各数的立方根: (1) 1331;(2)9.263(精确到0.01) 解(1) 在计算器上依次键入,显示结果为11,所以31331=11.(2)略 四、课堂练习1、判断下列说法是否正确,并说明理由.(1)278的立方根为32±( )(2) 25的平方根是5 ( ) (3) -64没有立方根 ( ) (4) -4的平方根是 -2 ( ) (5) 0的平方根和立方根都是0 ( )2、求下列各式的值.(1)64643+- (2)36427-(3)327 (4)327102-答案:1、(1)错 (2)错(3)错 (4)错 (5)正确 五、课堂小结 1、什么是立方根?2、正数、0、负数的立方根有何特点?3、通过本节课的学习,有何体会? 课堂作业1、求下列各数的立方根:(1) 0.125;(2) -6427;(3) 1728.2、求下列各式的值.(1)(2) 3、10在哪两个整数之间? 答案:1、(1)0.5因为125.0)5.0(3=所以5.0125.03=(2)43-(3)122、(1)1.0001.03-=- (2)54125643-=-3、因为16109<< 所以4103<< 教学反思:混淆平方根与立方根的性质平方根与立方根是两个不同的概念,具有不同的性质.它们有如下区别: 只有非负数有平方根,而任何数都有立方根: 正数有两个平方根,而立方根只有一个.如果对以上区别理解不清,解题时就容易把平方根与立方根混淆起来.3001.0-312564-13.5.2 线段垂直平分线理解线段的垂直平分线的性质定理与逆定理.重点线段垂直平分线的性质定理与逆定理.难点线段垂直平分线的性质定理与逆定理的运用.一、创设情境给一条已知线段a,以a为底边的等腰三角形有几个?如果用三角板和刻度尺,你能画出至少三个吗?利用三角板、刻度尺作出线段a的垂直平分线,在垂直平分线上取点,连结可得符合条件的等腰三角形.在这里,我们利用了线段垂直平分线上的点到线段两个端点的距离相等.那么,这条件又怎么证明呢?下面我们一起研究.二、探究新知1.整体感知请同学们先将这个命题画出图形(如图所示),写出已知、求证.2.互动学习互动1师:这是证明线段相等的命题,回忆前面所学知识,会得到什么启发?生:可以利用S.A.S.定理证明△PAC≌△PBC,从而得到PA=PB.师:很好.这样就得到了线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.今后我们可以直接利用这个定理得到有关线段相等,同时这也可当作等腰三角形的一种判定方法.明确巩固利用三角形全等来证明线段相等的方法.互动2师:反过来,到一条线段的两个端点的距离相等的点是否一定在这条线段的垂直平分线上呢?我们也可以通过“证明”来解决这个问题.生:画出图形(如图所示),写出已知、求证.师:为了证明点Q在AB的垂直平分线上,可以过点Q作辅助线,先构造“垂直或平分”中的一个关系,去证明另一个.特别要注意防止“过点Q作线段AB的垂直平分线”这种错误.你能根据提示,说出证明过程吗?生:(略)教师巡回指导并检查学生所做情况,然后予以总结讲解.师:在证明过程中,有的同学利用三角形全等证明了结论,还有的同学很巧妙地利用了前面学习过的等腰三角形“三线合一”的性质,看来同学们能够学以致用,这一点很好.这样我们就得到了线段垂直平分线的判定定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上.生:判定定理只能判断点在线段垂直平分线上,那怎么才能判断这条直线就是线段的垂直平分线呢?师:这个问题提得很好.大家想一想,几点确定一条直线?生:两点.师:所以,只要我们能证明一条直线上有两点满足判定定理的条件,那么这条直线就一定是线段的垂直平分线.明确利用等腰三角形“三线合一”证明的方法值得重视.例已知:如图,在△ABC中,m,n,l分别是BC,AC,AB边上的垂直平分线.求证:m,n,l交于一点.证明:设m,n交于一点O,连结OA,OB,OC.则有OA=OB=OC(线段垂直平分线上的点到线段两端的距离相等).∵OA=OB,∴点O在l上(到线段两端距离相等的点在线段的垂直平分线上).即m,n,l交于一点.明确巩固证明“三线共点”的方法.师:这道例题的结论又告诉我们,三角形的三条边的垂直平分线交于一点,这一点称为三角形的外心,外心的性质是到三角形的三个顶点的距离相等.三、练习巩固1.如图,在△ABC中,点D在BC上,BC=12,BD+AD=12,则点D在__AC__的垂直平分线上.2.如图,在△ABC中,AB的垂直平分线交AC于点D,若AC=8,CB=6,则△BDC的周长是__14__.3.如图,在△ABC中,AD为∠BAC的平分线,FE垂直平分AD,E为垂足,交BC的延长线于点F.求证:∠B=∠CAF.(提示:∠B=∠ADF-∠BAD,∠CAF=∠DAF-∠DAC,又∠ADF=∠DAF,∠BAD=∠DAC)四、小结与作业小结1.引导学生作知识总结:线段垂直平分线的性质、判定定理,三角形三边的垂直平分线交于一点.2.教师扩展:利用两个定理证明线段相等、线段垂直时不用再证明全等,可简化解题过程.作业教材第99页习题13.5第2题.本节课在教学过程中,首先提出问题,让学生回答,通过观察、发现、论证得出线段的垂直平分线的性质定理,接着写出性质定理的逆命题.教师与学生一起证明这个定理,并在习题中运用这两个定理,得出三角形各边的垂直平分线相交于同一点的重要结论.在教学过程中,应注意让学生搞清两个定理的条件与结论,并充分调动学生的积极性,体会成功解决问题的乐趣.专题23 二元一次方程组解法-代入法【知识点总结】 一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程. 二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法. 要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便; (3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便. 一、用代入法解二元一次方程组1、用代入法解方程组:5341x yx y =+⎧⎨+=⎩.【思路点拨】直接将上面的式子代入下面的式子,化简整理即可. 【答案与解析】解:5341x yx y =+⎧⎨+=⎩①②将①代入②得:3(5)41y y ++=③去括号,移项,合并,系数化1得:2y =- ④把④代入①得:3x = ∴ 原方程组的解为:32x y =⎧⎨=-⎩【总结升华】当方程组中出现一个未知量代替另一个未知量的方程时,一般用直接代入法解方程组.2、用代入法解二元一次方程组:524050x yx y--=⎧⎨+-=⎩①②【思路点拨】观察两个方程的系数特点,可以发现方程②中x的系数为1,所以把方程②中的x用y来表示,再代入①中即可.【答案与解析】解:由②得x=5-y③将③代入①得5(5-y)-2y-4=0,解得:y=3,把y=3代入③,得x=5-y=5-3=2所以原方程组的解为23 xy=⎧⎨=⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.3、用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③ 将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.4、“整体代入”解方程组:10 4()5x yx y y--=⎧⎨--=⎩【答案与解析】解:104()5x yx y y--=⎧⎨--=⎩①②由①,得1x y -= ③.将③代入②,得415y ⨯-=,解得1y =-. 把1y =-代入③,得0x =. 所以原方程组的解为01x y =⎧⎨=-⎩.【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.5、解方程组2320,2352y 9.7x y x y --=⎧⎪-+⎨+=⎪⎩【答案】解: 232235297x y x y y -=⎧⎪⎨-++=⎪⎩①②将①代入②:25297y ++=, 得 y =4,将y =4代入①:2x -12=2 得 x =7, ∴原方程组的解是74x y =⎧⎨=⎩.二、由解确定方程组中的相关量1、 方程组43235x y kx y -=⎧⎨+=⎩的解x y 与的值相等,则k 的值是 .【思路点拨】将x y =代入上式,可得,x y 的值,再代入下面的方程可得k 值.【答案】1 【解析】解:43235x y k x y -=⎧⎨+=⎩①②将x y =代入②得1x y ==,再代入①得1k =.【总结升华】一般地,先将k 看作常数,解关于x ,y 的二元一次方程组再令x =m 或y =m ,得到关于m 的方程,解方程即可.2、若方程组ax+by=11(5-a)x-2by+14=0⎧⎨⎩的解为14x y =⎧⎨=⎩,试求a b 、的值.【答案与解析】解:将14x y =⎧⎨=⎩代入得a+4b=11(5-a)-2b 4+14=0⎧⎨⨯⎩,即a+4b=11a+8b=19⎧⎨⎩,解得a=3b=2⎧⎨⎩.【总结升华】将已知解代入原方程组得关于a b 、的方程组,再解关于a b 、方程组得a b 、的值. 三、方程组解的应用 1、已知关于x ,y 的方程组2529x y m x y m +=⎧⎨-=⎩①②的解满足方程3x +2y =19,求m 的值.【思路点拨】要求m 就必须设法建立关于m 的方程,因此,应先求出方程组的解,然后将所求出的解代入3x +2y =19中,问题便可解决. 【答案与解析】解:由②得:29x y m =+ ③ 将③代入①,解得y m =- ④ 将④代入③,解得7x m = ⑤所以原方程组的解为7x m y m =⎧⎨=-⎩把方程组的解代入方程3x +2y =19中,得3×7m +2×(-m )=19, 所以m =1.【总结升华】本题也可以看作三元一次方程组的问题来解决.2、已知2564x y ax by +=-⎧⎨-=-⎩①②和方程组35168x y bx ay -=⎧⎨+=-⎩③④的解相同,求2011(2)a b +的值.【思路点拨】两个方程组有相同的解,这个解是2x +5y =-6和3x -5y =16的解.由于这两个方程的系数都已知,故可联立在一起,求出x 、y 的值.再将x 、y 的值代入ax -by =-4,bx +ay =-8中建立关于a 、b 的方程组即可求出a 、b 的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.11。
11.1 平方根与立方根第1课时平方根学习目标1.从实际问题的需要出发,引进平方根概念,体现从实际到理论、具体到抽象这样一个一般的认识过程,培养学生辩证唯物主义观点;2.从求二次幂的平方运算引出求平方根的运算,突出平方运算和开平方运算的互逆性;3.使学生理解数的平方根的概念,能运用根号表示一个数的平方根;4.掌握用平方运算求某些数的平方根的方法.学习过程一、创设情境问题1 要剪出一块面积为25 cm2的正方形纸片,纸片的边长应是多少?问题2 已知圆的面积是16πcm2,求圆的半径长.(学生探索,回答问题)二、探究归纳问题1解设正方形纸片的边长为x cm,依题意有:x2=25,求出满足x2=25的x值,就可得正方形纸片的边长.因52=25,(-5)2=25,故满足x2=25的x的值可以是5,也可以是-5,但正方形边长只能取正值.所以x=5.答正方形纸片的边长为5cm.这个问题实质上就是要找一个数,这个数的平方等于25.问题2解设圆的半径为R cm,依题意有:πR2=16π,即R2=16,求出满足R2=16的R的值即可求出圆的半径.因42=16,(-4)2=16,故满足R2=16的R的值为4或-4,但圆的半径只能取正值.所以数R=4.答圆的半径为4cm.这个问题实质上就是要找一个数,这个数的平方等于16.刚才具体的二个例子,从数学意义上都是要解决这样一个共同的问题:已知某数的平方,要求这个数.用式子来表示就是如果x2=a,求x的值.概括如果一个数的平方等于a,那么这个数叫做a的平方根(square root)(也叫a的二次方根).在上述例1问题中,因为52=25,所以5是25的一个平方根.又因为(-5)2=52=25,所以-5也是25的一个平方根.这就是说,25的平方根有两个:5与-5.在上述例2问题中,因为42=16,所以4是16的一个平方根.又因为(-4)2=42=16,所以-4也是16的一个平方根.这就是说,16的平方根有两个: 4与-4.所以,根据平方根的意义,我们可以利用平方来检验或寻找一个数的平方根.三、实践应用例1 求100的平方根.解 因为102=100,(-10)2=100,除了10和-10以外,任何数的平方都不等于100,所以100的平方根是10和-10,也可以说,100的平方根是±10.学生试一试:(1) 144的平方根是什么?(2) 0的平方根是什么?(3)254的平方根是什么?(4)-4有没有平方根?为什么?请学生也编三道求平方根的题目,并给出解答.与同学交流,你发现了什么?1.平方根的性质:问 正数的平方根是什么?答 如果数是正数,它们都有两个平方根,这些数的两个平方根都分别是互为相反数. 问 0的平方根是什么?答 0的平方根是0,这是因为02=0.由于任何不为零的数的平方都不等于零,所以零的平方根只有一个,它就是零本身.问 负数有平方根吗?为什么?答 负数没有平方根.由于正数、零和负数的平方都不是负数,所以负数没有平方根. 请同学概括数的平方根的性质.答 一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.2.一个非负数a 的平方根的表示法.当a >0时,a 的正的平方根用符号“2a ”表示,其中a 叫做被开方数,2叫做根指数,a 的负的平方根用符号“-2a ”表示,这两个平方根合起来可以记作“2a ±”.这里,符号“2”,读作“二次根号”,“2a ”读作“二次根号a ”.当根指数是2时,通常将这个2省略不写,如2a 记作a ,读作“根号a ”;2a ±记作a ±,读作“正负根号a ”. 一般地,如果x 2=a (a ≥0),那么a 的平方根可以表示为x =a ±.例如,9的平方根记作9±,读作正负根号9.3.开平方.求一个数a (a ≥0)的平方根的运算,叫做开平方.开平方运算是已知指数和幂求底数.平方与开平方互为逆运算.一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0.但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0.负数没有平方根.因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根. 例2 将下列各数开平方:(1)49, (2)1.69.分析 开方运算就是求平方根,我们可以通过平方运算来解决.解 (1)因为49)7(2=±,所以49的平方根是,7±,即749±=±.(2) 因为69.1)3.1(2=±,所以1.69的平方根是3.1±,即3.169.1±=±.例3 下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由.(1)-64;(2)0;(3)(-4)2.分析 因为只有正数和零才有平方根,所以首先应观察所给出的数是否为正数或0.解 (1)因为-64是负数,所以-64没有平方根;(2)0有一个平方根,它是0;(3)因为016)4(2>=-,所以2)4(-有两个平方根,且416)4(2±=±=-±.四、交流反思1.一般地,如果x 2=a ,那么叫x 做a 的平方根.(也叫a 的二次方根).用a ±表示.当a >0时a 有两个平方根,即a ±,a 表示a 的正的平方根,-a 表示a 的负的平方根,它们互为相反数;当a =0时,a 有一个平方根,就是它本身;负数没有平方根.2.求一个数a 的平方根的运算,叫做开平方,平方和开平方运算有区别又有联系.区别在于,平方运算中,已知的是底数和指数,求的是幂;而在开平方运算中,已知的是指数和幂,求的是底数.在平方运算中的底数可以是任意数,平方的结果是唯一的;在开平方运算中,被开方数必须是非负数,开平方的结果不一定是唯一的.3.平方和开平方运算又有联系,二者互为逆运算.4.求一个数的平方根,可以通过平方运算来解决.五、检测反馈1.说出下列各数的平方根(1)64; (2)0.25; (3)6449. 2.求下列各数的平方根(1)8116; (2) 0.36; (3) 324.3. 平方根等于本身的数是 .4. 已知16)2(2=x ,y 是2)5(-的正的平方根,求代数式y x x y x x -++的值.答案:1. (1)±8; (2) ±0.5; (3) ±87 2. (1) ±94 ;(2) ±0.6;(3) ±18 3. 04.x = ±2,y =5,y x x y x x -++的值是﹣218.六、学习小结回忆一下:本节课你有什么收获?1.平方根、开平方的定义;2.平方根的表示;3.平方根的性质;4.求一个数的平方根.。