不锈钢的电化学腐蚀与防护
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
不锈钢和碳钢电化学反应原理不锈钢是一种具有耐腐蚀性能的合金钢,主要成分为铁、铬、镍和少量的钼、锰等元素。
碳钢则是一种含碳量较高的钢铁材料,主要成分为铁和碳。
由于其成分的不同,不锈钢和碳钢在电化学反应中表现出不同的特性。
不锈钢的抗腐蚀性能主要归功于其中的铬元素。
在不锈钢表面形成的一层致密的氧化铬膜,可以阻止进一步的氧化反应。
这种氧化铬膜具有很高的稳定性和耐腐蚀性,能够有效地保护不锈钢材料免受腐蚀的侵害。
然而,在某些特殊环境下,不锈钢仍然会发生电化学反应。
例如,在酸性环境中,不锈钢表面的氧化铬膜会被酸性溶液侵蚀,从而导致材料的腐蚀。
这种腐蚀过程是一个电化学反应过程,涉及到阳极和阴极的反应。
在酸性环境中,不锈钢表面的氧化铬膜被酸性溶液侵蚀后,暴露出的金属表面就成为阳极区。
在阳极区,金属表面会发生氧化反应,形成金属离子和电子。
同时,在离开阳极区的地方,形成了阴极区。
在阴极区,氧化铬膜上的氧化物会还原成金属离子和电子。
这些电子会通过金属表面和酸性溶液中的氢离子结合,形成氢气。
与之相比,碳钢在电化学反应中表现出不同的特性。
碳钢的主要成分是铁和碳,其电化学反应主要涉及铁离子的氧化和还原过程。
在酸性环境中,碳钢表面的铁离子会被氧化为铁离子,并释放出电子。
这些电子会通过金属表面和酸性溶液中的氢离子结合,形成氢气。
与不锈钢相比,碳钢的腐蚀速度更快,因为碳钢缺乏不锈钢中的抗腐蚀元素。
不锈钢和碳钢在电化学反应中表现出不同的特性。
不锈钢的抗腐蚀性能主要归功于其中的铬元素和形成的氧化铬膜,而碳钢则缺乏这种抗腐蚀元素,容易在酸性环境中发生电化学反应。
了解这些反应原理和特性有助于我们选择合适的材料,并采取相应的防护措施来延长材料的使用寿命。
金属材料的电化学腐蚀行为与防护引言:金属材料是广泛应用于工业和日常生活中的重要材料之一。
然而,金属材料在使用过程中往往会受到电化学腐蚀的影响,而腐蚀会导致金属材料性能下降、损坏甚至失效。
因此,了解金属材料的电化学腐蚀行为及其防护对于延长材料寿命、提高使用性能具有重要意义。
一、电化学腐蚀行为1. 腐蚀机理金属腐蚀主要是通过电化学反应进行的。
在电化学腐蚀中,金属表面发生氧化和还原反应,形成电荷传递过程,导致金属离子溶解和产生腐蚀产物。
2. 影响因素电化学腐蚀行为受多种因素影响,包括金属材料的组成、结构、表面状态、溶液环境等。
其中,溶液环境的酸碱度、温度、溶解氧含量等因素对金属腐蚀具有重要影响。
3. 腐蚀类型金属腐蚀可分为多种类型,包括常见的均匀腐蚀、局部腐蚀和应力腐蚀等。
均匀腐蚀是指金属表面均匀溶解,而局部腐蚀则是指局部区域发生腐蚀。
应力腐蚀是指金属在受到应力作用下发生腐蚀。
二、电化学腐蚀防护方法1. 材料选择选择耐腐蚀性能好的金属材料是防护的首要措施。
不同金属的耐腐蚀性能不同,可以通过选择具有更好耐腐蚀性能的金属或合金来减轻腐蚀问题。
2. 表面处理通过表面处理来改变金属表面的状态,形成保护层来防止腐蚀的产生。
常见的表面处理方法包括电镀、喷涂、阳极氧化等。
3. 缓蚀剂缓蚀剂是一种能够与金属表面形成保护膜的物质,可以减缓金属腐蚀速率的发展。
常见的缓蚀剂包括钝化剂、缓蚀剂添加剂等。
4. 阴极保护阴极保护是通过将金属材料变为阴极,从而减少其腐蚀速度。
常见的阴极保护方法有外加电流阴极保护和阳极保护。
5. 涂层保护将金属表面涂覆一层抗腐蚀的涂层,形成保护层来防止金属腐蚀。
常见的涂层材料包括有机涂层、无机涂层等。
三、电化学腐蚀行为与防护应用举例1. 钢铁的电化学腐蚀行为与防护钢铁作为常见的金属材料,其电化学腐蚀问题尤为突出。
可以通过合金化、阴极保护等方式来减缓钢铁腐蚀速率。
2. 铜及其合金的电化学腐蚀行为与防护铜及其合金在湿润环境中易受电化学腐蚀。
中国不锈钢腐蚀手册中国不锈钢腐蚀手册第一章:引言不锈钢是一种重要的金属材料,广泛应用于各个领域。
它具有耐腐蚀、耐高温、抗氧化等优良性能,因此在化工、石油、能源、建筑等行业中得到了广泛应用。
然而,不锈钢在特定条件下也会发生腐蚀,因此对不锈钢的腐蚀进行研究和控制具有重要意义。
第二章:不锈钢的腐蚀机理不锈钢的腐蚀主要是由于外界环境中存在的氧、水和其他化学物质对其表面的侵蚀作用。
当不锈钢表面的保护层被破坏或者不完整时,这些侵蚀物质会与金属表面发生反应,导致不锈钢发生腐蚀。
不锈钢的腐蚀主要有普通腐蚀、点蚀、应力腐蚀等形式。
第三章:不锈钢的分类和性能根据不锈钢中含有的合金元素和组织结构的不同,可以将其分为多种类型,如奥氏体不锈钢、铁素体不锈钢、双相不锈钢等。
每种类型的不锈钢具有不同的耐腐蚀性能和适用范围。
在选择不锈钢材料时,需要根据具体的使用环境和要求来确定。
第四章:不锈钢的防腐措施为了延长不锈钢的使用寿命和减少腐蚀的发生,需要采取一系列的防腐措施。
首先,要保证不锈钢表面的清洁和光洁度,避免表面附着物和污染物对其产生影响。
其次,可以通过电化学方法对不锈钢进行保护,如阳极保护、阴极保护等。
此外,还可以采用涂层、包覆等方式来增加不锈钢的耐腐蚀性能。
第五章:常见问题与解决方法在使用过程中,可能会遇到一些常见的问题,如不锈钢表面出现斑点、起皮、变色等现象。
这些问题可能是由于不锈钢材料本身存在缺陷或者使用条件不当所导致的。
对于这些问题,可以通过调整使用条件、更换材料或者采取其他措施来解决。
第六章:案例分析本章将通过一些实际案例来分析不锈钢腐蚀问题的原因和解决方法。
通过对这些案例的分析,可以更好地理解不锈钢腐蚀的机理和防护措施。
第七章:结论通过对中国不锈钢腐蚀手册的编写,我们对不锈钢的腐蚀机理和防护措施有了更深入的了解。
希望这本手册能够为广大工程技术人员提供参考,帮助他们更好地应对不锈钢腐蚀问题,提高工作效率和产品质量。
金属腐蚀的防护方法金属腐蚀是一个全球性的问题,对材料、设备、设施和结构产生重大影响。
为了防止和减轻金属腐蚀的危害,以下是一些常用的金属腐蚀防护方法:1.涂层保护:涂层保护是一种常见的金属腐蚀防护方法。
通过在金属表面涂覆一层耐腐蚀的涂层,如油漆、涂料、塑料等,隔离金属与腐蚀介质,从而减缓或阻止金属腐蚀的进程。
2.改变金属结构:改变金属结构可以改变金属在腐蚀环境中的耐蚀性能。
例如,通过合金化添加耐腐蚀元素,提高金属表面的耐蚀性能。
此外,还可以采用耐腐蚀的合金材料,如不锈钢、钛合金等。
3.电化学保护:电化学保护是通过外部电流或牺牲阳极等方法改变金属表面的电化学状态,使金属表面形成一层保护膜,防止腐蚀介质与金属接触,从而达到防止腐蚀的目的。
4.表面处理:表面处理是通过物理或化学方法改变金属表面的形貌和结构,提高金属表面的耐蚀性能。
例如,表面抛光、喷砂处理、钝化处理等。
5.介质处理:介质处理是通过改变环境中的腐蚀介质来达到防止腐蚀的目的。
例如,去除环境中的腐蚀性气体或离子,控制湿度、温度等环境因素。
6.缓蚀剂:缓蚀剂是一种能够降低金属腐蚀速率的物质。
它们可以吸附在金属表面,形成一层保护膜,或改变金属表面的电化学状态,从而减缓或阻止金属腐蚀的进程。
7.温度控制:温度控制是通过控制环境中的温度来达到防止腐蚀的目的。
例如,通过加热、冷却、控制工作温度等方式,使金属表面保持干燥或维持适宜的温度范围。
8.维护保养:维护保养是通过定期检查、清洁、润滑、维修等方式来保持金属设备和设施的良好状态。
及时发现并修复腐蚀损伤,防止腐蚀进一步发展,是防止金属腐蚀的重要措施之一。
综上所述,以上这些方法可以单独或结合使用,以有效地防止和减轻金属腐蚀的危害。
在实际应用中,应根据具体的情况选择合适的方法。
电化学金属腐蚀与防护原理及应用电化学金属腐蚀是指金属在电解质溶液中发生的一种化学反应,会导致金属表面产生氧化、溶解或析出等不可逆过程。
金属腐蚀会导致金属失去原有的性能,降低材料的强度、硬度和可靠性,造成经济损失。
因此,为了保护金属材料免受腐蚀的损害,人们研究了多种防护技术。
电化学金属腐蚀的原理是基于金属表面的电化学反应。
金属在电解质溶液中处于一种平衡状态,既有金属的氧化(腐蚀)反应,也有金属的还原反应。
这个平衡状态被称为电池电位或者腐蚀电位。
当金属表面存在助腐蚀因素(如氧、酸、碱、盐)时,金属表面的氧化反应将被加速,导致金属腐蚀的加剧。
如果能够降低或改变金属表面的电位,就可以减缓金属腐蚀的发生。
为了实现金属腐蚀的防护,我们可以采用以下几种方法:1.阻止金属与电解质接触:通过物理屏障(如油漆、涂层、涂料等)将金属表面与电解质隔开,阻止金属被电解液侵蚀,起到保护金属的作用。
2.加强阳极的保护:在金属表面形成一层更活泼、更易氧化的金属层,作为阳极,吸引电流,减缓金属的腐蚀。
常见的做法是采用镀层、热浸镀、电镀等方法,在金属表面形成一层保护膜。
3.采用阻止电流流动的方法:通过在金属表面施加外加电流或者电磁场,阻止电流在金属间流动,减缓金属的腐蚀。
常见的做法是采用阴极保护或者磁场保护方法。
4.控制电解质环境:通过改变电解质的成分、浓度、温度等参数,使其不利于金属的氧化反应,减缓金属的腐蚀。
例如,对于钢铁材料,可以通过控制水中的溶解氧、酸碱度等因素,来减少金属腐蚀的发生。
电化学金属腐蚀防护的应用非常广泛。
在船舶、桥梁、海洋工程、化工设备等领域,金属材料容易受到海水、氧气、酸碱等环境的腐蚀,因此需要采取有效的防护措施。
例如,对于船舶,在船体表面施加阴极保护,将船体作为阴极,以减缓钢铁的腐蚀。
在化工设备中,常常采用高温涂层、耐酸碱材料等措施,延长设备的使用寿命。
总之,电化学金属腐蚀防护技术的目标是保护金属材料免受腐蚀的侵害,延长材料的使用寿命。
不锈钢的点腐蚀机理在金属表面局部地方出现向深处发展的腐蚀小孔,其余表面不腐蚀或腐蚀很轻微,这种形态成为小孔腐蚀,简称点蚀。
金属腐蚀按机理分为化学腐蚀和电化学腐蚀。
点腐蚀属于电化学腐蚀中的局部腐蚀。
一种点蚀是由局部充气电池产生,类似于金属的缝隙腐蚀。
另一种更常见的点蚀发生在有钝化表现或被高耐蚀性氧化物覆盖的金属上。
4.1 电化学腐蚀的基本原理通过原电池原理可以更好地说明电化学腐蚀机理。
当2种活泼性不同的金属(如铜和锌)浸入电解质溶液,2种金属间将产生电位差,用导线连接将会有电流通过,在此过程中活泼金属(锌)将被消耗掉,也就是被电化学腐蚀。
不同于化学腐蚀(如金属在空气中的氧化,锌在酸溶液中的析氢),电化学腐蚀一定有电流产生,并且电流量的大小直接与腐蚀物的生成量相关,即电流密度越大腐蚀速度越快。
各种金属在电解质溶液中的活泼程度可用其标准电极电位表示,即金属与含有单位活度(活度与浓度正相关,在浓度小于10-3mol/L时认为两者值相同)的金属离子,在温度298K (25℃),气体分压1.01MPa下的平衡电极电位。
标准电极电位越低,金属或合金越活泼,在与高电位金属组成电偶对时更易被腐蚀。
由此可见,决定金属标准电极电位的因素除了金属的本质外还有:溶液金属离子活度(浓度)、温度、气体分压。
另外一个重要影响因素是金属表面覆盖着的薄膜。
除了金、铂等极少数贵金属外,绝大多数金属在空气中或水中可以形成具有一定保护作用的氧化膜,否则大部分金属在自然界就无法存在。
金属表面膜的性质对其腐蚀发生及腐蚀速度都有着重要影响。
4.2 不锈钢的耐腐蚀原理不锈钢的重要因素在于其保护性氧化膜是自愈性的(例如它不象选择性氧化而形成的那些保护性薄膜),致使这些材料能够进行加工而不失去抗氧化性。
合金必须含有足够量的铬以形成基本上由Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。
如果铬的比例低于完全保护所需要的比例,铬就溶解在铁表面形成的氧化物中而无法形成有效保护膜。
电化学腐蚀与防护知识讲解电化学腐蚀与防护是关于金属材料在电解质溶液中遭受腐蚀的一门学科。
电化学腐蚀是指金属在电解质中发生氧化或还原反应,从而造成金属表面的损坏。
在现实生活和工业生产中,电化学腐蚀是一个严重的问题,会导致设备的损坏、金属结构的衰退以及经济损失。
因此,了解电化学腐蚀的机理以及相应的防护措施显得尤为重要。
电化学腐蚀的机理主要涉及三个基本要素:金属、电解质和电流。
当金属与电解质接触并通电时,金属表面会发生氧化或还原反应。
这些反应产生的电流会通过电解质传递,导致金属表面的原子或离子发生变化,从而引起腐蚀。
在电化学腐蚀过程中,有两个重要的反应:阳极反应和阴极反应。
阳极反应是指金属表面的原子或离子失去电子并进入电解质中,从而形成阳极溶解。
阴极反应则是指电解质中的氧气或水接受电子并与金属表面的离子结合,从而形成阴极还原。
这两个反应共同作用,加速了金属的腐蚀过程。
为了防止电化学腐蚀,人们采取了各种防护措施。
其中最常见的方法是使用保护涂层。
保护涂层可以阻隔金属与电解质的直接接触,减少氧气和水分子进入金属表面的机会,从而降低了腐蚀的速度。
常见的保护涂层材料包括有机涂料、无机涂料和金属涂层。
有机涂料一般用于室温下的腐蚀防护,而无机涂料和金属涂层则适用于高温和腐蚀性环境下的防护。
除了保护涂层,还有其他的防护方法可以应用于电化学腐蚀。
例如,可以通过电化学方法来保护金属。
电化学保护是利用外加电流来抵消电化学腐蚀反应,从而保护金属不受腐蚀。
这种方法常常用于防护埋地管道和水下设备。
另外,还可以采用合金化、电镀和阳极保护等方法来提高金属的抗腐蚀性能。
还需要注意一些因素来预防电化学腐蚀。
例如,要控制电解质的浓度和温度,避免过高的浓度和温度加速腐蚀的发生。
电化学腐蚀与防护是一个重要的学科,关乎到工业生产和设备的正常运行。
了解电化学腐蚀的机理和防护措施对于保护金属材料的完整性和延长使用寿命至关重要。
通过合理的防护措施和预防措施,可以有效地减少电化学腐蚀的发生,降低经济损失。
金属的腐蚀与电化学防护导语:当金属与周围的环境接触时,会发生腐蚀现象,破坏金属的性能与外观。
针对金属腐蚀问题,我们可以采取多种防护措施,其中电化学防护是一种有效的方式。
本文将探讨金属的腐蚀原理、腐蚀的分类以及电化学防护的原理和方法。
一、金属腐蚀原理金属腐蚀是指金属与外界环境(如氧气、水、酸、碱等)发生化学反应而导致的金属表面的损失。
常见的金属腐蚀有钢铁的锈蚀、铝的氧化以及铜的氧化等。
金属腐蚀的过程可以简单概括为两个步骤:阳极反应和阴极反应。
阳极反应是金属离子的氧化过程,金属原子失去电子转变为阳离子;阴极反应则是物质还原的过程,物质从离子态回到中性态,同时获得电子。
二、金属腐蚀的分类根据金属腐蚀的性质和发生环境的不同,我们可以将金属腐蚀分为以下几类:1. 干腐蚀:即在无水环境下发生的金属腐蚀。
典型的例子是金属在干燥空气中发生氧化反应,形成氧化物。
2. 湿腐蚀:是在存在水分的环境中发生的金属腐蚀,水起到了催化剂的作用。
常见的湿腐蚀有金属在水中发生氧化反应以及在潮湿气候中发生氧化等。
3. 电化学腐蚀:是指金属腐蚀过程中涉及电化学反应的腐蚀类型,包括阳极溶解、阳极极化和阴极保护等。
三、电化学防护的原理和方法电化学防护的基本原理是通过改变金属与周围环境之间的电化学反应来减缓或抑制金属腐蚀的发生。
以下是一些常见的电化学防护方法:1. 阳极保护:通过在金属表面形成保护性的氧化膜,阻止金属表面的进一步腐蚀。
常见的例子包括金属的阳极氧化和镀层等。
2. 阴极保护:将金属表面连接到一个电源的负极,使金属处于阴极状态,从而减缓或抑制金属的腐蚀。
这常用于金属的阴极保护涂层、阴极保护电流等。
3. 缓蚀剂:缓蚀剂是一种可以在金属表面形成保护性膜的物质,能够减缓腐蚀的发生。
常见的缓蚀剂包括有机酸、缓蚀油等。
四、电化学防护的应用电化学防护广泛应用于金属材料的防腐领域,有效地减缓或抑制金属腐蚀的发生。
以下是电化学防护在实际应用中的一些例子:1. 阳极保护:在海洋工程中经常使用阳极保护技术来防止金属构件的腐蚀。
金属的电化学腐蚀与防护在我们的日常生活和工业生产中,金属材料无处不在,从建筑结构到交通工具,从家用电器到机械设备。
然而,金属的腐蚀问题却始终困扰着我们,给社会带来了巨大的经济损失和安全隐患。
其中,电化学腐蚀是金属腐蚀中最常见、危害最大的一种形式。
那么,什么是金属的电化学腐蚀?它是如何发生的?又该如何进行有效的防护呢?让我们一起来深入了解一下。
首先,我们来认识一下什么是电化学腐蚀。
简单来说,电化学腐蚀就是金属在电解质溶液中发生的氧化还原反应,导致金属原子失去电子变成离子而被腐蚀的过程。
与化学腐蚀不同,电化学腐蚀需要有电解质溶液的存在,并且会形成原电池,从而加速腐蚀的进行。
电化学腐蚀的发生通常需要满足几个条件。
第一,金属表面存在不均匀性,比如化学成分的差异、组织结构的不同或者物理状态的差别。
第二,要有电解质溶液,它可以是水、酸、碱或者盐溶液等。
第三,还需要有氧气或者其他氧化性物质的存在。
为了更清楚地理解电化学腐蚀的过程,我们以钢铁在潮湿空气中的腐蚀为例。
钢铁中通常含有碳等杂质,在潮湿的空气中,钢铁表面会吸附一层薄薄的水膜,水膜中溶解了氧气和二氧化碳等物质,形成了电解质溶液。
此时,钢铁中的铁和碳就构成了无数微小的原电池。
铁作为负极,失去电子被氧化成亚铁离子:Fe 2e⁻= Fe²⁺;碳作为正极,氧气在正极得到电子被还原:O₂+ 2H₂O + 4e⁻= 4OH⁻。
亚铁离子进一步与氢氧根离子结合生成氢氧化亚铁,氢氧化亚铁再被氧气氧化成氢氧化铁,最终脱水形成铁锈。
电化学腐蚀的危害是巨大的。
它不仅会导致金属材料的强度降低、性能下降,缩短设备的使用寿命,还可能引发严重的安全事故。
例如,桥梁的钢梁因为腐蚀而强度减弱,可能会发生坍塌;石油管道因为腐蚀而破裂,会造成环境污染和资源浪费。
既然电化学腐蚀如此可怕,那么我们应该如何进行防护呢?常见的防护方法主要有以下几种:第一种是涂层防护。
在金属表面涂上一层防腐涂料,如油漆、塑料、橡胶等,将金属与外界的电解质溶液隔离开来,从而阻止腐蚀的发生。
不锈钢的电化学腐蚀与防护
摘要:本文概述了不锈钢常见的腐蚀类型,分别为均匀腐蚀和局部腐蚀,后者还可细分为晶间腐蚀,点腐蚀,缝隙腐蚀,应力腐蚀破裂等,其中多数腐蚀与电化学腐蚀有关。
同时阐述了极化曲线。
同时针对不锈钢的各种腐蚀类型,总结了不锈钢腐蚀的防护方法。
并讨论了利用电化学腐蚀加速的方法来评价不锈钢电化学腐蚀性能的优缺点。
关键词:不锈钢;腐蚀;电化学腐蚀;防护方法
不锈钢的不锈特性是由于钢板表面特殊的钝化保护膜,首先简单介绍一下不锈钢的耐蚀机理,即钝化膜理论。
所谓钝化膜就是在不锈钢表面有一层以Cr(铬)与氧结合的Cr2O3 (三氧化二铬)为主的薄膜它是在金属表面形成厚度约100万分之数mm的非动态皮膜。
由于这个薄膜的存在使不锈钢基体在各种介质中腐蚀受阻,这种现象称为钝化。
这种钝化膜的形成有两种情况,一种是不锈钢本身就有自钝化的能力,这种自钝化能力随铬含量的提高而加强。
另一种较广泛的形成条件是不锈钢在各种水溶液(电解质)中,在被腐蚀的过程中形成钝化膜而使腐蚀受阻。
不锈钢对比炭钢或铝耐蚀性突出优秀,但不是像金或者铂金那样绝对不生锈的金属。
因此研究其电化学腐蚀性能具有很重要的意义。
不锈钢常见的腐蚀类型
不锈钢的钝性赋予它极好的耐蚀性,在某些特殊条件下钝性的破坏可导致严重的局部腐蚀。
常见的不锈钢腐蚀可分为两大类[1,2],即均匀腐蚀和局部腐蚀,后者还可细分为晶间腐蚀,点腐蚀,缝隙腐蚀,应力腐蚀破裂等。
1.1均匀腐蚀是一种最常见的腐蚀形式,由于侵蚀均匀并可预测,因而这类腐蚀的危险性最小,均匀腐蚀的程度取决于钢种和介质条件。
1.2晶间腐蚀是一种局部的选择性的自晶界区发生的腐蚀,它使晶粒之间的结合力受到破坏,不易被察觉,特别是不锈钢类材料,即使晶界腐蚀已发展到相当严重的程度,其表观仍保持光亮无异的原态。
1.3点腐蚀是一种外观隐蔽而破坏性大的局部腐蚀,虽然因点蚀而损失的金属重量很小,但若连续发展,能导致腐蚀穿孔直至整个设备失效。
造成巨大的经济损失,甚至产生危害性更大的事故。
1.4缝隙腐蚀是在电解液中由于不锈钢与金属或非金属间存在极狭窄的缝隙,使有关物质的迁移受到阻抑形成浓差电池而在缝隙内或其近旁产生的局部腐蚀缝隙腐蚀可在多种介质中发生,但在氯化物溶液中最为严重。
在海水中,缝隙腐蚀
通常是由于缝内氧含量较低和周围溶液中氧含量较高形成氧浓差电池所致。
这时缝间成为阳极,而缝边金属表面成为阴极。
1.5应力腐蚀破裂是指材料在外加或残余应力和腐蚀介质联合作用下产生的破坏,破坏形态是裂纹、裂缝直至断裂。
1.6除了上述几种腐蚀形式,不锈钢还可能发生电偶腐蚀、腐蚀疲劳裂纹、磨损腐蚀等。
极化曲线
不锈钢在溶液中发生电化学腐蚀的根本原因是溶液中含有能使该种不锈钢氧化的物质,即腐蚀过程的去极化剂[3]。
阴极的去极化还原反应与阳极的金属氧化反应共同组成整个腐蚀过程。
显然,没有阴极反应,阳极反应就不能进行,金属就不会发生腐蚀。
以氢离子作为去极化剂的腐蚀过程称为氢离子去极化过程,简称氢去极化腐蚀,亦称析氢腐蚀,这是常见的危害性较大的一类腐蚀。
以氧作为去极化剂的腐蚀过程,称为氧去极化腐蚀,亦称吸氧腐蚀,这是自然界普遍存在因为破坏性最大的一类腐蚀。
从热力学已知,金属在腐蚀介质中能发生电化学腐蚀的必要条件是该金属的平衡电极电位比氢的平衡电极电位低,即Ee,M<Ee,H。
因此,常用的金属材料,如Fe、Ni、Zn等,由于它们的平衡电极电位比氢的平衡电极电位低,故发生氢去极化腐蚀。
如果金属的平衡电极电位比氧的还原反应电位低,则发生吸氧腐蚀。
如果在腐蚀电池中,阳极的电位比氢的平衡电位还正,阴极电位必然会比氢的平衡电位更正,那么腐蚀电位ER必定比氢平衡电位也正,所以氢气不能作为该腐蚀电池的阴极。
当阳极电位比氢的平衡电位负时,则腐蚀的电位ER才有可能比氢的平衡电位负,才有可能放氢而实现氢去极化。
因此氢的平衡电位是一个重要的基准,酸性越强,氢离子浓度越高(pH值越小),其氢的平衡电位(EH越正)。
氢的平衡电位越正和阳极电位越负,对于氢去极化腐蚀可能性的增加具有等效作用。
在中性介质中,氧去极化过程必然伴随着氧的消耗。
常常把氧去极化腐蚀称之为吸氧腐蚀。
在各种可能的阴极去极化反应中,以氧去极化过程最为重要,并且较为普遍。
一般实际腐蚀问题中以氧去极化(吸氧腐蚀)腐蚀占有相当大的比例。
例如淡水、海水、潮湿大气和土壤中只要有氧气就有吸氧腐蚀。
不锈钢腐蚀的防护方法
不锈钢防腐蚀的方法很多,主要有改善不锈钢的本质,把不锈钢与腐蚀介质隔开,或对金属进行表面处理,改善腐蚀环境以及电化学保护等。
在不锈钢中添
加合金元素,提高其耐蚀性,可以防止或减缓金属的腐蚀。
例如在不锈钢表面覆盖各种保护层,把被保护不锈钢与腐蚀性介质隔开,是防止不锈钢腐蚀的有效方法。
同时还可以通过磷化处理和热处理等方法提高不锈钢的耐蚀性。
也可以在不锈钢表面涂上一层非金属涂层或者金属涂层。
改善环境对减少和防止腐蚀有重要意义。
电化学保护法是根据电化学原理在金属设备上采取措施,使之成为腐蚀电池中的阴极,从而防止或减轻金属腐蚀的方法。
讨论
为了提高不锈钢的电化学腐蚀性能,可以通过电化学腐蚀加速试验来评价。
电化学在理论、技术和装置上的不断革新与创造,使得它比以往任何时候更具有对社会经济发展中各种问题进行挑战的能力。
在全球环境问题日益严峻的今天,电化学及其技术将同显其重要作用。
腐蚀电化学过程有以下特点:可自动控制、经济合算。
腐蚀电化学分析方法是仪器分析的一个分支,随着科研的发展,对分析方法的灵敏度、选择性、自控等各个方面都提出了很高的要求,具有以下几个优点:分析速度快、多种方法测量、仪器简单、经济、易微型化、需要试样的量较少、易于操作控制。
参考文献:
[1] 王正蕉,吴幼林等.不锈钢.北京:化学工业出版社,1991,28-37, 43-54, 100-151, 227-245.
[2] Bernstein, I. M., Handbook of Stainless Steel, McGrwa-Hill,1977, 15-26R.
[3] 牛绍蕊. 不锈钢的电化学腐蚀性能研究:(博士论文)兰州理工大学.2006.。