不锈钢的电化学腐蚀与防护
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
不锈钢和碳钢电化学反应原理不锈钢是一种具有耐腐蚀性能的合金钢,主要成分为铁、铬、镍和少量的钼、锰等元素。
碳钢则是一种含碳量较高的钢铁材料,主要成分为铁和碳。
由于其成分的不同,不锈钢和碳钢在电化学反应中表现出不同的特性。
不锈钢的抗腐蚀性能主要归功于其中的铬元素。
在不锈钢表面形成的一层致密的氧化铬膜,可以阻止进一步的氧化反应。
这种氧化铬膜具有很高的稳定性和耐腐蚀性,能够有效地保护不锈钢材料免受腐蚀的侵害。
然而,在某些特殊环境下,不锈钢仍然会发生电化学反应。
例如,在酸性环境中,不锈钢表面的氧化铬膜会被酸性溶液侵蚀,从而导致材料的腐蚀。
这种腐蚀过程是一个电化学反应过程,涉及到阳极和阴极的反应。
在酸性环境中,不锈钢表面的氧化铬膜被酸性溶液侵蚀后,暴露出的金属表面就成为阳极区。
在阳极区,金属表面会发生氧化反应,形成金属离子和电子。
同时,在离开阳极区的地方,形成了阴极区。
在阴极区,氧化铬膜上的氧化物会还原成金属离子和电子。
这些电子会通过金属表面和酸性溶液中的氢离子结合,形成氢气。
与之相比,碳钢在电化学反应中表现出不同的特性。
碳钢的主要成分是铁和碳,其电化学反应主要涉及铁离子的氧化和还原过程。
在酸性环境中,碳钢表面的铁离子会被氧化为铁离子,并释放出电子。
这些电子会通过金属表面和酸性溶液中的氢离子结合,形成氢气。
与不锈钢相比,碳钢的腐蚀速度更快,因为碳钢缺乏不锈钢中的抗腐蚀元素。
不锈钢和碳钢在电化学反应中表现出不同的特性。
不锈钢的抗腐蚀性能主要归功于其中的铬元素和形成的氧化铬膜,而碳钢则缺乏这种抗腐蚀元素,容易在酸性环境中发生电化学反应。
了解这些反应原理和特性有助于我们选择合适的材料,并采取相应的防护措施来延长材料的使用寿命。
金属材料的电化学腐蚀行为与防护引言:金属材料是广泛应用于工业和日常生活中的重要材料之一。
然而,金属材料在使用过程中往往会受到电化学腐蚀的影响,而腐蚀会导致金属材料性能下降、损坏甚至失效。
因此,了解金属材料的电化学腐蚀行为及其防护对于延长材料寿命、提高使用性能具有重要意义。
一、电化学腐蚀行为1. 腐蚀机理金属腐蚀主要是通过电化学反应进行的。
在电化学腐蚀中,金属表面发生氧化和还原反应,形成电荷传递过程,导致金属离子溶解和产生腐蚀产物。
2. 影响因素电化学腐蚀行为受多种因素影响,包括金属材料的组成、结构、表面状态、溶液环境等。
其中,溶液环境的酸碱度、温度、溶解氧含量等因素对金属腐蚀具有重要影响。
3. 腐蚀类型金属腐蚀可分为多种类型,包括常见的均匀腐蚀、局部腐蚀和应力腐蚀等。
均匀腐蚀是指金属表面均匀溶解,而局部腐蚀则是指局部区域发生腐蚀。
应力腐蚀是指金属在受到应力作用下发生腐蚀。
二、电化学腐蚀防护方法1. 材料选择选择耐腐蚀性能好的金属材料是防护的首要措施。
不同金属的耐腐蚀性能不同,可以通过选择具有更好耐腐蚀性能的金属或合金来减轻腐蚀问题。
2. 表面处理通过表面处理来改变金属表面的状态,形成保护层来防止腐蚀的产生。
常见的表面处理方法包括电镀、喷涂、阳极氧化等。
3. 缓蚀剂缓蚀剂是一种能够与金属表面形成保护膜的物质,可以减缓金属腐蚀速率的发展。
常见的缓蚀剂包括钝化剂、缓蚀剂添加剂等。
4. 阴极保护阴极保护是通过将金属材料变为阴极,从而减少其腐蚀速度。
常见的阴极保护方法有外加电流阴极保护和阳极保护。
5. 涂层保护将金属表面涂覆一层抗腐蚀的涂层,形成保护层来防止金属腐蚀。
常见的涂层材料包括有机涂层、无机涂层等。
三、电化学腐蚀行为与防护应用举例1. 钢铁的电化学腐蚀行为与防护钢铁作为常见的金属材料,其电化学腐蚀问题尤为突出。
可以通过合金化、阴极保护等方式来减缓钢铁腐蚀速率。
2. 铜及其合金的电化学腐蚀行为与防护铜及其合金在湿润环境中易受电化学腐蚀。
中国不锈钢腐蚀手册中国不锈钢腐蚀手册第一章:引言不锈钢是一种重要的金属材料,广泛应用于各个领域。
它具有耐腐蚀、耐高温、抗氧化等优良性能,因此在化工、石油、能源、建筑等行业中得到了广泛应用。
然而,不锈钢在特定条件下也会发生腐蚀,因此对不锈钢的腐蚀进行研究和控制具有重要意义。
第二章:不锈钢的腐蚀机理不锈钢的腐蚀主要是由于外界环境中存在的氧、水和其他化学物质对其表面的侵蚀作用。
当不锈钢表面的保护层被破坏或者不完整时,这些侵蚀物质会与金属表面发生反应,导致不锈钢发生腐蚀。
不锈钢的腐蚀主要有普通腐蚀、点蚀、应力腐蚀等形式。
第三章:不锈钢的分类和性能根据不锈钢中含有的合金元素和组织结构的不同,可以将其分为多种类型,如奥氏体不锈钢、铁素体不锈钢、双相不锈钢等。
每种类型的不锈钢具有不同的耐腐蚀性能和适用范围。
在选择不锈钢材料时,需要根据具体的使用环境和要求来确定。
第四章:不锈钢的防腐措施为了延长不锈钢的使用寿命和减少腐蚀的发生,需要采取一系列的防腐措施。
首先,要保证不锈钢表面的清洁和光洁度,避免表面附着物和污染物对其产生影响。
其次,可以通过电化学方法对不锈钢进行保护,如阳极保护、阴极保护等。
此外,还可以采用涂层、包覆等方式来增加不锈钢的耐腐蚀性能。
第五章:常见问题与解决方法在使用过程中,可能会遇到一些常见的问题,如不锈钢表面出现斑点、起皮、变色等现象。
这些问题可能是由于不锈钢材料本身存在缺陷或者使用条件不当所导致的。
对于这些问题,可以通过调整使用条件、更换材料或者采取其他措施来解决。
第六章:案例分析本章将通过一些实际案例来分析不锈钢腐蚀问题的原因和解决方法。
通过对这些案例的分析,可以更好地理解不锈钢腐蚀的机理和防护措施。
第七章:结论通过对中国不锈钢腐蚀手册的编写,我们对不锈钢的腐蚀机理和防护措施有了更深入的了解。
希望这本手册能够为广大工程技术人员提供参考,帮助他们更好地应对不锈钢腐蚀问题,提高工作效率和产品质量。
金属腐蚀的防护方法金属腐蚀是一个全球性的问题,对材料、设备、设施和结构产生重大影响。
为了防止和减轻金属腐蚀的危害,以下是一些常用的金属腐蚀防护方法:1.涂层保护:涂层保护是一种常见的金属腐蚀防护方法。
通过在金属表面涂覆一层耐腐蚀的涂层,如油漆、涂料、塑料等,隔离金属与腐蚀介质,从而减缓或阻止金属腐蚀的进程。
2.改变金属结构:改变金属结构可以改变金属在腐蚀环境中的耐蚀性能。
例如,通过合金化添加耐腐蚀元素,提高金属表面的耐蚀性能。
此外,还可以采用耐腐蚀的合金材料,如不锈钢、钛合金等。
3.电化学保护:电化学保护是通过外部电流或牺牲阳极等方法改变金属表面的电化学状态,使金属表面形成一层保护膜,防止腐蚀介质与金属接触,从而达到防止腐蚀的目的。
4.表面处理:表面处理是通过物理或化学方法改变金属表面的形貌和结构,提高金属表面的耐蚀性能。
例如,表面抛光、喷砂处理、钝化处理等。
5.介质处理:介质处理是通过改变环境中的腐蚀介质来达到防止腐蚀的目的。
例如,去除环境中的腐蚀性气体或离子,控制湿度、温度等环境因素。
6.缓蚀剂:缓蚀剂是一种能够降低金属腐蚀速率的物质。
它们可以吸附在金属表面,形成一层保护膜,或改变金属表面的电化学状态,从而减缓或阻止金属腐蚀的进程。
7.温度控制:温度控制是通过控制环境中的温度来达到防止腐蚀的目的。
例如,通过加热、冷却、控制工作温度等方式,使金属表面保持干燥或维持适宜的温度范围。
8.维护保养:维护保养是通过定期检查、清洁、润滑、维修等方式来保持金属设备和设施的良好状态。
及时发现并修复腐蚀损伤,防止腐蚀进一步发展,是防止金属腐蚀的重要措施之一。
综上所述,以上这些方法可以单独或结合使用,以有效地防止和减轻金属腐蚀的危害。
在实际应用中,应根据具体的情况选择合适的方法。
电化学金属腐蚀与防护原理及应用电化学金属腐蚀是指金属在电解质溶液中发生的一种化学反应,会导致金属表面产生氧化、溶解或析出等不可逆过程。
金属腐蚀会导致金属失去原有的性能,降低材料的强度、硬度和可靠性,造成经济损失。
因此,为了保护金属材料免受腐蚀的损害,人们研究了多种防护技术。
电化学金属腐蚀的原理是基于金属表面的电化学反应。
金属在电解质溶液中处于一种平衡状态,既有金属的氧化(腐蚀)反应,也有金属的还原反应。
这个平衡状态被称为电池电位或者腐蚀电位。
当金属表面存在助腐蚀因素(如氧、酸、碱、盐)时,金属表面的氧化反应将被加速,导致金属腐蚀的加剧。
如果能够降低或改变金属表面的电位,就可以减缓金属腐蚀的发生。
为了实现金属腐蚀的防护,我们可以采用以下几种方法:1.阻止金属与电解质接触:通过物理屏障(如油漆、涂层、涂料等)将金属表面与电解质隔开,阻止金属被电解液侵蚀,起到保护金属的作用。
2.加强阳极的保护:在金属表面形成一层更活泼、更易氧化的金属层,作为阳极,吸引电流,减缓金属的腐蚀。
常见的做法是采用镀层、热浸镀、电镀等方法,在金属表面形成一层保护膜。
3.采用阻止电流流动的方法:通过在金属表面施加外加电流或者电磁场,阻止电流在金属间流动,减缓金属的腐蚀。
常见的做法是采用阴极保护或者磁场保护方法。
4.控制电解质环境:通过改变电解质的成分、浓度、温度等参数,使其不利于金属的氧化反应,减缓金属的腐蚀。
例如,对于钢铁材料,可以通过控制水中的溶解氧、酸碱度等因素,来减少金属腐蚀的发生。
电化学金属腐蚀防护的应用非常广泛。
在船舶、桥梁、海洋工程、化工设备等领域,金属材料容易受到海水、氧气、酸碱等环境的腐蚀,因此需要采取有效的防护措施。
例如,对于船舶,在船体表面施加阴极保护,将船体作为阴极,以减缓钢铁的腐蚀。
在化工设备中,常常采用高温涂层、耐酸碱材料等措施,延长设备的使用寿命。
总之,电化学金属腐蚀防护技术的目标是保护金属材料免受腐蚀的侵害,延长材料的使用寿命。
不锈钢的点腐蚀机理在金属表面局部地方出现向深处发展的腐蚀小孔,其余表面不腐蚀或腐蚀很轻微,这种形态成为小孔腐蚀,简称点蚀。
金属腐蚀按机理分为化学腐蚀和电化学腐蚀。
点腐蚀属于电化学腐蚀中的局部腐蚀。
一种点蚀是由局部充气电池产生,类似于金属的缝隙腐蚀。
另一种更常见的点蚀发生在有钝化表现或被高耐蚀性氧化物覆盖的金属上。
4.1 电化学腐蚀的基本原理通过原电池原理可以更好地说明电化学腐蚀机理。
当2种活泼性不同的金属(如铜和锌)浸入电解质溶液,2种金属间将产生电位差,用导线连接将会有电流通过,在此过程中活泼金属(锌)将被消耗掉,也就是被电化学腐蚀。
不同于化学腐蚀(如金属在空气中的氧化,锌在酸溶液中的析氢),电化学腐蚀一定有电流产生,并且电流量的大小直接与腐蚀物的生成量相关,即电流密度越大腐蚀速度越快。
各种金属在电解质溶液中的活泼程度可用其标准电极电位表示,即金属与含有单位活度(活度与浓度正相关,在浓度小于10-3mol/L时认为两者值相同)的金属离子,在温度298K (25℃),气体分压1.01MPa下的平衡电极电位。
标准电极电位越低,金属或合金越活泼,在与高电位金属组成电偶对时更易被腐蚀。
由此可见,决定金属标准电极电位的因素除了金属的本质外还有:溶液金属离子活度(浓度)、温度、气体分压。
另外一个重要影响因素是金属表面覆盖着的薄膜。
除了金、铂等极少数贵金属外,绝大多数金属在空气中或水中可以形成具有一定保护作用的氧化膜,否则大部分金属在自然界就无法存在。
金属表面膜的性质对其腐蚀发生及腐蚀速度都有着重要影响。
4.2 不锈钢的耐腐蚀原理不锈钢的重要因素在于其保护性氧化膜是自愈性的(例如它不象选择性氧化而形成的那些保护性薄膜),致使这些材料能够进行加工而不失去抗氧化性。
合金必须含有足够量的铬以形成基本上由Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。
如果铬的比例低于完全保护所需要的比例,铬就溶解在铁表面形成的氧化物中而无法形成有效保护膜。
电化学腐蚀与防护知识讲解电化学腐蚀与防护是关于金属材料在电解质溶液中遭受腐蚀的一门学科。
电化学腐蚀是指金属在电解质中发生氧化或还原反应,从而造成金属表面的损坏。
在现实生活和工业生产中,电化学腐蚀是一个严重的问题,会导致设备的损坏、金属结构的衰退以及经济损失。
因此,了解电化学腐蚀的机理以及相应的防护措施显得尤为重要。
电化学腐蚀的机理主要涉及三个基本要素:金属、电解质和电流。
当金属与电解质接触并通电时,金属表面会发生氧化或还原反应。
这些反应产生的电流会通过电解质传递,导致金属表面的原子或离子发生变化,从而引起腐蚀。
在电化学腐蚀过程中,有两个重要的反应:阳极反应和阴极反应。
阳极反应是指金属表面的原子或离子失去电子并进入电解质中,从而形成阳极溶解。
阴极反应则是指电解质中的氧气或水接受电子并与金属表面的离子结合,从而形成阴极还原。
这两个反应共同作用,加速了金属的腐蚀过程。
为了防止电化学腐蚀,人们采取了各种防护措施。
其中最常见的方法是使用保护涂层。
保护涂层可以阻隔金属与电解质的直接接触,减少氧气和水分子进入金属表面的机会,从而降低了腐蚀的速度。
常见的保护涂层材料包括有机涂料、无机涂料和金属涂层。
有机涂料一般用于室温下的腐蚀防护,而无机涂料和金属涂层则适用于高温和腐蚀性环境下的防护。
除了保护涂层,还有其他的防护方法可以应用于电化学腐蚀。
例如,可以通过电化学方法来保护金属。
电化学保护是利用外加电流来抵消电化学腐蚀反应,从而保护金属不受腐蚀。
这种方法常常用于防护埋地管道和水下设备。
另外,还可以采用合金化、电镀和阳极保护等方法来提高金属的抗腐蚀性能。
还需要注意一些因素来预防电化学腐蚀。
例如,要控制电解质的浓度和温度,避免过高的浓度和温度加速腐蚀的发生。
电化学腐蚀与防护是一个重要的学科,关乎到工业生产和设备的正常运行。
了解电化学腐蚀的机理和防护措施对于保护金属材料的完整性和延长使用寿命至关重要。
通过合理的防护措施和预防措施,可以有效地减少电化学腐蚀的发生,降低经济损失。
金属的腐蚀与电化学防护导语:当金属与周围的环境接触时,会发生腐蚀现象,破坏金属的性能与外观。
针对金属腐蚀问题,我们可以采取多种防护措施,其中电化学防护是一种有效的方式。
本文将探讨金属的腐蚀原理、腐蚀的分类以及电化学防护的原理和方法。
一、金属腐蚀原理金属腐蚀是指金属与外界环境(如氧气、水、酸、碱等)发生化学反应而导致的金属表面的损失。
常见的金属腐蚀有钢铁的锈蚀、铝的氧化以及铜的氧化等。
金属腐蚀的过程可以简单概括为两个步骤:阳极反应和阴极反应。
阳极反应是金属离子的氧化过程,金属原子失去电子转变为阳离子;阴极反应则是物质还原的过程,物质从离子态回到中性态,同时获得电子。
二、金属腐蚀的分类根据金属腐蚀的性质和发生环境的不同,我们可以将金属腐蚀分为以下几类:1. 干腐蚀:即在无水环境下发生的金属腐蚀。
典型的例子是金属在干燥空气中发生氧化反应,形成氧化物。
2. 湿腐蚀:是在存在水分的环境中发生的金属腐蚀,水起到了催化剂的作用。
常见的湿腐蚀有金属在水中发生氧化反应以及在潮湿气候中发生氧化等。
3. 电化学腐蚀:是指金属腐蚀过程中涉及电化学反应的腐蚀类型,包括阳极溶解、阳极极化和阴极保护等。
三、电化学防护的原理和方法电化学防护的基本原理是通过改变金属与周围环境之间的电化学反应来减缓或抑制金属腐蚀的发生。
以下是一些常见的电化学防护方法:1. 阳极保护:通过在金属表面形成保护性的氧化膜,阻止金属表面的进一步腐蚀。
常见的例子包括金属的阳极氧化和镀层等。
2. 阴极保护:将金属表面连接到一个电源的负极,使金属处于阴极状态,从而减缓或抑制金属的腐蚀。
这常用于金属的阴极保护涂层、阴极保护电流等。
3. 缓蚀剂:缓蚀剂是一种可以在金属表面形成保护性膜的物质,能够减缓腐蚀的发生。
常见的缓蚀剂包括有机酸、缓蚀油等。
四、电化学防护的应用电化学防护广泛应用于金属材料的防腐领域,有效地减缓或抑制金属腐蚀的发生。
以下是电化学防护在实际应用中的一些例子:1. 阳极保护:在海洋工程中经常使用阳极保护技术来防止金属构件的腐蚀。
金属的电化学腐蚀与防护在我们的日常生活和工业生产中,金属材料无处不在,从建筑结构到交通工具,从家用电器到机械设备。
然而,金属的腐蚀问题却始终困扰着我们,给社会带来了巨大的经济损失和安全隐患。
其中,电化学腐蚀是金属腐蚀中最常见、危害最大的一种形式。
那么,什么是金属的电化学腐蚀?它是如何发生的?又该如何进行有效的防护呢?让我们一起来深入了解一下。
首先,我们来认识一下什么是电化学腐蚀。
简单来说,电化学腐蚀就是金属在电解质溶液中发生的氧化还原反应,导致金属原子失去电子变成离子而被腐蚀的过程。
与化学腐蚀不同,电化学腐蚀需要有电解质溶液的存在,并且会形成原电池,从而加速腐蚀的进行。
电化学腐蚀的发生通常需要满足几个条件。
第一,金属表面存在不均匀性,比如化学成分的差异、组织结构的不同或者物理状态的差别。
第二,要有电解质溶液,它可以是水、酸、碱或者盐溶液等。
第三,还需要有氧气或者其他氧化性物质的存在。
为了更清楚地理解电化学腐蚀的过程,我们以钢铁在潮湿空气中的腐蚀为例。
钢铁中通常含有碳等杂质,在潮湿的空气中,钢铁表面会吸附一层薄薄的水膜,水膜中溶解了氧气和二氧化碳等物质,形成了电解质溶液。
此时,钢铁中的铁和碳就构成了无数微小的原电池。
铁作为负极,失去电子被氧化成亚铁离子:Fe 2e⁻= Fe²⁺;碳作为正极,氧气在正极得到电子被还原:O₂+ 2H₂O + 4e⁻= 4OH⁻。
亚铁离子进一步与氢氧根离子结合生成氢氧化亚铁,氢氧化亚铁再被氧气氧化成氢氧化铁,最终脱水形成铁锈。
电化学腐蚀的危害是巨大的。
它不仅会导致金属材料的强度降低、性能下降,缩短设备的使用寿命,还可能引发严重的安全事故。
例如,桥梁的钢梁因为腐蚀而强度减弱,可能会发生坍塌;石油管道因为腐蚀而破裂,会造成环境污染和资源浪费。
既然电化学腐蚀如此可怕,那么我们应该如何进行防护呢?常见的防护方法主要有以下几种:第一种是涂层防护。
在金属表面涂上一层防腐涂料,如油漆、塑料、橡胶等,将金属与外界的电解质溶液隔离开来,从而阻止腐蚀的发生。
不锈钢生锈腐蚀断裂的原因
不锈钢生锈、腐蚀和断裂的原因可能有以下几个方面:
1. 化学腐蚀:不锈钢主要是由铁、铬、镍等合金元素组成,其中铬的含量较高。
铬会与氧气结合形成一层致密的氧化铬膜,起到防止钢材进一步腐蚀的作用。
然而,当遭受一些强酸、强碱等化学物质的侵蚀时,氧化铬膜可能会被破坏,导致不锈钢发生腐蚀。
2. 空气中存在的污染物:不锈钢在潮湿的环境中,易受到空气中的氧气、水分和含有硫、氯等污染物的侵蚀。
尤其是在工业污染较为严重的地区,不锈钢的腐蚀速度可能更快。
3. 电化学腐蚀:如果不锈钢表面存在微小的缺陷,例如划痕、裂纹等,这些缺陷可能导致不锈钢在电化学条件下发生腐蚀。
例如,在存在电解质溶液中,不锈钢可能会发生电化学腐蚀。
4. 力学因素:不锈钢的断裂可能与力学因素有关,如应力过大、外力冲击等。
当不锈钢受到超过其承载能力的应力时,可能会发生断裂。
为了避免不锈钢的生锈、腐蚀和断裂问题,我们可以采取以下措施:
1. 注意环境:尽量避免将不锈钢暴露在潮湿、有酸碱性或含有污染物的环境中。
2. 定期清洁:定期清洁不锈钢表面,确保其表面干净,并使用适当的清洁剂。
3. 防护涂层:在一些特殊环境下,可以考虑给不锈钢表面添加一层防护涂层,增加其抗腐蚀性能。
4. 注意使用条件:在使用不锈钢制品时,要注意避免过大的应力和外力冲击,以防止不锈钢发生断裂。
总之,不锈钢的生锈、腐蚀和断裂问题是一个综合因素的结果,需要注意环境因素、化学因素、力学因素等,以保证不锈钢的使用寿命和安全性。
@>Q R 不锈钢管道腐蚀原因分析及预防措施!!毕航铭!中海福陆重工有限公司"广东!珠海!+!'$+$#摘要!针对南海某采油平台投产前不锈钢管道腐蚀的问题"进行取样分析$试验所得结论为氯离子含量超标导致不锈钢管线腐蚀严重$本文探究了氯离子对&!(B 不锈钢管线造成破坏的基本原理"同时"从海洋平台管线建造角度出发"针对如何有效预防不锈钢管线腐蚀问题提出建议"为后续海洋平台建造项目提供借鉴$关键词!&!(B 不锈钢&氯离子&点蚀&南海中图分类号 D W '..-"文献标志码*文章编号 "$'+,"',!"$"&#$$&$$(!"# !$-!"$.,'/001-"$'+,"',-"$"&-$%-$+8-'/;&#&"04*%$%'&"-"0."(("&#"-'-!+(%S %-4#"-J %'&B (%&0"(@>Q R14'#-/%&&14%%/+#2%/#-%=C3A 9:O 79:E =G G >=T ]?.+'c $&79S *J .8('/$8=+H 0I (J H 0e 2.2&/L !f ;L ;0N .&*3J +*30=2/*&F 89&4(')4!D H 0S /N N /L 7/9/@L 1A 79K 0L L L 100K I 7I 79:@/N A I N 0X S /O O 7L L 7/979:/@@L H /N 0I K A 1@/N O 791H 0G /?1H [H 79A G 0A 7L L A O I K 08A 98A 9A K P U 08R D H 0S /9S K ?L 7/9/J 1A 7908@N /O1H 010L 17L 1H A 11H 0S H K /N 7807/9S /910910h S 008L 1H 0L 1A 98A N 8K 0A 879:1/L 0N 7/?L S /N N /L 7/9/@L 1A 79K 0L L L 100K I 7I 0K 790L R D H 7L I A I 0N 0h I K /N 0L 1H 0J A L 7S I N 79S 7I K 0L /@8A O A :0S A ?L 08J P S H K /N 7807/9L 1/&!(BL 1A 79K 0L L L 100K I 7I 0K 790R a N /O1H 0I 0N L I 0S 17Q 0/@/@@L H /N 0I K A 1@/N O I 7I 0K 790S /9L 1N ?S 17/9;@/N H /M1/0@@0S 17Q 0K PI N 0Q 091S /N N /L 7/9/@L 1A 79K 0L LL 100K I 7I 0K 790L ;M 0I ?1@/N M A N 8N 0K 0Q A 91N 0S /O O 098A 17/9L ;A 98I N /Q 780N 0@0N 09S 0@/N L ?J L 0e ?091/@@L H /N 0I K A 1@/N OS /9L 1N ?S 17/9I N /Y0S 1L R :%;<"(!&!L 1A 79K 0L L L 100K &!(K V S H K /N 7907/9V I 71179:0N /L 7/9V 1H 0G /?1H[H 79A G 0A =!引!言在海洋%电厂%化工过程%采矿%石油化工%油气%医药等许多工程应用中"因为&!(B 不锈钢具备优异的耐腐蚀性能%良好的耐高温氧化及耐热性等工程性能"同时也具备优良的焊接性能"极大地吸引了许多研究人员%工程师%制造商以及产品的最终用户的关注"在海洋平台管线中广泛应用于淡水管线%饮用水管线%化学药剂注入管线等+!$,,$目前"国内外研究主要从海水温度%溶解氧%海洋微生物%流速和盐度等方面探究了不锈钢在海洋环境下的腐蚀行为"从不同角度列举了不锈钢在耐腐蚀方面的研究进展$针对本文案例"主要从盐度方面来分析不锈钢管线发生点蚀的成因+.$!",$南海某平台淡水系统管线材料为*G D ^*&!"'*&!"^标准中D ]&!('&!(B 型不锈钢$平台在陆地建造阶段"管线试压用水经过严格水质检测"[K v浓度低于"+I IO &平台出海之后"该管系输送淡水$但在平台试运行阶段出现了不锈钢管道泄漏$经检测"泄漏处水样[K v浓度为"($O :'B "严重超标$通过现场取样"并对泄露段不锈钢管线材质进行化学成分检查%非金属夹杂物检查%显微组织检查等"!基金项目(中国海洋石油集团有限公司/&$$米水深级导管架设计及建造关键技术研究0![4Z Z [X b g !&+5g g G ".5["$"$X $!#$作者简介(毕航铭!!''&)!#"男"硕士研究生"助理工程师"主要从事导管架及海洋平台方面的研究$W X O A 7K (%&,$+&+',"e e -S /O $第!$卷!第%期!"$"&年!"月海洋工程装备与技术Z [W *4W 45C 4W W \C 45W >)C ]^W 4D*4<D W [34Z B Z 5_`/K -!$"4/-%<0S -""$"&第%期毕航铭(&!(B不锈钢管道腐蚀原因分析及预防措施*&!!*!判定管道泄漏原因为管壁发生了由内而外的点蚀$在管道腐蚀点处"有积液痕迹$当水汽蒸发时"[K v 浓缩"积液处[K v浓度会升高"即使&!(B不锈钢本身具备较强的耐腐蚀性能"在此[K v超标的情况下"极易发生点蚀+!,"蚀穿管壁并破坏表面油漆涂层"出现泄漏$本文基于以上案例"从建造角度分析事故原因"并提出有效的预防措施"供今后工程项目参考$>!分析方法截取长约!+$O O泄漏管段试样"如图!所示"分别进行化学成分分析检查%材料点腐蚀试验%穿孔外观检查%非金属夹杂物检查%显微组织检查%扫描电镜及能谱分析检查等"分析管道失效原因$可初步判断泄露管段上的腐蚀类型为点蚀"点蚀处孔洞内外径大小不一致"内小外大"且管段外表面以穿孔为圆心"均匀向周围扩散$图!!泄漏管段a7:-!!B0A T A:0I7I0K790!-!!化学成分分析检查采用火花直读光谱仪!赛默飞世尔D H0N O/C[*](&$$#分析试验件原材料化学成分"分析结果如表!所示$经与*G D^*&!"'&!"^"$!'中标准值分析比对"确认该试验件原材料合格$表>!原材料化学成分分析结果 <4E T6'9E>!.*%7#)'/)"72"#"-'-'/;&#&"0('<7'4%(#'/ <4E T元素[G7^9]G[N47^/标准值&$-$&+&!-$$&"-$$&$-$%+&$-$&$!(-$$$!.-$$!$-$$$!%-$$"-$$$&-$$穿孔一侧管材$-$!($-&.$-'($-$&+$-$!%!(-++!$-$."-$&未穿孔一侧管材$-$!($-&.$-',$-$&,$-$!%!(-+'!$-$'"-$&判断合格合格合格合格合格合格合格合格!-"!材料点腐蚀试验为验证管材的抗点腐蚀性能"分别从穿孔一侧和未穿孔一侧取样"按5='D!,.',"$!(中的方法*"使用!$$:a0[K&*(3"Z溶解于'$$O B3"Z 中"制成溶液"在""d下进行,"H腐蚀试验$试验后观察管材内表面"未穿孔一侧的管材除在数字记号/"0内发生轻微腐蚀"其余位置无腐蚀"如图"所示&穿孔一侧未发生腐蚀"如图&所示$该实!!!A#试验前!J#试验后图"!未穿孔侧管线内壁a7:-"!C990N L?N@A S0/@I7I0M71H/?1K0A T A:0I/791验表明"材料本身具备抗点腐蚀的能力"记号内的轻微腐蚀是由于附着异物引起的"原材料本身无问题$!A#试验前!J#试验后图&!穿孔侧管线内壁a7:-&!C990N L?N@A S0/@I7I0M71H K0A T A:0I/791!-&!穿孔外观检查使用体视显微镜!奥林巴斯G2r!(#观察穿孔"孔洞呈现阶梯状"内壁孔径最小"外壁孔径最大"外表面的腐蚀以穿孔为圆心"以波纹状向周围扩散"如图%所示$根据点蚀扩散控制模型理论+","该穿*&"!*海洋工程装备与技术第!$卷孔宏观外形符合点蚀特征$图%!穿孔外观a 7:-%!3/K 0A I I0A N A 9S 0!-%!非金属夹杂物检查根据点蚀发生的原理"点蚀优先在金属钝化膜的某些敏感位置成核+","包括钝化膜薄弱区%晶格缺陷晶界%非金属夹杂!硫化物夹杂#等$因此"对测试件进行非金属夹杂物检查$分别检查未穿孔一侧管材%腐蚀坑周围的非金属夹杂物"详见图+%($对比分析可知"出现的点状物为少量氧化物及少量硅酸盐"未出现异常"可见腐蚀与原材料非金属夹杂物基本无关联$图+!未穿孔一侧管材非金属夹杂物!!$$#O #a 7:-+!4/9X O 01A K K 7S 80J N 7L A 19/9X I0N @/N A 108L 780/@1H 0I 7I 0!!$$#O#图(!腐蚀坑处非金属夹杂物!!$$#O #a 7:-(!4/9X O 01A K K 7S 80J N 7L A 1S /N N /L 7/9I 71L !!$$#O #!-+!显微组织检查分别取穿孔一侧基体%未穿孔一侧基体%穿孔处%小蚀坑处的样品"以截面为观察面"经镶嵌%磨抛后"使用王水在室温下侵蚀"洗净吹干后置于金相显微镜!奥林巴斯=r +&^#下观察$焊缝两侧的管材均为单相有孪晶的奥氏体组织"晶界细而清晰"视场内有少量沿管纵向分布的,铁素体&在未穿孔的一侧"晶粒细小而均匀的等轴状"发生穿孔的一侧晶粒呈现略粗大的不规则形状"未见明显异常"如图,%.所示$图,!未穿孔一侧管材基体组织!+$#O #a 7:-,!^A 1N 7h 17L L ?0/91H 09/9X I0N @/N A 108L 780/@1H 0I 7I 0!+$#O#图.!穿孔一侧管材基体组织!+$#O #a 7:-.!^A 1N 7h 17L L ?0/91H 0I 0N @/N A 108L 780/@1H 0I 7I 0!+$#O #在穿孔%小蚀坑处的显微组织与基体组织无明显差异"均为有孪晶的单相奥氏体组织"偶有沿纵向分布的,铁素体"未见明显异常"如图'所示$在穿孔和蚀坑内壁未见明显的沿晶特征"说明管线母材本身无异常$在小蚀坑的底部发现点蚀迹象"表明小蚀坑正在进行第三阶段腐蚀"一旦蚀穿材第%期毕航铭(&!(B 不锈钢管道腐蚀原因分析及预防措施*&&!*!料"将形成另一处穿孔$图'!小蚀坑显微组织!"$$#O #a 7:-'!^7S N /L 1N ?S 1?N 0/@L O A K K 0N /L 7/9I 71L !"$$#O #!-(!扫描电镜及能谱分析使用扫描电镜!\0:?K ?L ."&$高分辨冷场发射扫描电镜#检查穿孔内表面边缘和内腔的微观形貌"可见在穿孔附近的内表面存在较多点蚀痕迹"如图!$所示&穿孔的内腔壁显示出材料压延变形的层状结构"如图!!所示&内壁可见清晰的晶界"但未发现腐蚀沿晶界深入材料的痕迹&内腔上的点蚀孔内壁表现与内腔相同的形貌$这些形貌特征表明"在穿孔内发生的是均匀腐蚀"而非材料发生了晶间腐蚀$使用能谱分析内腔和管壁内表面的微区成分"结果见表"$图!$!穿孔处内表面!!"$u #a 7:-!$!C 990N L ?N @A S 0/@I0N @/N A 108A N 0A !!"$u #图!!!内壁上的蚀坑!%$$u #a 7:-!!!W N /L 7/9I 71L /91H 07990NM A K K !%$$u #表!穿孔外表面能谱分析结果6'9E ?!+%(0"('4%!"B 4%(&B (0')%%-%(,;&2%)4(B 7'-'/;&#&(%&B /4&元素化学成分!M 1-c #[Z 4A *K G 7]G [K b [N ^9a 047^/内腔腔壁"!-",!$-++$-%.'$-&.$-!($-$!$-$&$-",!"-.(!-&+%+-!%(-!"!-%%蚀孔"$-$,!%-+!$-(!$-&+$-%($-!($-!&$-$'$-$(!"-!$$-'!%&-+.+-,'!-"$内壁".-$!&-,$-"$-%$-&$-"$-$$-$$-"!$-!$-(&'-%+-!!-!表面''%'$(,.!.&$%&!!能谱分析结果"在穿孔内腔%内壁表面均有[K元素腐蚀的痕迹"表明腐蚀是由于[K v 引起的&同时发现b %4A 等元素"表明腐蚀介质应是从海水引入的"如图!"%!&所示$经过上述多轮试验分析可知"该项目所用&!(B 不锈钢管母材符合规范要求"具备抗点蚀能力"管线中无非金属夹杂物影响"其失效的根本原因是不锈钢管线受到[K v含量超过"+I I O 的污染水腐蚀&发生腐蚀的管道处于)型弯低洼处"当[K v含量超标在此处产生积液时"由于[K v半径小%穿透力强"能够穿过钝化膜"与内部金属表面结合"形成可溶性物质+&,"因而产生点腐蚀$*&%!*海洋工程装备与技术第!$卷图!"!外表面能谱a7:-!"!W h10N9A K L?N@A S0090N:P L I0S1N?O图!&!内腔点蚀孔能谱a7:-!&!C910N9A K S A Q71P I71179:H/K0090N:P L I0S1N?O!管线腐蚀的预防与处理根据上文实验结果可知"&!(B不锈钢管线发生点蚀是由于海水在管线内)型弯低洼处产生积液"导致[K v含量超标"故而形成点蚀$因此"不锈钢管线的防腐蚀工作应针对在盐雾环境下对海水的预防"并贯穿于采办%验货%材料存放%现场施工及腐蚀修复等全过程"各环节需严格按照要求执行$!!#采办(由于建造场地位于海边"应要求材料供应商按照规格书关于材料保护运输的规定"对其运送至场地的材料进行保护$不锈钢管线端部"用塑料盖封堵保护"尽可能保证管内干燥$运输过程中避免不锈钢管与其他异种金属接触"建议独立包装运输$!"#验货(入库之前应尽快组织材料验货$将材料保护作为必要检查项"以确保在预制安装之前管线内部[K v含量水平较低$对于未按要求防护材料的"应及时整改$仔细检查不锈钢管线来料表面%端部"若出现明显锈斑%锈迹"建议要求厂家换货处理"保证材料到货质量$!&#存放(对于存放于室外的管线"需用洁净的帆布做好遮蔽%包裹"避免材料直接曝露在近海环境下"易导致管线表面腐蚀$!%#涂装(在&!(B不锈钢外部进行防腐涂料涂装"是防止外部环境引起不锈钢表面点腐蚀的一种经济有效的手段+%,$建造工程中应严格根据防腐规格书执行"在喷涂前后"均应做好端面防护"用塑料盖封堵管线端部"防止水%污垢进入管线内部$涂装完毕后在转运及安装过程中"应使用帆布包裹"避免管线在转运过程中划伤"破坏防腐油漆涂层$!+#试压(不锈钢管线系统试压"应保证试压用水[K v含量不超过"+I I O$管路应设置足够的)型弯泄放点"防止产生积液$水压测试完毕后应用干燥%无油的高速压缩空气吹扫%干燥"并满足项目相关的露点要求"最后进行密封处理$!(#轻微锈蚀处理(对于不锈钢管外壁轻微锈蚀处"应引起足够重视"采用酸洗钝化膏进行除锈处理"防止锈蚀进一步扩大"产生电化学腐蚀"造成管道穿孔失效$其原理是"通过涂抹酸洗钝化膏"在不锈钢管线表面形成一种又密又薄且覆盖性良好的%能牢固附着在金属表面的钝化膜"降低腐蚀速率++,$@!结!语随着我国海洋石油工业进军深蓝的步伐愈发坚定"减少海洋平台不锈钢管线的失效发生"对于保障平台安全"将深海开发战略落实到位具有重要意义$在建造过程中"对于&!(B不锈钢管的保护应该是全方位%多角度的$本文通过对失效管道试件的多角度实验分析"采用排除法一一排查"得出了外部因素引进[K v含量超标的液体介质是导致管道腐蚀穿孔的主要原因"并简要介绍了点腐蚀的腐蚀机理$对&!(B不锈钢管线的整个建造流程"提出了合理化建议$希望加强各环节的过程管控力度"杜绝外部因素导致的不锈钢管线腐蚀"确保海洋平台的安全高效生产$参考文献+!,王晓强"吕伟超"赵联瑞"等-在氯离子环境下不锈钢腐蚀原因分析和预防措施+g,-容器与管道""$!'"!'#(&.%$-+",常青-深海环境对&!(B不锈钢临界点蚀温度的影响+<,-哈尔滨(哈尔滨工程大学""$!(-+&,张鸣伦"王丹"王兴发"等-海水环境中[K v浓度对&!(B不锈钢腐蚀行为的影响+g,-材料保护""$!'"+!!!#(&+-+%,张国庆-海洋油气开发工程&!(B不锈钢的腐蚀及防护+g,-涂料工业""$"$"+$!'#(($-++,杨媚媚"刘忠斌"吕建伟-不锈钢工艺管线外表面防腐蚀保护+g,-全面腐蚀控制""$!$""%!&#("'&$-+(,B R W L S A K A8A R^7S N/L1N?S1?N0A98[/N N/L7/9=0H A Q7/N/@*C G C &!(B<?I K0hD N0A108J P^0A9L/@C/9471N7879:A98]K A L O A第%期毕航铭(&!(B不锈钢管道腐蚀原因分析及预防措施*&+!*!=A L087/9C O I K A91A17/9A98<0I/L717/9i g j RG?N@A S0o[/A179:LD0S H9/K/:P;"$!&;""&k%!%(Ri,j]A?K790=/7K K/1A98g w N x O0]0?K170N R)L0/@G1A79K0L L G100K L79 1H0C98?L1N P k\0S091A98a?1?N0<0Q0K/I O091L i g j R]N/S087A W9:7900N79:;"$!%;.&k&$'&"!R+.,赵向博"顾彩香"张小磊-不锈钢腐蚀影响因素分析及防腐蚀性能研究进展+g,-全面腐蚀控制""$!%"".!&#(+"+(-+',G N78H A N;4R W@@0S1/@*:79:D N0A1O091L/91H0\0I A L L7Q A17/9 ]/10917A K/@<?I K0hG1A79K0L LG100KG&""$+i g j R[/N N/L7/9;"$$';(+E!$F k(+$(("Ri!$j4R G N797Q A L A9R G09L717U A17/9/@*?L109717SG1A79K0L LG100K L k[?N N091<0Q0K/I O091L;D N098L;A98a?1?N0<7N0S17/9L i g j R^01A K K/:N A I H P;^7S N/L1N?S1?N0;A98*9A K P L7L;"$"!;E!$F k !&&!%,Ri!!j^R*R*N A@79A98g R*R G U I?9A N R*40M)980N L1A9879:/@ C910N:N A9?K A N G1N0L L[/N N/L7/9[N A S T79:\0L7L1A9S0/@ ]7I0K790G100K1H N/?:H5N A79=/?98A N P[H A N A S10N A98[N P L1A K K/:N A I H7SD0h1?N0G1?870L i g j R[/N N/L7/9G S709S0;"$$.;+!E!F k!!'!".Ri!"j[R5A N S7A R C910N:N A9?K A N[/N N/L7/9/@60K808g/791L/@*?L 109717SG1A79K0L LG100K LG1?8708J P)L79:A9W K0S1N/S H0O7S A K^797S0K K i g j R[/N N/L7/9G S709S0;"$$.;+$E.F k"&'$"&',R。
电化学腐蚀与防护知识讲解电化学腐蚀是指材料在电解质溶液中发生的一种化学反应,由于外加电压或电流的作用,使金属表面发生氧化还原反应,导致金属表面的腐蚀现象。
电化学腐蚀是金属材料不可避免的问题,因此了解电化学腐蚀的机理和相应的防护措施非常重要。
一、电化学腐蚀机理电化学腐蚀的机理主要涉及三个要素:金属、电解质和电流。
在电解质溶液中,金属表面会存在一层氧化膜,称为被动膜。
当金属电极与电解质溶液接触时,电解质中的离子会进入金属表面,并在金属表面发生氧化还原反应。
这些反应可以分为阳极和阴极两个区域。
在阳极区域,金属表面发生氧化反应,而在阴极区域,发生还原反应。
这两个区域之间的电流称为腐蚀电流,也是金属腐蚀的主要原因。
二、电化学腐蚀类型根据腐蚀过程中的电流方向和金属的腐蚀行为,电化学腐蚀可以分为以下几种类型:1. 均匀腐蚀:金属表面均匀地腐蚀,导致金属整体性能下降。
这种腐蚀通常是由于金属与电解质溶液中的氧发生反应导致的。
2. 非均匀腐蚀:金属表面只有一部分区域腐蚀,而其他区域则相对较少。
这种腐蚀通常是由于材料内部存在着不均匀的组织结构或杂质引起的。
3. 显著腐蚀:金属表面局部出现大范围的腐蚀,形成孔洞或裂纹。
这种腐蚀通常是由于金属表面的局部缺陷或应力集中引起的。
三、电化学腐蚀的防护措施为了防止金属腐蚀,可以采取以下几种防护措施:1. 使用耐腐蚀性材料:选择具有良好耐腐蚀性能的材料可以减少金属腐蚀的风险。
例如,不锈钢具有良好的耐腐蚀性能,适用于许多腐蚀环境。
2. 表面涂层保护:在金属表面涂上一层保护性涂层,可以隔绝金属与电解质的接触,减少腐蚀的可能性。
常用的涂层材料包括涂漆、涂蜡等。
3. 电化学方法:通过施加外加电压或电流,可以改变金属表面的电位,从而减缓腐蚀速度。
例如,阳极保护和阴极保护就是常用的电化学防护方法。
4. 控制环境条件:控制金属周围的环境条件,如温度、湿度和气氛等,可以减少腐蚀的发生。
例如,保持金属表面干燥和清洁可以有效地减少腐蚀的可能性。
金属的电化学腐蚀与防护在我们的日常生活和工业生产中,金属材料无处不在,从建筑结构中的钢铁到电子产品中的微小零部件,金属的应用极其广泛。
然而,金属材料面临着一个严重的问题——电化学腐蚀。
这种腐蚀现象不仅会导致金属材料的性能下降,缩短其使用寿命,还可能引发安全隐患和巨大的经济损失。
因此,了解金属的电化学腐蚀机制以及掌握有效的防护方法至关重要。
首先,我们来了解一下什么是金属的电化学腐蚀。
简单来说,电化学腐蚀是指金属在电解质溶液中形成原电池,从而发生氧化还原反应导致金属腐蚀的过程。
在这个过程中,金属原子失去电子变成金属离子,进入溶液中,而电子则通过金属导体传递到另一个区域,与溶液中的氧化剂发生反应。
为了更清楚地理解电化学腐蚀,让我们以铁在潮湿空气中的生锈为例。
当铁暴露在潮湿的空气中时,表面会吸附一层薄薄的水膜,这层水膜中溶解了氧气和二氧化碳等物质,形成了电解质溶液。
铁中的杂质(如碳)与铁形成了无数微小的原电池。
在这些原电池中,铁作为负极失去电子,发生氧化反应:Fe 2e⁻= Fe²⁺。
电子通过铁传递到杂质处,氧气在杂质处作为正极得到电子,发生还原反应:O₂+ 2H₂O + 4e⁻= 4OH⁻。
生成的 Fe²⁺与 OH⁻结合形成氢氧化亚铁,氢氧化亚铁进一步被氧化为氢氧化铁,最终形成铁锈。
电化学腐蚀的类型多种多样,常见的有析氢腐蚀和吸氧腐蚀。
析氢腐蚀通常发生在酸性较强的环境中,例如酸洗车间。
在这种环境下,氢离子作为氧化剂得到电子生成氢气。
而吸氧腐蚀则更为常见,如上述铁在潮湿空气中的生锈就属于吸氧腐蚀,氧气作为氧化剂参与反应。
金属电化学腐蚀的影响因素众多。
首先是金属的本性,不同的金属在相同的环境中腐蚀速率可能相差很大。
一般来说,化学性质越活泼的金属越容易发生腐蚀,例如钾、钠等活泼金属在空气中极易被氧化。
其次,电解质溶液的性质也起着关键作用。
溶液的酸碱度、离子浓度、导电性等都会影响腐蚀的速率。
金属的腐蚀与电化学防护原理引言:金属的腐蚀问题在我们的日常生活中经常出现,不仅造成了经济上的损失,还对环境和人体健康产生了负面影响。
因此,研究金属腐蚀的原因和防护方法显得十分重要。
本文将介绍金属腐蚀的基本原理以及电化学防护的方法。
1. 金属腐蚀的原理金属腐蚀是指金属与周围环境中的物质发生反应,导致金属表面受到侵蚀的过程。
它主要包括两个基本过程:金属的溶解和金属表面的电化学反应。
1.1 金属的溶解金属腐蚀的第一个步骤是金属溶解,也被称为阳极反应。
在金属表面,金属原子经历氧化反应,正电离子离开金属表面,溶解到溶液中,形成金属离子。
1.2 电化学反应金属表面的溶解导致电荷分离,即金属离子带正电荷,金属表面带负电荷。
这种电荷分离引起了电化学反应,包括阳极和阴极反应。
阳极上的金属离子通过与外部电解质中的阴离子结合,形成新的化合物并释放电子。
同时,在阴极上,来自外部电解质的阳离子与电子结合,还原为金属。
2. 电化学防护的原理电化学防护就是利用电化学原理来减缓和阻止金属腐蚀的过程。
它主要包括两种方法:阳极保护和阴极保护。
2.1 阳极保护阳极保护是通过提供外部阳极电流,使金属表面成为一个阴极,从而抑制或减缓金属腐蚀。
具体操作中,可以采用牺牲阳极法或外部电流法。
2.1.1 牺牲阳极法牺牲阳极法是将一个更容易腐蚀的金属与待保护金属连接在一起,形成一个电池,使腐蚀作用主要发生在牺牲阳极上,从而延缓待保护金属的腐蚀速率。
2.1.2 外部电流法外部电流法是通过施加一个由外部电源提供的阳极电流来保护金属。
这个电流可以补偿金属表面的电容耗失,使金属保持在一个较低的电位,从而减缓腐蚀反应的发生。
2.2 阴极保护阴极保护是通过使金属表面成为一个阴极来防止金属腐蚀。
具体操作中,可以利用外加电流或特殊涂层实现。
2.2.1 外加电流法外加电流法是通过施加一个由外部电源提供的直流电流,使金属表面形成一个相对负电位,从而使金属表面成为一个阴极,并减缓金属腐蚀的过程。
不锈钢的点腐蚀机理在金属表面局部地方出现向深处发展的腐蚀小孔,其余表面不腐蚀或腐蚀很轻微,这种形态成为小孔腐蚀,简称点蚀。
金属腐蚀按机理分为化学腐蚀和电化学腐蚀。
点腐蚀属于电化学腐蚀中的局部腐蚀。
一种点蚀是由局部充气电池产生,类似于金属的缝隙腐蚀。
另一种更常见的点蚀发生在有钝化表现或被高耐蚀性氧化物覆盖的金属上。
4.1 电化学腐蚀的基本原理通过原电池原理可以更好地说明电化学腐蚀机理。
当2种活泼性不同的金属(如铜和锌)浸入电解质溶液,2种金属间将产生电位差,用导线连接将会有电流通过,在此过程中活泼金属(锌)将被消耗掉,也就是被电化学腐蚀。
不同于化学腐蚀(如金属在空气中的氧化,锌在酸溶液中的析氢),电化学腐蚀一定有电流产生,并且电流量的大小直接与腐蚀物的生成量相关,即电流密度越大腐蚀速度越快。
各种金属在电解质溶液中的活泼程度可用其标准电极电位表示,即金属与含有单位活度(活度与浓度正相关,在浓度小于10-3mol/L时认为两者值相同)的金属离子,在温度298K (25℃),气体分压1.01MPa下的平衡电极电位。
标准电极电位越低,金属或合金越活泼,在与高电位金属组成电偶对时更易被腐蚀。
由此可见,决定金属标准电极电位的因素除了金属的本质外还有:溶液金属离子活度(浓度)、温度、气体分压。
另外一个重要影响因素是金属表面覆盖着的薄膜。
除了金、铂等极少数贵金属外,绝大多数金属在空气中或水中可以形成具有一定保护作用的氧化膜,否则大部分金属在自然界就无法存在。
金属表面膜的性质对其腐蚀发生及腐蚀速度都有着重要影响。
4.2 不锈钢的耐腐蚀原理不锈钢的重要因素在于其保护性氧化膜是自愈性的(例如它不象选择性氧化而形成的那些保护性薄膜),致使这些材料能够进行加工而不失去抗氧化性。
合金必须含有足够量的铬以形成基本上由Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。
如果铬的比例低于完全保护所需要的比例,铬就溶解在铁表面形成的氧化物中而无法形成有效保护膜。
不锈钢的电化学腐蚀与防护
摘要:本文概述了不锈钢常见的腐蚀类型,分别为均匀腐蚀和局部腐蚀,后者还可细分为晶间腐蚀,点腐蚀,缝隙腐蚀,应力腐蚀破裂等,其中多数腐蚀与电化学腐蚀有关。
同时阐述了极化曲线。
同时针对不锈钢的各种腐蚀类型,总结了不锈钢腐蚀的防护方法。
并讨论了利用电化学腐蚀加速的方法来评价不锈钢电化学腐蚀性能的优缺点。
关键词:不锈钢;腐蚀;电化学腐蚀;防护方法
不锈钢的不锈特性是由于钢板表面特殊的钝化保护膜,首先简单介绍一下不锈钢的耐蚀机理,即钝化膜理论。
所谓钝化膜就是在不锈钢表面有一层以Cr(铬)与氧结合的Cr2O3 (三氧化二铬)为主的薄膜它是在金属表面形成厚度约100万分之数mm的非动态皮膜。
由于这个薄膜的存在使不锈钢基体在各种介质中腐蚀受阻,这种现象称为钝化。
这种钝化膜的形成有两种情况,一种是不锈钢本身就有自钝化的能力,这种自钝化能力随铬含量的提高而加强。
另一种较广泛的形成条件是不锈钢在各种水溶液(电解质)中,在被腐蚀的过程中形成钝化膜而使腐蚀受阻。
不锈钢对比炭钢或铝耐蚀性突出优秀,但不是像金或者铂金那样绝对不生锈的金属。
因此研究其电化学腐蚀性能具有很重要的意义。
不锈钢常见的腐蚀类型
不锈钢的钝性赋予它极好的耐蚀性,在某些特殊条件下钝性的破坏可导致严重的局部腐蚀。
常见的不锈钢腐蚀可分为两大类[1,2],即均匀腐蚀和局部腐蚀,后者还可细分为晶间腐蚀,点腐蚀,缝隙腐蚀,应力腐蚀破裂等。
1.1均匀腐蚀是一种最常见的腐蚀形式,由于侵蚀均匀并可预测,因而这类腐蚀的危险性最小,均匀腐蚀的程度取决于钢种和介质条件。
1.2晶间腐蚀是一种局部的选择性的自晶界区发生的腐蚀,它使晶粒之间的结合力受到破坏,不易被察觉,特别是不锈钢类材料,即使晶界腐蚀已发展到相当严重的程度,其表观仍保持光亮无异的原态。
1.3点腐蚀是一种外观隐蔽而破坏性大的局部腐蚀,虽然因点蚀而损失的金属重量很小,但若连续发展,能导致腐蚀穿孔直至整个设备失效。
造成巨大的经济损失,甚至产生危害性更大的事故。
1.4缝隙腐蚀是在电解液中由于不锈钢与金属或非金属间存在极狭窄的缝隙,使有关物质的迁移受到阻抑形成浓差电池而在缝隙内或其近旁产生的局部腐蚀缝隙腐蚀可在多种介质中发生,但在氯化物溶液中最为严重。
在海水中,缝隙腐蚀
通常是由于缝内氧含量较低和周围溶液中氧含量较高形成氧浓差电池所致。
这时缝间成为阳极,而缝边金属表面成为阴极。
1.5应力腐蚀破裂是指材料在外加或残余应力和腐蚀介质联合作用下产生的破坏,破坏形态是裂纹、裂缝直至断裂。
1.6除了上述几种腐蚀形式,不锈钢还可能发生电偶腐蚀、腐蚀疲劳裂纹、磨损腐蚀等。
极化曲线
不锈钢在溶液中发生电化学腐蚀的根本原因是溶液中含有能使该种不锈钢氧化的物质,即腐蚀过程的去极化剂[3]。
阴极的去极化还原反应与阳极的金属氧化反应共同组成整个腐蚀过程。
显然,没有阴极反应,阳极反应就不能进行,金属就不会发生腐蚀。
以氢离子作为去极化剂的腐蚀过程称为氢离子去极化过程,简称氢去极化腐蚀,亦称析氢腐蚀,这是常见的危害性较大的一类腐蚀。
以氧作为去极化剂的腐蚀过程,称为氧去极化腐蚀,亦称吸氧腐蚀,这是自然界普遍存在因为破坏性最大的一类腐蚀。
从热力学已知,金属在腐蚀介质中能发生电化学腐蚀的必要条件是该金属的平衡电极电位比氢的平衡电极电位低,即Ee,M<Ee,H。
因此,常用的金属材料,如Fe、Ni、Zn等,由于它们的平衡电极电位比氢的平衡电极电位低,故发生氢去极化腐蚀。
如果金属的平衡电极电位比氧的还原反应电位低,则发生吸氧腐蚀。
如果在腐蚀电池中,阳极的电位比氢的平衡电位还正,阴极电位必然会比氢的平衡电位更正,那么腐蚀电位ER必定比氢平衡电位也正,所以氢气不能作为该腐蚀电池的阴极。
当阳极电位比氢的平衡电位负时,则腐蚀的电位ER才有可能比氢的平衡电位负,才有可能放氢而实现氢去极化。
因此氢的平衡电位是一个重要的基准,酸性越强,氢离子浓度越高(pH值越小),其氢的平衡电位(EH越正)。
氢的平衡电位越正和阳极电位越负,对于氢去极化腐蚀可能性的增加具有等效作用。
在中性介质中,氧去极化过程必然伴随着氧的消耗。
常常把氧去极化腐蚀称之为吸氧腐蚀。
在各种可能的阴极去极化反应中,以氧去极化过程最为重要,并且较为普遍。
一般实际腐蚀问题中以氧去极化(吸氧腐蚀)腐蚀占有相当大的比例。
例如淡水、海水、潮湿大气和土壤中只要有氧气就有吸氧腐蚀。
不锈钢腐蚀的防护方法
不锈钢防腐蚀的方法很多,主要有改善不锈钢的本质,把不锈钢与腐蚀介质隔开,或对金属进行表面处理,改善腐蚀环境以及电化学保护等。
在不锈钢中添
加合金元素,提高其耐蚀性,可以防止或减缓金属的腐蚀。
例如在不锈钢表面覆盖各种保护层,把被保护不锈钢与腐蚀性介质隔开,是防止不锈钢腐蚀的有效方法。
同时还可以通过磷化处理和热处理等方法提高不锈钢的耐蚀性。
也可以在不锈钢表面涂上一层非金属涂层或者金属涂层。
改善环境对减少和防止腐蚀有重要意义。
电化学保护法是根据电化学原理在金属设备上采取措施,使之成为腐蚀电池中的阴极,从而防止或减轻金属腐蚀的方法。
讨论
为了提高不锈钢的电化学腐蚀性能,可以通过电化学腐蚀加速试验来评价。
电化学在理论、技术和装置上的不断革新与创造,使得它比以往任何时候更具有对社会经济发展中各种问题进行挑战的能力。
在全球环境问题日益严峻的今天,电化学及其技术将同显其重要作用。
腐蚀电化学过程有以下特点:可自动控制、经济合算。
腐蚀电化学分析方法是仪器分析的一个分支,随着科研的发展,对分析方法的灵敏度、选择性、自控等各个方面都提出了很高的要求,具有以下几个优点:分析速度快、多种方法测量、仪器简单、经济、易微型化、需要试样的量较少、易于操作控制。
参考文献:
[1] 王正蕉,吴幼林等.不锈钢.北京:化学工业出版社,1991,28-37, 43-54, 100-151, 227-245.
[2] Bernstein, I. M., Handbook of Stainless Steel, McGrwa-Hill,1977, 15-26R.
[3] 牛绍蕊. 不锈钢的电化学腐蚀性能研究:(博士论文)兰州理工大学.2006.。