含参变量的积分例题详解
- 格式:doc
- 大小:11.50 KB
- 文档页数:2
ξ12.3 含参变量的积分一、含参变量的有限积分设二元函数f (x,u)在矩形域R (βα≤≤≤≤u b x a ,)有定义,],,[βα∈∀u 一元函数f(x,u)在[a,b]可积,即积分dxu x f a b),(⎰存在 ],[βα∈∀u 都对应唯一一个确定的积分(值)),(u x f a b⎰dx .于是,积分dx u x f a b),(⎰是定义在区间],[βα的函数,记为],[,),()(βαϕ∈=⎰u dx u x f ab u ,称为含参变量的有限积分,u 称为参变量。
下面讨论函数)(u ϕ在区间 ],[βα的分析性质,即连续性、可微性与可积性定理 1 若函数),(u x f 在矩形域R ),(βα≤≤≤≤u b x a 连续,则函数dx u x f abu ),()(⎰=ϕ在区间也连续。
证明有,使取],,[u ],,[βαβα∈∆+∆∈∀u u u.),(),()()(.)],(),([)()dx u x f u u x f abu u u dx u x f u u x f abu u u -∆+≤-∆+-∆+=-∆+⎰⎰ϕϕϕϕ(根据ξ10.2定理8,函数),(u x f 在闭矩形域R 一致连续,即,,:),(),(,0,02121221,1δδδε<-<-∈∀>∃>∀y y x x R y x y x 有ε<-),(),(2211y x f y x f .特别地,.:),(),,(δ<∆∈∆+∀u R u u x u x 有 .),(),(ε<-∆+u x f u u x f 于是,,δ<∆u 有)(),(),()()(a b dx u x f u u x f ab u u u -<-∆+≤-∆+⎰εϕϕ 即函数在区间连续.设[]βα,0∈u ,由连续定义,有)()(lim ),(limu u dx u x f a bu u u u ϕϕ==→→⎰=dx u x f a b dx u x f a b u u ),(lim ),(00→⎰⎰=. 由此可见,当函数),(u x f 满足定理1的条件时,积分与极限可以交换次序. 定理2 若函数),(u x f 与uf∂∂在矩形域R(βα≤≤≤≤u b x a ,)连续,则函数在区间[βα,]可导,且[]βα,∈∀u ,有dxu u x f a b u du d∂∂=⎰),()(ϕ 或dx u u x f a b dx u x f abdu d ∂∂=⎰⎰),(),(. 简称积分号下可微分.证明 [][],,u,,,βαβα∈∆+∆∈∀u u u 使取有[].),(),()()(dx u x f u u x f abu u u -∆+=-∆+⎰ϕϕ (1) 已知uf∂∂在R 存在,根据微分中值定理,有 .10,),(),(),('<<∆∆+=-∆+θθu u u x f u x f u u x f u 将它代入(1)式,等号两端除以u ∆,有.10,),()()('<<∆+=∆-∆+⎰θθϕϕdx u u x f ab u u u u u 在上面等式等号两端减去dx u x f abu ),('⎰,有d x u x f abu u u u u ),()()('⎰-∆-∆+ϕϕ dx u x f u u x f ab u u ),(),(''-∆+≤⎰θ. 根据 ξ10.2定理8,函数),('u x f u 在闭矩形域R 一致连续,即,0,0>∃>∀δε,:),(),,(δ<∆∈∆+∀u R u u x u x 有.),(),(''εθ<-∆+u x f u u x f u u 从而,有),(),()()('a b dx u x f abu u u u u -≤-∆-∆+⎰εϕϕ即 dx u x f abuu u u u u ),()()(lim '0⎰=∆-∆+→∆ϕϕ 或.),()(dx u u x f a b u dud∂∂=⎰ϕ 定理2指出,当函数),(u x f 满足定理2的条件时,导数与积分可以交换次序. 定理 3 若函数),(u x f 在矩形域R (βα≤≤≤≤u b x a ,)连续,则函数dx u x f abu ),()(⎰=ϕ在区间[]βα,可积,且.).(),(dx du u x f a b du dx u x f a b ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎰⎰⎰⎰αβαβ (2) 简称积分号下可积分.证明 根据定理1,函数)(u ϕ在[]βα,连续,则函数)(u ϕ在区间[]βα,可积.下面证明等式(2)成立.[]βα,∈∀t ,设.),()(,),()(21dx du u x f t a b t L du dx u x f a b t t L ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎰⎰⎰⎰αα根据4.8ξ定理1,有.),()('1dx t x f abt L ⎰=已知du u x f t ),(⎰α与du u x f tt ),(⎰∂∂α都在R 连续,根据定理2,有dx du u x f ta b dt d t L ⎥⎦⎤⎢⎣⎡=⎰⎰),()('2α =dx du u x f t t a b ⎥⎦⎤⎢⎣⎡∂∂⎰⎰),(α =dx t x f ab),(⎰.于是,[]βα,∈∀t ,有()().'2'1t L t L =.由1.6ξ例1,()(),21C t L t L =-其中C 是常数.特别地,当α=t 时,()(),021==ααL L 则C=0,即()()β==t t L t L 当.21时,有()(),21ββL L =即.),(),(dx du u x f a b du dx u x f a b ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎰⎰⎰⎰αβαβ定理3指出,当函数),(u x f 满足定理3的条件时,关于不同变量的积分可以交换次序。
第十八章 含参变量的广义积分1. 证明下列积分在指定的区间内一致收敛: (1) 220cos() (0)xy dy x a x y +∞≥>+⎰; (2) 20cos() ()1xy dy x y +∞-∞<<+∞+⎰; (3)1 ()x y y e dy a x b +∞-≤≤⎰; (4) 1cos (0,0)xy p y e dy p x y +∞->≥⎰; (5) 20sin (0)1p x dx p x+∞≥+⎰. 2. 讨论下列积分在指定区间上的一致收敛性:(1)20 (0)x dx αα-<<+∞⎰; (2) 0xy xe dy +∞-⎰,(i )[,] (0)x a b a ∈>,(ii )[0,]x b ∈; (3) 2()x e dx α+∞---∞⎰,(i )a b α<<,(ii )α-∞<<+∞; (4) 22(1)0sin (0)x y e xdy x +∞-+<<+∞⎰.3. 设()f t 在0t >连续,0()t f t dt λ+∞⎰当,a b λλ==皆收敛,且a b <。
求证:0()t f t dt λ+∞⎰关于λ在[,]a b 一致收敛.4. 讨论下列函数在指定区间上的连续性: (1) 220()x F x dy x y +∞=+⎰,(,)x ∈-∞+∞; (2) 20()1x y F x dy y+∞=+⎰,3x >; (3) 20sin ()()x xy F x dy y y ππ-=-⎰,(0,2)x ∈.5. 若(,)f x y 在[,][,)a b c ⨯+∞上连续,含参变量广义积分()(,)c I x f x y dy +∞=⎰在[,)a b 收敛,在x b =时发散,证明()I x 在[,)a b 不一致收敛.6. 含参变量的广义积分()(,)c I x f x y dy +∞=⎰在[,]a b 一致收敛的充要条件是:对任一趋于+∞的递增数列{}n A (其中1A c =),函数项级数 111(,)()n n A n A n n f x y dy u x +∞∞===∑∑⎰ 在[,]a b 上一致收敛.7. 用上题的结论证明含参变量广义积分()(,)c I x f x y dy +∞=⎰在[,]a b 的积分交换次序定理(定理19.12)和积分号下求导数定理(定理19.13).8. 利用微分交换次序计算下列积分: (1) 210()()n n dx I a x a +∞+=+⎰ (n 为正整数,0a >); (2) 0sin ax bx e e mxdx x--+∞-⎰(0,0a b >>); (3) 20sin x xe bxdx α+∞-⎰(0α>). 9. 用对参数的积分法计算下列积分: (1) 220ax bx e e dx x --+∞-⎰(0,0a b >>); (2) 0sin ax bxe e mxdx x --+∞-⎰(0,0a b >>). 10. 利用2(1)2011y x e dy x+∞-+=+⎰计算拉普拉斯积分 20cos 1x L dx xα+∞=+⎰ 和120sin 1x x L dx x α+∞=+⎰. 11. 20(0)xy e dy x +∞-=>计算傅伦涅尔积分2001sin 2F x dx +∞+∞==⎰⎰ 和21001cos 2F x dx +∞+∞==⎰⎰. 12. 利用已知积分 0sin 2x dx x π+∞=⎰,202x e dx +∞-=⎰计算下列积分: (1) 420sin x dx x+∞⎰; (2) 02sin cos y yx dy yπ+∞⎰; (3)220x x e dx α+∞-⎰ (0)a >; (4) 2()0ax bx c e dx +∞-++⎰(0)a >; (5) 222()a x x e dx -++∞-∞⎰(0)a >. 13. 求下列积分: (1) 01cos t e tdt t+∞-⎰; (2) 220ln(1)1x dx x +∞++⎰. 14. 证明:(1) 10ln()xy dy ⎰在1[,]b b(1)b >上一致收敛; (2) 10y dx x ⎰在(,]b -∞ (1)b <上一致收敛. 15. 利用欧拉积分计算下列积分:(1) 10⎰;(2) ⎰;(3)⎰;(4)0a x ⎰ (0)a >; (5)6420sin cos x xdx π⎰; (6)401dx x +∞+⎰; (7)220n x x e dx +∞-⎰ (n 为正整数);(8) 0π⎰; (9) 220sin n xdx π⎰ (n 为正整数); (10) 1101ln n m x dx x -⎛⎫ ⎪⎝⎭⎰ (n 为正整数).16. 将下列积分用欧拉积分表示,并求出积分的存在域: (1) 102m n x dx x-+∞+⎰;(2) 1⎰(3) 20tan n xdx π⎰; (4) 101ln p dx x ⎛⎫ ⎪⎝⎭⎰; (5) 0ln p x x e xdx α+∞-⎰(0)α>. 17. 证明: (1) 11()nx e dx n n +∞--∞=Γ⎰ (0)n >; (2) lim 1nx n e dx +∞--∞→+∞=⎰. 18. 证明:1110(,)(1)b a bx x B a b dx x α--++=+⎰; 10()sx s x e dx ααα+∞--Γ=⎰ (0)s >.。
伍胜健《数学分析》笔记和考研真题详解第17章含参变量积分17.1复习笔记一、含参变量定积分1.基本概念设函数在平面区域上有定义.(1)若对于定积分存在,则由此定义了区间[a,b]上的函数I(x)称为含参变量定积分(简称含参变量积分),其中x为参变量.(2)若对于存在,则也称J(y)为含参变量定积分,其中y为参变量.2.基本性质(1)连续性定理①设函数在区域上连续,则对于含参变量定积分存在,并且I(x)在区间[a,b]上连续.注:f(x,y)在D上连续只是I(x)连续的充分条件.②设函数在区域上连续,则有③设函数在区域上连续,则对变上限含参变量积分存在,并且二元函数I(x,u)在D上连续.对于变下限含参变量积分,也有类似的结论.(2)可积性定理①设函数f(x,y)在区域上连续,则函数和分别在区间[a,b]和[c,d]上可积,并且②设函数f(x,y)在区域上连续,则(3)可导性定理①设函数f(x,y)及其偏导数在区域上连续,则函数在区间[a,b]上可导,并且有②设函数f(x,y)及其偏导数在区域上连续,则求导数运算与积分运算是可交换顺序的.③设函数及其偏导数在区域上连续,且是满足的可微函数,则函数在区间上可导,并且二、含参变量广义积分1.含参变量无穷积分(1)含参变量无穷积分的定义设函数在上有定义,其中为一个集合.若对于广义积分收敛,则可得到E上的函数称该函数为含参变量无穷积分.(2)含参变量无穷积分的一致收敛①含参变量无穷积分的一致收敛的定义设函数在上有定义,其中是一个区间.若对于当时,对于有则称含参变量无穷积分在E上一致收敛.②含参变量无穷积分的绝对一致收敛的定义设函数在上有定义,其中是一个区间.若对于收敛,则称在E上绝对收敛.若在E上绝对收敛,则在E 上收敛.另外,若在E上一致收敛,则在E上绝对一致收敛.(3)一致收敛的判别法则①柯西准则设函数在上有定义,其中是一个区间,则含参变量无穷积分在E上一致收敛的充分必要条件是:对当时,对,有②魏尔斯特拉斯定理设函数在上有定义,其中是一个区间.若存在函数使得对于及有并且收敛,则在E上绝对一致收敛.③狄利克雷判别法设函数在上有定义(其中是一个区间),并且满足:a.存在对于及有b.对任意固定的是y的单调函数,且对于当时,对一切有即当时,q(x,y)关于x一致趋于0,则含参变量无穷积分在E上一致收敛.④阿贝尔判别法设函数在上有定义(其中是一个区间,并且满足:a.在上一致收敛;b.对任意固定的是y的单调函数,并且存在常数对于及有则含参变量无穷积分在E上一致收敛.(4)基本性质①定理1设函数在上有定义,其中则含参变量无穷积分在上一致收敛的充分必要条件是:对任意的满足条件且的序列函数序列在E 上一致收敛.②定理2设函数在上连续,其中是一个区间,并且含参变量无穷积分在E 上一致收敛到函数I(x),则I(x)在E 上连续.③定理3设函数在上连续,且含参变量无穷积分在[a,b]上一致收敛,则有④定理4设函数f(x,y)及其偏导数在上连续,其中是一个区间,再设存在x 0∈E,使得收敛,并且在E 上一致收敛,则a.在E 上一致收敛;b.⑤狄尼定理设函数在上连续且不变号,设对于收敛,且I(x)在[a,b]上连续,则I(x)在[a,b]上一致收敛.2.含参变量瑕积分(1)定义设函数在上连续,当时,以c为瑕点.若对任意瑕积分(17-1)收敛,则I(x)在[a,b]上有定义.称I(x)为含参变量瑕积分.(2)基本性质利用变换可以将(17-1)式化成含参变量无穷积分从而得到含参变量瑕积分也有相应的一致收敛性以及其它的性质.三、函数与 函数1.函数(1)定义函数是指由如下含参变量积分定义的函数:(2)定义域。
第九章 含参变量积分例1 研究函数 ⎰+=10 22)()(dx y x x yf y F 的连续性,其中)(x f 是]1,0[上连续且为正的函数。
解 令22)(),(yx x yf y x g +=,则),(y x g 在],[]1,0[d c ⨯连续,其中],[0d c ∉。
从而)(y F 在0≠y 连续。
当0=y 时,0)0(=F当0>y 时,记 0)(min ]1,0[>=∈x f m x ,则⎰+=10 22)()(dx y x x yf y F ⎰+≥1 0 22dx y x ym ym 1arctan = 若)(lim 0y F y +→存在,则 ≥+→)(lim 0y F y ym y 1a r c t a n lim 0+→)0(02F m =>=π故)(y F 在0=y 不连续。
或用定积分中值定理,当0>y 时, ]1,0[∈∃ξ,使 ⎰+=10 22)()(dx y x x yf y F ⎰+=1 0 22)(dx y x yf ξ yf yxf 1arctan )(arctan)(1ξξ==若)(lim 0y F y +→存在,则 =+→)(lim 0y F y yf y 1a r c t a n )(l i m 0ξ+→02>≥m π故)(y F 在0=y 不连续。
问题1 上面最后一个式子能否写为y f y 1arctan )(lim 0ξ→0)(2>=ξπf 。
事实上,ξ是依赖于y 的,极限的存在性还难以确定。
例2 设)(x f 在],[b a 连续,求证⎰-=xc dt t x k t f kx y )(sin )(1)( (其中 ],[,b a c a ∈) 满足微分方程 )(2x f y k y =+''。
证 令)(sin )(),(t x k t f t x g -=,则)(cos )(),(t x k t kf t x g x -=,)(sin )(),(2t x k t f k t x g xx --=它们都在],[],[b a b a ⨯上连续,则⎰-='xcdt t x k t f x y )(cos )()()()(sin )()( x f dt t x k t f kx y xc+--=''⎰y k y 2+'')()(sin )( x f dt t x k t f k x c +⎰--=⎰-+xc dt t x k t f k )(sin )()(x f =例 3 设)(x f 为连续函数,ξηηξd d x f x F hh ])([)(00⎰⎰++=求)(x F ''。
欧阳光中《数学分析》笔记和考研真题详解第25章含参变量的积分25.1复习笔记一、含参变量的常义积分1.含参变量积分的概念(1)称如下形式的积分为含参变量x的积分.(2)当为常值时,称为固定限参变量积分,否则称为可变限参变量积分.2.含参变量积分的分析性质(1)不变限情形①连续性定理设f(x,y)于矩形[a,b]×[c,d]上二元连续,c,d有限,则函数于[a,b]上也连续.②可导性定理设f(x,y)和于矩形[a,b]×[c,d]上连续,则F(x)于[a,b]上也可导且.(2)可变限情形①连续性定理设f(x,y)于上二元连续,,且于[a,b]上连续,则于[a,b]上也连续.②可导性定理设f(x,y)于上二元连续,,且于[a,b]上连续,若导数存在且连续,则也存在,且二、含参变量的广义积分1.含参变量广义积分的一致收敛(1)定义设已给含参变量的广义积分(I是任意区间),假定对每个x∈I,上述积分已收敛.设为“余积分”,它是x,d的二元函数,于矩形I×[C,+∞)上有定义.①含参变量广义积分在奇点+∞处一致收敛的定义若数,使得“余积分”绝对值|r(x,d)|在矩形上点点小于ε(图25-1),即则称于奇点+∞处,积分在x∈I时一致收敛.图25-1②含参变量广义积分在有限奇点处一致收敛的定义若,使得在矩形上点点小于,即则称在奇点c处积分在x∈I时一致收敛.③当一个含参变量积分有限多个奇点时,只有积分在每个奇点处都一致收敛时才称该积分一致收敛.(2)Abe1不等式(u(x)单调,v'(x)可积)也常用来估计“余积分”.2.一致收敛的判别法(1)Cauchy收敛原理如果一致收敛存在,使得,有(2)Weierstrass判别法设①收敛;②收敛,则,一致收敛.(3)A.D.判别法已给若u(x,y)关于y单调,且u,v有一个是有界函数,另一个在y→+∞时在区间x∈I上一致收敛于零,则上述积分一致收敛(假定偏导数存在且关于y连续).3.含参变量广义积分的性质(1)定理1设f(x,y)于矩形I×[c,+∞)上连续且积分,x∈I内闭一致收敛,则于I上连续(连续性).(2)定理2设f(x,y)于矩形I×[c,+∞)上连续且积分,x∈I内闭一致收敛,若区间I=[a,b]有界,则(3)定理3设于上连续,积分,内闭一致收敛,又存在一点,积分收敛,则内闭一致收敛,且(4)定理4设上连续,公式在下列条件之一满足时成立:①②③(5)定理5设f(x,y)于[a,+∞)×[c,+∞)上连续且两个“里层”积分都存在.若存在充分大的及函数满足:其中函数一个可积,另一个局部有界(即在任一个内闭区间上有界),则成立三、B函数和Γ函数1.B函数和Γ函数的定义B函数和Γ函数是指2.B函数和Γ函数的性质(1)连续性B(p,q),Γ'(s)都是连续的.(2)对称性B(p,q)=B(q,P);(3)Γ函数是阶乘的拓广Γ(s+1)=sΓ(s),s>0.特别Γ(n+1)=n!;(4)B函数与Γ函数的关系;(5)余元公式;(6)Legendre公式.3.当s→+∞时Γ(s)的性态公式特别,当s=n(自然数)时,得。
广义积分和含参数的积分习题选解广义积分是微积分中的一个重要概念,它可以看作是原函数不可求导造成的补救措施。
含参数的积分即在积分过程中引入参数,通过改变参数的取值来研究积分的特性。
下面是一些关于广义积分和含参数的积分的习题。
1. 计算广义积分∫(0,∞) dx/x^n ,其中n>1解析:对于这种形式的广义积分,我们可以采用定积分的思路。
将积分限分别取为a和t,代入积分式中得到∫(a,t) dx/x^n = [(1-n)x^(1-n)]/(1-n) , (a,t) = (t^(1-n)-a^(1-n))/(1-n)。
由于n>1,所以t^(1-n)→0 当t→∞,所以可以将积分限从(0,∞)化简为(0,a),计算上式并令a→0,得到∫(0,∞) dx/x^n = 1/(n-1)。
2. 若函数f(x)在[a,b]上连续,证明方程∫(a,x) f(t) dt = x^2/2 - ax + a^2/2 在[a,b]上恒成立。
解析:根据题目要求,我们需要证明对于任意x∈[a,b],都有∫(a,x) f(t) dt = x^2/2 - ax + a^2/2、我们可以直接对右侧进行微分,得到(x^2/2 - ax + a^2/2)’ = x - a = ∫(a,x) f(t) dt’。
由于f(x)在[a,b]上连续,积分的上限函数是连续函数,所以右侧的导数存在并且等于积分式的极限。
所以原方程右侧的导数等于左侧的导数,从而证明了该方程在[a,b]上恒成立。
3. 求解含参数的积分∫(0,π/2) sin(x+a) dx ,其中a为参数。
解析:对于这种含参数的积分,我们可以通过先求解不含参数的积分,然后通过讨论参数取值的方式进行分析。
在这个问题中,我们可以将sin(x+a)展开为sinx*cosa+cosx*sina。
然后分别计算这两个项的积分,得到∫(0,π/2) sinx*cosa dx 和∫(0,π/2) cosx*sina dx。
第十九章 含参量积分 1含参量正常积分概念:1、设f(x,y)是定义在矩形区域R=[a,b]×[c,d]上的二元函数. 当x 取[a,b]上某定值时,函数f(x,y)则是定义在[c,d]上以y 为自变量的一元函数. 若这时f(x,y)在[c,d]上可积,则其积分值是x 在[a,b]上取值的函数,记作φ(x)=⎰dc dy y x f ),(, x ∈[a,b].2、设f(x,y)是定义在区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}上的二元函数, 其中c(x),d(x)为定义在[a,b]上的连续函数,若对于[a,b]上每一固定的x 值,f(x,y)作为y 的函数在闭区间[c(x),d(x)]上可积,则其积分值是x 在[a,b]上取值的函数,记为F(x)=⎰)()(),(x d x c dy y x f , x ∈[a,b].3、上面两个函数通称为定义在[a,b]上含参量x 的(正常)积分,或简称含参量积分.定理19.1:(连续性)若二元函数f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则函数φ(x)=⎰dc dy y x f ),(在[a,b]上连续.证:设x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 于是 φ(x+△x)-φ(x)=⎰-∆+d c dy y x f y x x f )],(),([.∵f(x,y)在有界闭域R 上连续,从而一致连续,即∀ε>0, ∃δ>0, 对R 内任意两点(x 1,y 1)与(x 2,y 2),只要|x 1-x 2|<δ, |y 1-y 2|<δ, 就有|f(x 1,y 1)-f(x 2,y 2)|<ε. ∴当|△x |<δ时, |φ(x+△x)-φ(x)|≤⎰-∆+d c dy y x f y x x f |),(),(|<⎰dc dy ε=ε(d-c). 得证!注:1、同理:若f(x,y)在R 上连续,则含参量y 的积分ψ(y)=⎰ba dx y x f ),(在[c,d]上连续.2、若f(x,y)在R 上连续,则对任何x 0∈[a,b], 有⎰→dcx x dy y x f ),(lim0=⎰→dc x x dy y x f ),(lim 0.定理19.2:(连续性)设区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}, 其中c(x),d(x)为定义在[a,b]上的连续函数. 若二元函数f(x,y)在G 上连续,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上连续.证:令y=c(x)+t(d(x)-c(x)),∵y ∈[c(x),d(x)],∴t ∈[0,1],且dy=(d(x)-c(x))dt, ∴F(x)=⎰)()(),(x d x c dy y x f =⎰--+10))()()))(()(()(,(dt x c x d x c x d t x c x f . 由 被积函数f(x,c(x)+t(d(x)-c(x)))(d(x)-c(x))在矩形区域[a,b]×[0,1]上连续知, F(x)在[a,b]上连续.定理19.3:(可微性)若函数f(x,y)与其偏导数x∂∂f(x,y)都在矩形区域 R=[a,b]×[c,d]上连续,则φ(x)=⎰dc dy y x f ),(在[a,b]上可微, 且⎰dcdy y x f dx d ),(=⎰∂∂d c dy y x f x ),(. 证:设任一x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 则xx x x ∆-∆+)()(ϕϕ=⎰∆-∆+dcdy xy x f y x x f ),(),(. 由拉格朗日中值定理及f x (x,y)在有界闭域R 上连续(从而一致连续), ∀ε>0, ∃δ>0, 只要|△x|<δ,就有),(),(),(y x f xy x f y x x f x -∆-∆+=|f x (x+θ△x,y)-f x (x,y)|<ε, θ∈(0,1).∴⎰-∆∆d cx dy y x f x ),(ϕ≤⎰-∆-∆+d c x dy y x f x y x f y x x f ),(),(),(<ε(d-c). 即 对一切x ∈[a,b], 有⎰dc dy y x f dxd ),(=⎰∂∂d c dy y x f x),(.定理19.4:(可微性)设f(x,y), f x (x,y)在R=[a,b]×[p,q]上连续,c(x), d(x)为定义在[a,b]上其值含于[p,q]内的可微函数,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上可微,且F ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x). 证:作复合函数F(x)=H(x,c,d)=⎰dc dy y x f ),(, c=c(x), d=d(x). 由复合函数求导法则及变上限积分的求导法则有:F ’(x)=H x +H c c ’(x)+H d d ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x).定理19.5:(可积性)若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则 φ(x)=⎰dc dy y x f ),(和ψ(y)=⎰ba dx y x f ),(分别在[a,b]和[c,d]上可积.注:即在f(x,y)连续性假设下,同时存在两个求积顺序不同的积分:⎰⎰⎥⎦⎤⎢⎣⎡ba d c dx dy y x f ),(与⎰⎰⎥⎦⎤⎢⎣⎡d c b a dy dx y x f ),(,或⎰⎰b a d c dy y x f dx ),(与⎰⎰d c b a dx y x f dy ),(.它们统称为累次积分,或二次积分.定理19.6:若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则⎰⎰bad cdy y x f dx ),(=⎰⎰d cbadx y x f dy ),(.证:记φ1(u) =⎰⎰ua dc dy y x f dx ),(, φ2(u) =⎰⎰dc ua dx y x f dy ),(, u ∈[a,b], 则φ1’(u)=⎰uc dx x dud )(ϕ=φ(u). 令H(u,y)=⎰u a dx y x f ),(, 则φ2(u) =⎰d c dy y u H ),(,∵H(u,y)与H u (u,y)=f(u,y)都在R 上连续, ∴φ2’(u)=⎰dc dy y u H dud ),(=⎰d c u dy y u H ),(=⎰d c dy y u f ),(=φ(u). ∴φ1’(u)=φ2’(u), ∴对一切u ∈[a,b], 有φ1(u)=φ2(u)+k (k 为常数). 当u=a 时,φ1(a)=φ2(a)=0, ∴k=0, 即得φ1(u)=φ2(u), u ∈[a,b]. 取u=b, 证得:⎰⎰ba dc dy y x f dx ),(=⎰⎰dc ba dx y x f dy ),(.例1:求⎰+→++aaa a x dx12201lim .解:记φ(a)=⎰+++a a a x dx 1221, ∵a, 1+a, 2211ax ++都是a 和x 的连续函数, 由定理19.2知φ(a)在a=0处连续, ∴)(lim 0a a ϕ→=φ(0)=⎰+1021xdx =4π.例2:设f(x)在x=0的某个邻域U 上连续, 验证当x ∈U 时, 函数φ(x)=⎰---x n dt t f t x n 01)()()!1(1的各阶导数存在, 且φ(n)(x)=f(x). 证:∵F(x,t)=(x-t)n-1f(t)及其偏导数F x (x,t)在U 上连续,由定理19.4可得:φ’(x)=⎰----x n dt t f t x n n 02)())(1()!1(1+)()()!1(11x f x x n n --- =⎰---x n dt t f t x n 02)()()!2(1. 同理φ”(x)=⎰---x n dt t f t x n 03)()()!3(1. 如此继续下去,求得k 阶导数为φ(k)(x)=⎰-----x k n dt t f t x k n 01)()()!1(1.当k=n-1时,有φ(n-1)(x)=⎰xdt t f 0)(. ∴φ(n)(x)=f(x).例3:求I=⎰-1ln dx xx x ab . (b>a>0)解:∵⎰baydy x =x x x ab ln -, ∴I=⎰⎰b a y dy x dx 10. 又x y 在[0,1]×[a,b]上满足定理19.6的条件, ∴I=⎰⎰10dx x dy y ab =⎰+ab dy y 11=ln ab ++11.例4:计算积分I=⎰++121)1ln(dx xx . 证:记φ(a)=⎰++1021)1ln(dx x ax , 则有φ(0)=0, φ(1)=I, 且函数21)1ln(x ax ++在R=[0,1]×[0,1]上满足定理19.3的条件,于是φ’(a)=⎰++102)1)(1(dx ax x x =⎰⎪⎭⎫ ⎝⎛+-+++10221111dx ax a x xa a =⎪⎭⎫ ⎝⎛+-++++⎰⎰⎰10101022211111dx ax a dx x x dx x a a =⎥⎦⎤⎢⎣⎡+++++10102102)1ln()1ln(21arctan 11ax x x a a =⎥⎦⎤⎢⎣⎡+-++)1ln(2ln 214112a a aπ. ∴⎰'1)(da a ϕ=⎰⎥⎦⎤⎢⎣⎡+-++102)1ln(2ln 21411da a a a π=102)1ln(8a +π+10arctan 2ln 21a -I =2ln 4π-I. 又⎰'10)(da a ϕ=φ(1)-φ(0)=I, ∴I=2ln 4π-I, 解得I=2ln 8π.习题1、设f(x,y)=sgn(x-y), 试证由含参量积分F(y)=⎰10),(dx y x f 所确定的函数在(-∞,+∞)上连续,并作函数F(y)的图像.证:∵x ∈[0,1], ∴当y<0时, f(x,y)=1; 当y>1时, f(x,y)=-1; 当0≤y ≤1时, F(y)=⎰ydx y x f 0),(+⎰1),(y dx y x f =⎰-y dx 0)1(+⎰1y dx =1-2y.∴F(y)=⎪⎩⎪⎨⎧>-≤≤-<11102101y ,y y ,y ,在(-∞,+∞)上连续,图像如图:2、求下列极限:(1)⎰-→+11220lim dx a x a ;(2)⎰→220cos lim axdx x a . 解:(1)∵函数f(x,a)=22a x +在矩形区域R=[-1,1]×[-1,1]上连续,∴⎰-→+11220lim dx a x a =⎰-→+11220lim dx a x a =⎰-11||dx x =1. (2)∵函数f(x,a)=x 2cosax 在矩形区域R=[0,2]×[-1,1]上连续,∴⎰→2020cos lim axdx x a =⎰→2020cos lim axdx x a =⎰202dx x =38.3、设F(x)=⎰-22x x xy dy e , 求F ’(x). 解:F ’(x)=-⎰-222x x y x dy e y +2x 5x e --3x e -.4、应用对参量的微分法,求下列积分:(1)⎰+202222)cos sin ln(πdx x b x a (a 2+b 2≠0);(2)⎰+-π02)cos 21ln(dx a x a .解:(1)若a=0, 则b ≠0,原式=⎰2022)cos ln(πdx x b =πln|b|+2⎰20)ln(cos πdx x =πln|b|-πln2=πln 2||b ; 同理,若b=0, 则a ≠0, 原式=πln 2||a ; 若a ≠0,b ≠0, 可设 I(b)=⎰+202222)cos sin ln(πdx x b x a , 则 I ’(b)=⎰+2022222cos sin cos ||2πdx x b x a x b =⎰⎪⎪⎭⎫⎝⎛+22tan 1||2πx b a dx b . 记u=ba, t=utanx, 则 I ’(b)=⎰∞+⋅+022211||2dt t u u t b =⎰∞⎪⎭⎫ ⎝⎛+-+-022222111)1(2dt t u t u b u =||||b a +π.又I(0)=⎰2022)sin ln(πdx x a =πln2||a , I(x)=⎰+x dt t a 0||π+πln 2||a =πln(|a|+x)-πln2. ∴⎰+202222)cos sin ln(πdx x b x a =πln(|a|+|b|)-πln2=πln 2||||b a +. (2)设I(a)=⎰+-π02)cos 21ln(dx a x a .当|a|<1时,1-2acosx+a 2≥1-2|a|+a 2=(1-|a|)2>0,∴ln(1-2acosx+a 2)为连续函数,且具有连续导数, ∴I ’(a)=⎰+--π2cos 21cos 22dx ax a x a =⎰⎪⎪⎭⎫ ⎝⎛+--+π022cos 21111dx a x a a a =a π-⎰⎪⎭⎫ ⎝⎛+-++-π222cos 121)1(1x a a dx a a a =a π-π02tan 11arctan 2⎪⎭⎫⎝⎛-+x aa a =0. ∴当|a|<1时,I(a)=c(常数),又I(0)=0, ∴I(a)=0. 当|a|<1时,令b=a1, 则|b|<1,有I(b)=0, 于是 I(a)=⎰⎪⎪⎭⎫⎝⎛+-π221cos 2ln dx b x b b =I(b)-2πln|b|=2πln|a|. 当|a|=1时,I(1)=⎰-π0)2cos ln 22ln 2(dx x=0; 同理I(-1)=0, ∴I(a)=⎩⎨⎧>≤1||||ln 21||0a ,a a ,π .注:由(2)或推出(1), 即⎰+202222)cos sin ln(πdx x b x a =⎰-++202222)2cos 22ln(πdx x b a b a=⎰-++π02222)cos 22ln(21dt t b a b a=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-++--π02||||||||cos ||||||||21ln 21dt b a b a t b a b a +πln 2||||b a +=πln 2||||b a +.5、应用积分号下的积分法,求下列积分:(1)⎰-⎪⎭⎫ ⎝⎛10ln 1ln sin dx x x x x a b (b>a>0);(2)⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x xx x ab (b>a>0). 解:(1)记g(x)=xxx x ab ln 1ln sin -⎪⎭⎫ ⎝⎛, ∵+→0lim x g(x)=0,∴令g(0)=0时,g(x)在[0,1]连续,于是有I=⎰10)(dx x g =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y .记f(x,y)=x y sin ⎪⎭⎫⎝⎛x 1ln (x>0), f(0,y)=0, 则f(x,y)在[0,1]×[a,b]上连续,∴I=⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a y dy dx x x 101ln sin =⎰⎰⎥⎦⎤⎢⎣⎡∞+-b a t y dydt t e 0)1(sin=⎰⎰⎥⎦⎤⎢⎣⎡∞+-ba t y dy dt t e 0)1(sin =⎰++b a y dy 2)1(1=arctan(1+b)-arctan(1+a). (2)类似于(1)题可得:⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x x x x ab =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a ydy dx x x 101ln cos =dy y y b a ⎰+++2)1(11=2222ln 2122++++a a b b .6、试求累次积分:⎰⎰+-102222210)(dy y x y x dx 与⎰⎰+-102222210)(dx y x y x dy ,并指出,它们为什么与定理19.6的结果不符.解:∵22222)(y x y x +-=-⎪⎪⎭⎫ ⎝⎛+∂∂22y x x x ,22222)(y x y x +-=-⎪⎪⎭⎫⎝⎛+∂∂22y x y y , ∴⎰⎰+-102222210)(dy y x y x dx =⎰⎪⎪⎭⎫⎝⎛+-101022dy y x x=-⎰+1021y dy =-4π.∵22222)(y x y x +-在点(0,0)不连续,∴与定理19.6的结果不符.7、研究函数F(y)=⎰+1022)(dx y x x yf 的连续性,其中f(x)在闭区间[0,1]上是正的连续函数.解:∵f(x)在[0,1]上是正的连续函数, ∴存在正数m, 使得f(x)≥m>0, x ∈[0,1]. 当y>0时, F(y)=⎰+1022)(dx y x x yf ≥m ⎰+1022dx y x y=marctan y 1; 当y<0时, F(y)=⎰+122)(dx y x x yf ≤m ⎰+1022dx y x y =marctan y 1; ∴+→0lim y F(y)≥+→0lim y marctan y 1=2πm >0, -→0lim y F(y)≤-→0lim y marctan y 1=-2πm <0.∵+→0lim y F(y)≠-→0lim y F(y), ∴F(y)在y=0处不连续. 又当0∉[c,d]时,22)(y x x yf +在[0,1]×[c,d]上连续,∴当y ≠0时,F(y)连续.8、设函数f(x)在闭区间[a,A]上连续,证明:⎰-+→xah dt t f h t f h )]()([1lim0=f(x)-f(a) (a<x<A). 证:⎰-+xa dt t f h t f )]()([=⎰++hx h a dt t f )(-⎰xa dt t f )(=⎰++hx h a dt t f )(-⎰+xh a dt t f )(-⎰+ha a dt t f )(=⎰+hx xdt t f )(-⎰+ha adt t f )(=hf(ξ1)-hf(ξ2), x ≤ξ1≤x+h, a ≤ξ2≤a+h. 当h →0时,ξ1→x, ξ2→a, ∴⎰-+→xa h dt t f h t f h )]()([1lim 0=0lim →h [f(ξ1)-f(ξ2)]=f(x)-f(a).9、设F(x,y)=⎰-xyyx dz z f yz x )()(, 其中f(z)为可微函数, 求F xy (x,y).解:F x (x,y)=⎰xyyxdz z f )(+(x-xy 2)f(xy)y-(x-y·y x )f(y x )·y 1=⎰xy yx dz z f )(+xy(1-y 2)f(xy).F xy (x,y)=xf(xy)+f(y x )·2yx +x(1-y 2)f(xy)-2xy 2f(xy)+x 2y(1-y 2)f ’(xy).10、设E(k)=⎰-2022sin 1πϕϕd k , F(k)=⎰-2022sin 1πϕϕk d . 其中0<k<1.(这两个积分称为完全椭圆积分)(1)试求E(k)与F(k)的导数,并以E(k)与F(k)来表示它们; (2)证明E(k)满足方程:E ”(k)+k1E ’(k)+211k -E(k)=0. (1)解:E ’(k)=-⎰-20222sin 1sin πϕϕϕd k k =-⎰⎪⎪⎭⎫ ⎝⎛----20222222sin 1sin 1sin 111πϕϕϕϕd k k k k =- ⎝⎛-⎰2022sin 111πϕϕd k k +⎪⎪⎭⎫-⎰2022sin 1πϕϕd k =k 1E(k)-k 1F(k). F ’(k)=ϕϕϕπd k k ⎰-203222)sin 1(sin =⎰-20322)sin 1(1πϕϕk d k -⎰-2022sin 11πϕϕk d k . 又322)sin 1(1ϕk -=ϕ222sin 111k k ---ϕϕϕϕ2222sin 1cos sin 1k d d k k --. ∴⎰-20322)sin 1(πϕϕk d =⎰--2222sin 111πϕϕd k k =211k-E(k). 从而有F ’(k)=)1(12k k -E(k)-k1F(k).(2)证:∵E ”(k)=[k 1E(k)-k 1F(k)]’=-21k E(k)+21k F(k)+k 1E ’(k)-k 1F ’(k),k 1E ’(k)=21k E(k)-21kF(k), ∴E ”(k)=-k 1F ’(k). 又F ’(k)=)1(12k k -E(k)-k 1F(k)=)1(12k k -E(k)+E ’(x)-k 1E(k)=E ’(x)+21k k -E(k).∴E ”(k)=-k 1E ’(x)-211k -E(k), 即E ”(k)+k 1E ’(k)+211k -E(k)=0.。
含参变量积分求导例题
当我们求含参变量的积分求导时,我们需要使用链式法则和基本的微积分规则。
下面我将以一个例题来说明。
假设我们要求函数 $f(x) = \int_{0}^{x} e^{t^2} dt$ 的导数。
首先,我们可以将积分写成定积分的形式:
$$f(x) = \int_{0}^{x} e^{t^2} dt = F(x) F(0),$$。
其中 $F(x)$ 是原函数,即 $F'(x) = e^{x^2}$。
接下来,我们可以使用基本的微积分规则来求导。
根据定积分的性质,我们可以得到:
$$f'(x) = F'(x) F'(0).$$。
根据链式法则,我们知道 $F'(x) = e^{x^2}$,而 $F'(0)$ 则是常数。
因此,我们可以得到:
$$f'(x) = e^{x^2} F'(0).$$。
至此,我们求得了含参变量积分的导数。
请注意,$F'(0)$ 是一个常数,可以通过计算 $F(x)$ 在 $x=0$ 处的导数来确定具体的值。
总结起来,对于函数 $f(x) = \int_{0}^{x} e^{t^2} dt$,它的导数为 $f'(x) = e^{x^2} F'(0)$,其中 $F(x)$ 是原函数,满足 $F'(x) = e^{x^2}$。
希望这个例题能够帮助你理解含参变量积分的求导过程。
如果你还有其他问题,请随时提问。
含参变量的积分例题详解
一、引言
在数学中,含参变量的积分是一个重要的概念,它涉及到函数的整体性质。
理解并掌握含参变量的积分对于解决各种实际问题具有深远的意义。
下面,我们将通过一个具体的例题来详解含参变量的积分。
二、例题详解
假设我们要求解这样一个积分:∫(上限a,下限0)e^(-
x)*x^2dx。
这是一个典型的含参变量的积分问题,其中参数为x,被积函数含有x^2。
我们需要根据这个问题的特点,灵活运用积分的各种方法,包括换元法、分部积分法等,来解决它。
首先,我们考虑换元法。
将x换元为t,令t=a-x,则原积分可以改写为:∫(上限a,下限0)e^(a-x)*x^2dx。
注意到e^(a-x)是一个常数,因此我们可以将积分区间变为[0,a],这样原积分就变成了一个简单的定积分。
接下来,我们使用分部积分法对被积函数进行化简。
被积函数中的x^2可以分解为x的导数乘以x,即x*(x-1)。
因此,原积分的被积函数可以表示为e^(a-x)*(x-1)*x。
对这部分进行积分,我们可以得到∫(上限a,下限0)e^(a-x)*(x-1)*xdx=e^(a-x)*(x^2-x)|(上限a,下限0)=a^3/3-a^2/2。
最后,我们将两部分相加得到最终结果:∫(上限a,下限0)e^(-x)*x^2dx=a^3/3-a^2/2+C,其中C为常数。
三、总结
通过这个例题,我们可以看到含参变量的积分需要我们灵活运用各种积分方法,包括换元法和分部积分法等。
同时,我们需要对被积函数进行适当的化简,以便更好地理解和求解含参变量的积分。
需要注意的是,当参数或者被积函数含有复杂的形式时,我们需要更深入地理解和分析问题,才能找到合适的解决方法。
总的来说,含参变量的积分是数学中的一个重要概念,它涉及到函数的整体性质和变化规律。
通过理解和掌握含参变量的积分,我们可以更好地解决各种实际问题,为我们的学习和工作提供有力的支持。