表面粗糙度的测量方法
- 格式:docx
- 大小:15.37 KB
- 文档页数:2
粗糙度的测量方法
粗糙度是指物体表面的不平整程度,可以通过以下几种方法来测量粗糙度:
1. 触摸和视觉评估法:通过手感或目视观察物体表面的不平整程度来评估粗糙度,这种方法简单直观,但缺乏精确性。
2. 比较法:将待测物体与已知粗糙度的标准参照物进行比较,通过人眼观察和判断两者之间的差异来确定粗糙度。
这种方法需要经验丰富的观察者来进行评估。
3. 使用表面粗糙度评估仪器:这种仪器能够测量物体表面的凹凸程度、纹理、峰谷间距等参数,常用的仪器有粗糙度测量仪、激光扫描仪、形貌测量仪等。
这些仪器可以提供精确的数值化结果,并且适用于各种表面材料。
需要注意的是,粗糙度的测量方法与被测物体的尺寸、材料、形状等因素相关,选择合适的测量方法需要根据具体情况进行判断。
表面粗糙度的测量表面粗糙度的测量方法有光切法,光波干涉法及触针法(又称针描法)等,工厂常用的还有粗糙度样板直接和被测工件对照的比较法,以及利用塑性和可铸性材料将被测工件加工表面的加工痕迹复印下来,然后再测量复印的印模的印模法。
一、实验目的1.建立对表面粗糙度的感性认识;2.了解用双管显微镜测量表面粗糙度的原理及方法。
二、实验内容用双管显微镜测量表面粗糙度的Rz值。
三、测量原理及仪器说明双管显微镜又撑光切显微镜,它是利用被测表面能反射光的特性,根据“光切法原理”制成的光学仪器,其测量范围取决于选用的物镜的放大倍数,一般用于测量0.8-80微米的表面粗糙度Rz值。
仪器外型如图1所示,它由底座6,支柱5,横臂2,测微目镜13,可换物镜8及工作台7等部分组成。
仪器备有四种不同倍数(7X,14X,30X,60X)物镜组,被测表面粗糙度大小(估测)来选择相应倍数的物镜组(见表1)。
表1 双管显微镜测量参数物镜放大倍数N 总放大倍数目镜视场直径(mm)物镜与工件距离(mm)测量范围Rz(µm)换算系数E(微米/格)7X 60X 2.5 9.5 30~30 1.2514X 120X 1.3 2.5 6.3~20 0.6330X 260X 0.6 0.2 1.6~6.3 0.29460X 510X 0.3 0.04 0.8~1.6 0.147测量原理如图2所示,被测表面为P1-P2阶梯表面,当一平行光束从45度方向投射到阶梯表面时,即被折成S1和S2两段,从垂直于光束的方向上就可以在显微镜内看到S1和S2两段光带的放大像S1'S2',同时距离h也被放大为h1'。
通过测量和计算,可求得被测表面的不平度高度h。
这种方法类似在零件表面斜切一刀,然后观察其剖面的轮廓形状,因此称为光切法。
图3为双管显微镜的光学系统图,由光源1发出的光,经聚光镜2,狭缝3,物镜4以45度方向投射到北测表面上,调整仪器使反射光束经物镜5成像在目镜分划板6上,光束被测上表面的S1点反射,在下表面S2点反射,它们各成像于分划板6的S1'和S2',距离h1被放大为h1',通过目镜可观察到凹凸不平的光带(图4(b)),光带边缘即工件表面上被照亮了的h1的放大轮廓像h1',测量h1'即可求出被测表面的不平高度h2。
表面粗糙度的测量表面粗糙度的测量方法有光切法,光波干涉法及触针法(又称针描法)等,工厂常用的还有粗糙度样板直接和被测工件对照的比较法,以及利用塑性和可铸性材料将被测工件加工表面的加工痕迹复印下来,然后再测量复印的印模的印模法。
一、实验目的1.建立对表面粗糙度的感性认识;2.了解用双管显微镜测量表面粗糙度的原理及方法。
二、实验内容用双管显微镜测量表面粗糙度的Rz值。
三、测量原理及仪器说明双管显微镜又撑光切显微镜,它是利用被测表面能反射光的特性,根据“光切法原理”制成的光学仪器,其测量范围取决于选用的物镜的放大倍数,一般用于测量0.8-80微米的表面粗糙度Rz值。
仪器外型如图1所示,它由底座6,支柱5,横臂2,测微目镜13,可换物镜8及工作台7等部分组成。
仪器备有四种不同倍数(7X,14X,30X,60X)物镜组,被测表面粗糙度大小(估测)来选择相应倍数的物镜组(见表1)。
表1 双管显微镜测量参数测量原理如图2所示,被测表面为P1-P2阶梯表面,当一平行光束从45度方向投射到阶梯表面时,即被折成S1和S2两段,从垂直于光束的方向上就可以在显微镜内看到S1和S2两段光带的放大像S1'S2',同时距离h也被放大为h1'。
通过测量和计算,可求得被测表面的不平度高度h。
这种方法类似在零件表面斜切一刀,然后观察其剖面的轮廓形状,因此称为光切法。
图3为双管显微镜的光学系统图,由光源1发出的光,经聚光镜2,狭缝3,物镜4以45度方向投射到北测表面上,调整仪器使反射光束经物镜5成像在目镜分划板6上,光束被测上表面的S1点反射,在下表面S2点反射,它们各成像于分划板6的S1'和S2',距离h1被放大为h1',通过目镜可观察到凹凸不平的光带(图4(b)),光带边缘即工件表面上被照亮了的h1的放大轮廓像h1',测量h1'即可求出被测表面的不平高度h2。
h=h1cos45=(h1/N)cos45式中N——物镜的放大倍数影象高度h1'是利用目镜测微器来测量的,测微目镜头结构见图4(a)由于测微器中的十字刻线与测微器读数方向成45,所以当用十字线只能感的任一直线与影像蜂,谷相切来测量波高度时,波高h1=h1cos45h1”为刻度线移过的实际距离,即测微器量词读数差(见图4(b)),所以被测表面的不平高度为:h=h1cos45cos45/N=1/2N·h1式中,E为刻度套筒的分度值,或称为换算系数,它与投射角,目镜测微器的结构和物镜放大倍数有关,可在表1中查取。
粗糙度仪的四种测量粗糙度是表面质量的重要指标之一,它描述了表面细微的起伏和不规则程度。
粗糙度仪是一种用来测量物体表面粗糙度的工具。
本文将介绍粗糙度仪的四种常见测量方法。
1. Ra值测量Ra值是表面粗糙度的一个常见指标,表示表面上大量读数的平均值。
粗糙度仪通过使用一个滑动头,在物体表面采集多个数据点,并计算这些点之间的平均高度差来计算Ra值。
在Ra值测量中,需要将测量仪放在尽可能平整的表面上,按下开始按钮。
滑动头将沿着表面移动,采集多个数据点。
采集后,测量仪将计算这些点之间的平均高度差,并显示Ra值。
2. Rz值测量Rz值是描述表面粗糙度的另一种常见指标,表示整个表面上高度极差的平均值。
Rz值测量与Ra值测量类似,但是它使用的是高度极差而不是平均高度差来计算表面粗糙度。
在Rz值测量中,需要将测量仪放在尽可能平整的表面上,按下开始按钮。
滑动头将沿着表面移动,采集多个数据点。
采集后,测量仪将计算这些点之间的高度极差,并显示Rz值。
3. Rmax值测量Rmax值是表面粗糙度的最大值,表示表面上任意两个数据点之间的最大高度差。
Rmax值测量可以帮助确定表面在给定沟槽或凸起的区域上的极值。
在Rmax值测量中,需要将测量仪放在尽可能平整的表面上,按下开始按钮。
滑动头将沿着表面移动,采集多个数据点。
采集后,测量仪将计算这些点之间的高度差的最大值,并显示Rmax值。
4. Rt值测量Rt值表示表面上任意两个数据点之间的总高度差。
Rt值测量可以帮助确定表面的整体粗糙度程度,并帮助评估表面的适用性。
在Rt值测量中,需要将测量仪放在尽可能平整的表面上,按下开始按钮。
滑动头将沿着表面移动,采集多个数据点。
采集后,测量仪将计算这些点之间的总高度差,并显示Rt值。
总结粗糙度仪有多种测量方法,其中包括Ra值测量、Rz值测量、Rmax值测量和Rt值测量。
这些测量方法可以帮助确定表面的粗糙度程度和适用性,帮助有效地评估表面质量。
无论是在工业生产还是个人使用中,粗糙度仪都是非常有用的工具。
表面粗糙度的检测方法
表面粗糙度的检测是通过测量表面的微观形状和轮廓来评估表面质量的过程。
有多种方法可以用于表面粗糙度的检测,其中一些常见的方法包括:
表面轮廓仪(Surface Profilometer):表面轮廓仪是一种用于测量物体表面轮廓的设备。
它通过沿表面滑动或扫描,利用探测器检测高度变化,并生成相应的高度剖面图。
通过分析这些剖面图,可以得出表面的粗糙度参数。
激光干涉仪(Laser Interferometer):激光干涉仪利用激光光束的干涉效应来测量表面的高度变化。
这种方法对于高精度的表面粗糙度测量很有效,可以提供亚微米级别的分辨率。
原子力显微镜(Atomic Force Microscope,AFM):AFM是一种在原子尺度上测量表面形状和粗糙度的工具。
它使用微小的探针扫描样品表面,通过探测器的运动来生成高分辨率的表面图像。
表面粗糙度仪(Surface Roughness Tester):这是一种专门用于测量表面粗糙度的便携式仪器。
通常采用钻头或球形探头,测量表面在垂直方向的高低变化,并输出相应的粗糙度参数,如Ra、Rz等。
光学显微镜:在一些情况下,使用光学显微镜可以对表面进行观察和评估。
虽然其分辨率较低,但对于一些较大尺度的粗糙度评估仍然有效。
在选择适当的检测方法时,需要考虑表面的特性、粗糙度范围和检测精度的要求。
根据具体的应用场景,可以选择最合适的工具和技术。
表面粗糙度是对工件质量进行评估的重要指标之一,对于其在使用过程中的配合质量、运动精度以及耐磨损性等都有着不容忽视的影响,因此,想要保证工件的加工质量,就必须采取有效措施,降低表面粗糙度。
表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动等。
由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。
表面粗糙度与机械零件的配合性质、耐磨性、疲劳强度、接触刚度、振动和噪声等有密切关系,对机械产品的使用寿命和可靠性有重要影响。
一般标注采用Ra。
表面粗糙度测量方法一、接触式测量方法接触式测量方法指的是,在测量设备中的探测位置会直接与表面接触,可以帮助人们获取被测表面的信息。
但是这种测量方式不适用于刚性强度偏高、容易发生磨损的表面。
1、比较测量方法在车间普遍应用的测量方法是比较法。
比较法指的是将对比粗糙度样板与被测表面进行比较,测量人员直接用手的触摸来确定表面的粗糙度,或者通过肉眼观察,也可以使用放大镜、比较显微镜来对比。
通常情况下,当粗糙度评定参数值偏高时,可以运用比较法,但是很可能造成很大的误差。
2、印模法印模法指的是采用一些塑性材料当做块状印模,然后将其与被测表面互相贴合,再取下时,印模上会出现表面的具体轮廓,测量人员可以开始测量印模的表面,这种方式可以获取部件的表面粗糙度。
一些规模大的零件内表面测量工作无法通过设备来完成,可以使用印模法来实现。
然而印模法也存在一定缺陷,它的准确性不强,而且操作过程很复杂。
3、触针法触针法的另一种名称是针描法。
这种方法是在被测表面上放置一根很尖的触针,测量过程中需要垂直放置,使触针做横向移动。
根据被测表面的轮廓,触针会自行做垂直起伏运动。
把触针所做的位移活动利用电路转变为电信号后,可以将其方法,分析与计算后就可以获取表面粗糙度的指数。
触针法主要包括感应式、压电式以及电感式等几种方法。
粗糙度的测量方法
粗糙度是表面不光滑程度的度量,它描述了一个表面的凹凸不平程度。
以下是一些常见的粗糙度测量方法:
1. 雷达测高仪:雷达测高仪通过测量信号的反射来确定表面的高度
差异,从而得出粗糙度参数。
2. 表面轮廓仪:表面轮廓仪使用感应器或探针扫描表面,记录并测
量高度变化,然后产生表面轮廓数据,可用于计算粗糙度参数。
3. 光学测量方法:光学测量技术利用光学干涉、散射或反射等原理,测量表面特征以确定表面的粗糙度。
4. 表面比对法:将待测表面与标准表面进行比对或触摸,使用人工
或机械测量工具测量其间的高度变化,从而计算粗糙度。
5. 飞行式触针仪:飞行式触针仪通过感应探针接触表面,并探测探
针的垂直运动,从而测量表面的凹凸程度。
6. 拉伸法:拉伸样本并测量其表面的拉伸载荷与位移变化,通过分析位移数据得出粗糙度参数。
7. 静电传感器:静电传感器可以测量电荷在表面上的分布情况,进而估计表面的粗糙度。
请注意,粗糙度的测量方法因应用领域、表面条件和预期结果而异。
选择合适的测量方法需要考虑以上因素,并结合仪器设备的可用性和适应性。
表面粗糙度测量技术方法与设备介绍表面粗糙度是指物体表面的不均匀性或不平整程度。
在许多工业领域中,表面粗糙度的测量非常重要,因为它直接影响到物体的功能和性能。
本文将介绍一些常用的表面粗糙度测量技术方法与设备。
一、光学方法光学方法是一种非接触式测量表面粗糙度的技术。
例如,白光干涉法和激光扫描仪是其中常用的两种方法。
1. 白光干涉法白光干涉法是通过观察物体表面反射光的干涉图案来测量表面粗糙度的方法。
它利用白光经过物体表面反射时,不同高度的表面会产生不同的光程差,从而形成干涉条纹。
通过分析干涉条纹的特征,可以计算出表面的粗糙度参数。
2. 激光扫描仪激光扫描仪是一种使用激光束来扫描物体表面的设备。
它通过激光从不同角度照射物体表面,并通过接收器接收反射回来的激光信号,根据信号的强度和相位变化来计算表面的粗糙度参数。
激光扫描仪具有高精度和高分辨率的优点,适用于复杂曲面的粗糙度测量。
二、机械方法机械方法是一种通过机械设备对物体表面进行接触式测量的技术。
它常用于工业生产线上的实时检测。
1. 探针测量法探针测量法是一种常见的机械测量方法。
它使用一根装有传感器的探针,通过垂直移动探针并记录表面高度的变化,从而测量表面的粗糙度。
探针测量法可以适用于不同形状和材质的表面,但是由于是接触式测量,可能会对物体造成轻微的损伤。
2. 高斯仪测量法高斯仪是一种利用一个平面平行于被测表面的高斯孔隙板的装置进行测量的方法。
通过将高斯孔隙板压在物体表面上,并测量孔隙板下的气压变化,可以计算出表面的粗糙度参数。
高斯仪具有简单、准确的特点,被广泛应用于工业生产中。
三、电子方法电子方法是利用电子设备对物体表面的电信号进行测量和分析的技术。
1. 扫描电子显微镜(SEM)扫描电子显微镜是一种利用电子束扫描表面,并通过接收被扫描物体表面反射的电子信号来观察和测量物体表面形貌的设备。
SEM具有非常高的分辨率和放大倍率,可以用于微观尺度下的表面粗糙度测量。
粗糙度测试方法导语:粗糙度测试是一种常用的测试方法,用于评估物体表面的粗糙程度。
本文将介绍几种常见的粗糙度测试方法,包括触感法、比较法、仪器测量法等。
一、触感法触感法是一种简单直观的粗糙度测试方法。
通过手指轻触物体表面,根据触感判断物体的粗糙程度。
一般来说,粗糙度较高的物体表面会感觉到明显的不平整和摩擦感,而粗糙度较低的物体表面则会感觉光滑平整。
二、比较法比较法是一种常用的粗糙度测试方法。
通过将待测试物体与标准物体进行比较,从而确定物体的粗糙程度。
一种常见的比较法是目测比较法,即通过肉眼观察和比较不同物体表面的粗糙程度。
另一种比较法是触摸比较法,即通过触摸不同物体表面的差异来判断粗糙度。
三、仪器测量法仪器测量法是一种精确度较高的粗糙度测试方法。
通过使用专用的粗糙度测试仪器,如激光测量仪、表面粗糙度仪等,对物体表面的粗糙度进行测量和分析。
这些仪器可以提供物体表面的粗糙度参数,如Ra、Rz等,用于评估表面的粗糙程度。
四、其他测试方法除了上述常见的粗糙度测试方法,还有一些其他的测试方法可以用于评估物体表面的粗糙度。
例如,摩擦测试法可以通过测量物体表面的摩擦系数来评估粗糙度。
另外,声音测试法可以通过听觉感知物体表面的声音来判断粗糙度。
总结:粗糙度测试是一种常用的测试方法,可以评估物体表面的粗糙程度。
常见的测试方法包括触感法、比较法和仪器测量法等。
触感法和比较法是一种直观简单的测试方法,适用于一些粗略的粗糙度评估。
仪器测量法是一种更加精确的测试方法,通过专用的仪器对物体表面的粗糙度进行测量和分析。
除了这些方法,还有一些其他的测试方法可以用于评估物体表面的粗糙度。
总之,选择适合的粗糙度测试方法,可以有效评估物体表面的粗糙程度,为产品设计和加工提供参考依据。
表面粗糙度怎么测量_ 测量表面粗糙度的方法内容来源网络,由深圳机械展收集整理表面粗糙度的检测,我们常用的有以下几中方法1.显微镜比较法,;将被测表面与表面粗糙度比较样块靠近在一起,用比较显微镜观察两者被放大的表面,以样块工作面上的粗糙度为标准,观察比较被测表面是否达到相应样块的表面粗糙度;从而判定被测表面粗糙度是否符合规定;此方法不能测出粗糙度参数值2.光切显微镜测量法,Rz:~100;光切显微镜双管显微镜是利用光切原理测量表面粗糙度的方法;从目镜观察表面粗糙度轮廓图像,用测微装置测量Rz值和Ry值;也可通过测量描绘出轮廓图像,再计算Ra值,因其方法较繁而不常用;必要时可将粗糙度轮廓图像拍照下来评定;光切显微镜适用于计量室3.样块比较法,直接目测:;用放大镜:~;以表面粗糙度比较样块工作面上的粗糙度为标准, 用视觉法或触觉法与被测表面进行比较,以判定被测表面是否符合规定用样块进行比较检验时,样块和被测表面的材质、加工方法应尽可能一致;样块比较法简单易行,适合在生产现场使用4.电动轮廓仪比较法,Ra:~;Rz:~25;电动轮廓仪系触针式仪器;测量时仪器触针尖端在被测表面上垂直于加工纹理方向的截面上,做水平移动测量,从指示仪表直接得出一个测量行程Ra值;这是Ra值测量常用的方法;或者用仪器的记录装置,描绘粗糙度轮廓曲线的放大图,再计算Ra或Rz值;此类仪器适用在计量室;但便携式电动轮廓仪可在生产现场使用5干涉显微镜测量法,Rz:.032~;涉显微镜是利用光波干涉原理,以光波波长为基准来测量表面粗糙度的;被测表面有一定的粗糙度就呈现出凸凹不平的峰谷状干涉条纹,通过目镜观察、利用测微装置测量这些干涉条纹的数目和峰谷的弯曲程度,即可计算出表面粗糙度的Ra值;必要时还可将干涉条纹的峰谷拍照下来评定;干涉法适用于精密加工的表面粗糙度测量;适合在计量室使用而在现场工作中,我们用的多的是:样块比较法和电动轮廓检测法,样块比较法要求对粗糙度的敏感要求比较高,有些老师傅还是可以做到的,毕竟是凭经验和感觉去比较的,而电动轮廓检测法是靠仪器测量,这样测量出来的准确度就大大提高了,所以说,我们建议用电动轮廓检测法.用什么方法去检测1.比较法:将被测表面和表面粗糙度样板直接进行比较,多用于车间,评定表面粗糙度值较大的工件;2.光切法:是应用光切原理来测量表面粗糙度的一种测量方法;常用仪器——光切显微镜,双管显微镜; 该仪器适用于车.铣.刨等加工方法获得的金属平面;或外圆表面;主要测量Rz值,测量范围为~60μm;3、干涉法:是利用光波干涉原理测量表面粗糙度的一种测量方法;常用仪器是干涉显微镜;主要用于测量Rz值;测量范围为~μm;一般用于测量表面粗糙度要求高的表面;4、针描法:是一种接触式测量表面粗糙度的方法,常用的仪器是电动轮廓仪,该仪器可直接显示Ra值,适宜于测量Ra值~μm;5、印摸法:在实际测量中,常会遇到深孔,盲孔;凹槽,内螺纹等既不能使用仪器直接测量,也不能使用样板比较的表面;这是常用印摸法;印摸法是利用一些无流动性和弹性的塑性材料如石蜡等贴合在被测表面上;将被测表面的轮廓复制成模;然后测量印模,从而来评定被测表面的粗糙度;内容来源网络,由深圳机械展收集整理更多相关内容,就在深圳机械展。
表面粗糙度怎么测量_ 测量表面粗糙度的方法内容来源网络,由深圳机械展收集整理!表面粗糙度的检测,我们常用的有以下几中方法1.显微镜比较法,Ra0.32;将被测表面与表面粗糙度比较样块靠近在一起,用比较显微镜观察两者被放大的表面,以样块工作面上的粗糙度为标准,观察比较被测表面是否达到相应样块的表面粗糙度;从而判定被测表面粗糙度是否符合规定。
此方法不能测出粗糙度参数值2.光切显微镜测量法,Rz:0.8~100;光切显微镜(双管显微镜)是利用光切原理测量表面粗糙度的方法。
从目镜观察表面粗糙度轮廓图像,用测微装置测量Rz值和Ry值。
也可通过测量描绘出轮廓图像,再计算Ra值,因其方法较繁而不常用。
必要时可将粗糙度轮廓图像拍照下来评定。
光切显微镜适用于计量室3.样块比较法,直接目测:Ra2.5;用放大镜:Ra0.32~0.5;以表面粗糙度比较样块工作面上的粗糙度为标准,用视觉法或触觉法与被测表面进行比较,以判定被测表面是否符合规定用样块进行比较检验时,样块和被测表面的材质、加工方法应尽可能一致;样块比较法简单易行,适合在生产现场使用4.电动轮廓仪比较法,Ra:0.025~6.3;Rz:0.1~25;电动轮廓仪系触针式仪器。
测量时仪器触针尖端在被测表面上垂直于加工纹理方向的截面上,做水平移动测量,从指示仪表直接得出一个测量行程Ra值。
这是Ra值测量常用的方法。
或者用仪器的记录装置,描绘粗糙度轮廓曲线的放大图,再计算Ra或Rz值。
此类仪器适用在计量室。
但便携式电动轮廓仪可在生产现场使用5干涉显微镜测量法,Rz:.032~0.8;涉显微镜是利用光波干涉原理,以光波波长为基准来测量表面粗糙度的。
被测表面有一定的粗糙度就呈现出凸凹不平的峰谷状干涉条纹,通过目镜观察、利用测微装置测量这些干涉条纹的数目和峰谷的弯曲程度,即可计算出表面粗糙度的Ra值。
必要时还可将干涉条纹的峰谷拍照下来评定。
干涉法适用于精密加工的表面粗糙度测量。
Ra 轮廓算术平均偏差:在取样长度内,轮廓偏距绝对值的算术平均值;Rz 微观不平度十点高度:在取样长度内最大的轮廓峰高的平均值与五个最大的轮廓谷深的平均值之和;Ry 轮廓最大高度:在取样长度内,轮廓峰顶线和轮廓谷底线之间的距离;3种都是用来表示表面粗糙度的。
具体关系不好说明...Ra是最主要的评定参数,Rz一般只用来表示比较短小的表面。
Ry基本不单独使用,算是一个极限偏差值吧。
3.2.5 表面粗糙度的评定国家标准《表面粗糙度参数及其数值》 GB1031 - 83 对表面粗糙度的合理评定作了规定。
(1)基本术语及定义1)取样长度取样长度是指用以判别具有表面粗糙度特征的一段基准长度,如图 3 - 43 所示。
在取样长度范围内,一般应包括 5 个以上的轮廓峰和轮廓谷。
规定取样长度是为了限制和减弱表面波度对表面粗糙度测量结果的影响。
图 3-43 取样长度、评定长度2)评定长度评定长度是指评定轮廓所必需的一段长度。
它包括一个或几个取样长度如上图。
3)轮廓偏距轮廓偏距是指在测量方向上,轮廓线上的点与基准线之间的距离。
4)基准线 :① 轮廓的最小二乘中线(m)轮廓中线是测量和评定表面粗糙度的基准线。
轮廓的最小二乘中线是指具有几何轮廓形状并划分轮廓的基准线,在取样长度内,使轮廓线上各点的轮廓偏距的平方和为最小,如图 3 - 44 。
图 3-44 轮廓偏距、轮廓最小二乘中线图3-45 轮廓的算术平均中线② 轮廓的算术平均中线轮廓的算术平均中线是指具有几何轮廓形状,在取样长度内,与轮廓走向一致的基准线,如图 3 - 45 。
5)轮廓峰、轮廓谷轮廓峰顶线是指在取样长度内,平行于基准线并通过轮廓最高点的线;轮廓谷底线是指在取样长度内,平行于基准线并通过轮廓最低点的线。
如图 3 - 46 。
图 3 - 46 轮廓峰、轮廓谷(2)评定参数1)与微观不平度高度特性有关的评定参数 :① 轮廓的算术平均偏差(Ra)轮廓的算术平均偏差是指在取样长度内,轮廓偏距绝对值的算术平均值。
表面粗糙度的测量方法
将表面粗糙度比较样块,根据视觉和触觉与被测表面比较,判断被测表面粗糙度相当于那一数值,或测量其反射光强变化来评定表面粗糙度。
样块是一套具有平面或圆柱表面的金属块,表面经磨、车、镗、铣、刨等切削加工,电铸或其他铸造工艺等加工而具有不同的表面粗糙度。
有时可直接从工件中选出样品经过测量并评定合格后作为样块。
利用样块根据视觉和触觉评定表面粗糙度的方法虽然简便,但会受到主观因素影响,常不能得出正确的表面粗糙度数值。
触针法
利用针尖曲率半径为2微米左右的金刚石触针沿被测表面缓慢滑行,金刚石触针的上下位移量由电学式长度传感器转换为电信号,经放大、滤波、计算后由显示仪表指示出表面粗糙度数值,也可用记录器记录被测截面轮廓曲线。
一般将仅能显示表面粗糙度数值的测量工具称为表面粗糙度测量仪,同时能记录表面轮廓曲线的称为表面粗糙度轮廓仪(简称轮廓仪),这两种测量工具都有电子计算电路或电子计算机,它能自动计算出轮廓算术平均偏差Rα,微观不平度十点高度RZ,轮廓最大高度Ry和其他多种评定参数,测量效率高,适用于测量Rα为0.025~6.3微米的表面粗糙度。
光切法
光线通过狭缝后形成的光带投射到被测表面上,以它与被测表面的交线所形成的轮廓曲线来测量表面粗糙度。
由光源射出的光经聚光镜、狭缝、物镜1后,以45°的倾斜角将狭缝投影到被测表面,形成被测表面的截面轮廓图形,然后通过物镜2将此图形放大后投射到分划板上。
利用测微目镜和读数鼓轮,
先读出h值,计算后得到H 值。
应用此法的表面粗糙度测量工具称为光切显微镜。
它适用于测量RZ和Ry为0.8~100微米的表面粗糙度,需要人工取点,测量效率低。
干涉法
利用光波干涉原理(见平晶、激光测长技术)将被测表面的形状误差以干涉条纹图形显示出来,并利用放大倍数高(可达500倍)的显微镜将这些干涉条纹的微观部分放大后进行测量,以得出被测表面粗糙度。
应用此法的表面粗糙度测量工具称为干涉显微镜。
这种方法适用于测量Rz和Ry为0.025~0.8微米的表面粗糙度。