表面粗糙度及其检测 (2)
- 格式:ppt
- 大小:1.72 MB
- 文档页数:15
表面粗糙度的检测,我们常用的有以下几中方法1.显微镜比较法,Ra0.32;将被测表面与表面粗糙度比较样块靠近在一起,用比较显微镜观察两者被放大的表面,以样块工作面上的粗糙度为标准,观察比较被测表面是否达到相应样块的表面粗糙度;从而判定被测表面粗糙度是否符合规定。
此方法不能测出粗糙度参数值2.光切显微镜测量法,Rz:0.8~100;光切显微镜(双管显微镜)是利用光切原理测量表面粗糙度的方法。
从目镜观察表面粗糙度轮廓图像,用测微装置测量Rz值和Ry值。
也可通过测量描绘出轮廓图像,再计算Ra值,因其方法较繁而不常用。
必要时可将粗糙度轮廓图像拍照下来评定。
光切显微镜适用于计量室3.样块比较法,直接目测:Ra2.5;用放大镜:Ra0.32~0.5;以表面粗糙度比较样块工作面上的粗糙度为标准,用视觉法或触觉法与被测表面进行比较,以判定被测表面是否符合规定用样块进行比较检验时,样块和被测表面的材质、加工方法应尽可能一致;样块比较法简单易行,适合在生产现场使用4.电动轮廓仪比较法,Ra:0.025~6.3;Rz:0.1~25;电动轮廓仪系触针式仪器。
测量时仪器触针尖端在被测表面上垂直于加工纹理方向的截面上,做水平移动测量,从指示仪表直接得出一个测量行程Ra值。
这是Ra值测量常用的方法。
或者用仪器的记录装置,描绘粗糙度轮廓曲线的放大图,再计算Ra或Rz值。
此类仪器适用在计量室。
但便携式电动轮廓仪可在生产现场使用5干涉显微镜测量法,Rz:.032~0.8;涉显微镜是利用光波干涉原理,以光波波长为基准来测量表面粗糙度的。
被测表面有一定的粗糙度就呈现出凸凹不平的峰谷状干涉条纹,通过目镜观察、利用测微装置测量这些干涉条纹的数目和峰谷的弯曲程度,即可计算出表面粗糙度的Ra值。
必要时还可将干涉条纹的峰谷拍照下来评定。
干涉法适用于精密加工的表面粗糙度测量。
适合在计量室使用而在现场工作中,我们用的多的是:样块比较法和电动轮廓检测法,样块比较法要求对粗糙度的敏感要求比较高,有些老师傅还是可以做到的,毕竟是凭经验和感觉去比较的,而电动轮廓检测法是靠仪器测量,这样测量出来的准确度就大大提高了,所以说,我们建议用电动轮廓检测法.用什么方法去检测1.比较法:将被测表面和表面粗糙度样板直接进行比较,多用于车间,评定表面粗糙度值较大的工件。
表面粗糙度1. 引言表面粗糙度是指表面上的不平整程度,它是衡量表面粗糙程度的一项重要指标。
在许多工程领域中,如制造业、建筑业和地质学等,表面粗糙度对于产品的质量和性能起着关键作用。
本文将介绍表面粗糙度的定义、表征方法和影响因素,并讨论其在不同领域中的应用。
2. 表面粗糙度的定义表面粗糙度是指在表面上存在的微小起伏和凹凸不平现象,通常用来量化表面的不平整程度。
它可以通过测量表面上的起伏高度、凹凸数量或表面的平均粗糙度来表示。
表面粗糙度可以用数字、符号或图表来表示,以便于比较和分析。
3. 表征方法3.1 光学测量法光学测量法是一种常用的表征表面粗糙度的方法。
它利用光辐射在表面的反射和散射来测量表面的起伏和不规则度。
光学测量法可以通过使用激光干涉仪、激光扫描仪或白光干涉仪等设备来实现。
这些设备可以在微米级别测量表面的高度和形状。
3.2 接触式测量法接触式测量法是通过物体与表面接触并测量物体在表面上滑动的方式来确定表面粗糙度。
常用的接触式测量设备包括触针探头、压力探头和扫描探头等。
这些设备可以测量表面的高度差异、坡度和曲率等信息,并生成相应的表面粗糙度参数。
3.3 声学测量法声学测量法是一种通过声波的传播和反射来测量表面粗糙度的方法。
它利用声波在不同表面上的反射和散射特性原理来确定表面的粗糙度和结构。
常见的声学测量设备包括声波探头、超声波传感器和声纳测量系统等。
这些设备可以测量表面的声波反射时间、幅度和频率等参数,以评估表面的粗糙度。
4. 影响因素表面粗糙度受多种因素的影响,包括材料的性质、加工工艺和环境条件等。
以下是一些常见的影响因素:•材料硬度:硬度较高的材料通常具有较低的表面粗糙度。
•加工方法:不同的加工方法会产生不同程度的表面粗糙度,如铣削、磨削和打磨等。
•切削速度:切削速度越高,产生的切削热量越大,从而导致较高的表面粗糙度。
•环境湿度:高湿度环境下,材料容易出现氧化和腐蚀,从而增加表面的粗糙度。
第六章表面粗糙度及检测第一节概述用任何方法获得的零件表面,都不会绝对的光滑平整,总会存在着由较小间距的峰和谷组成的微观高低不平。
这种加工表面上具有的微观几何形状误差称为表面粗糙度。
它主要是在加工过程中,由于刀具切削后留下的刀痕、切屑分离时的塑性变形、工艺系统中存在高频振动及刀具和零件表面之间的磨擦等原因所形成的。
表面粗糙度对零件的功能要求、使用寿命、可靠性及美观程度均有直接的影响。
为了正确地测量和评定零件表面粗糙度,自从1956年颁布了第一个表面光洁度标准JB 50-56以来,我国对表面粗糙度国家标准已进行了多次修订,现在实施的相关标准主要有GB/T3505-2000《产品几何技术规范(GPS)表面结构轮廓法表面结构的术语、定义及参数》(代替GB/T3505-2000)、GB/T1031-2009《产品几何技术规范(GPS)表面结构轮廓法表面粗糙度参数及其数值》(代替GB/T 1031-1995)、GB/T 10610-2009《产品几何技术规范(GPS)表面结构轮廓法评定表面结构的规则和方法》(代替GB/T 10610-1998)、GB/T131-2006《产品几何技术规范(GPS)技术产品文件中表面结构的表示法》(代替GB/T 131-1993《机械制图表面粗糙度符号、代号及其注法》)、GB/T 6062-2009《产品几何技术规范(GPS)表面结构轮廓法接触(触针)式仪器的标称特性》(代替GB/T 6062-2002)。
本章将对上述标准的主要内容进行介绍。
一、表面粗糙度轮廓的界定物体与周围介质分离的表面称为实际表面。
为了研究零件的表面结构,通常用垂直于零件实际表面的平面与该零件实际表面相交所得到的轮廓作为评估对象。
该轮廓称为表面轮廓,它是一条轮廓曲线,如图6.1所示。
图6.1零件的实际表面与表面轮廓加工以后形成的零件的实际表面一般处于非理想状态,其截面轮廓形状是复杂的,同时存在各种几何形状误差。
实验二表面粗糙度的检测一、 目的与要求1、掌握用光切显微镜测量表面粗糙度的原理和方法。
2、加深理解微观不平度十点高度Rz和单峰平均间距S的实际含义。
二、 测量原理光切法显微镜以光切法测量和观察零件表面的微观几何形状,在不破坏表面的条件下,测出截面轮廓的微观几何形状和沟槽宽度的实际尺寸。
此外,还可测量表面上个别位置的加工痕迹。
主要技术指标:测量范围Rz 值(微米)所需物镜总放大倍数物镜组件与被件的距离(毫米)视场直径(毫米)系数E微米/格0.8~1.6 60× 510× 0.04 0.3 0.161.6~6.3 30× 260× 0.2 0.6 0.296.3~20 14× 120× 2.5 1.3 0.6320~80 7× 60× 9.5 2.5 1.28 如图2-1所示,狭缝被光源发出的光线照射后,通过物镜发出一束光带以倾斜45°方向照射在被测量的表面上。
被测表面的微观形状,被光亮的具有平直边缘的狭缝亮带照射后,表面的波峰在S点产生反射,波谷在S’点产生反射,通过观测显微镜的物镜,它们各自成像在分划板的a和a’。
在目镜中观察到的即为具有与被测表面一样的齿状亮带,通过目镜的分划板与测微器测出a点至a’点之间的距离N,被测表面的微观不平度h即为:h=N/Vcos45° (N-物镜放大倍数) 图2-1 光切显微镜工作原理图三、 仪器简介仪器外形如图2-2所示,基座(6)上装有立柱(5),显微镜的主体通过横臂(2)和立柱联接,转动手轮(4)将横臂沿立柱上下移动,此时显微镜进行粗调焦,并用旋手(1)将横臂固定在立柱上。
显微镜的光学系统压缩在封闭的横臂内。
横臂上装有可替换的物镜组(8)、测微目镜(13)等。
微调手轮(3)用于显微镜的精细调焦。
仪器的座标工作台(7)利用其螺旋测微器对工件进行座标测量与调整。
对平的工件可直接放在工作台上进行测量,对圆柱形的工件,可放在仪器工作台上的V形块上进行测量。