高等流体力学
- 格式:docx
- 大小:37.78 KB
- 文档页数:3
高等流体力学授课提纲第一章概论§1.1 流体力学的研究对象§1.2 流体力学发展简史§1.3 流体力学的研究方法§1.3.1 一般处理途径§1.3.2 应用数学过程§1.3.3 流体力学方法论:一般方法§1.3.4 流体力学方法论:特殊方法●Lagrange描述和Euler描述●无量纲化●线性化●分离变量法●积分变换法●保角映射法●奇点法(孤立奇点法、分布奇点法、Green函数法)●控制体积法●微元法第一章概论§1.1 流体力学的研究对象(1)物质四态:●四态:固态—液态—气态—等离子态;等离子体=电离气体●界限:彼此无明确界限(高温下的沥青;冰川),取决于时间尺度;●流体力学的具体研究对象:液体、气体、等离子体(电磁流体力学、等离子体物理学);●液体与气体的差别:液体—有固定容积、有自由面、不易压缩、有表面张力;气体—无固定容积、无自由面、易压缩、无表面张力。
(2)流体的基本性质:易流动性:静止流体无剪切抗力;压缩性(膨胀性):压差、温差引起的体积改变,判据:马赫数;粘性:运动流体对剪切的抗力,判据:雷诺数;热传导性:温差引起的热量传递,普朗特数。
(3)流体的分类:i)按有无粘性、热传导性分:真实流体(有粘性、有热传导、与固体有粘附性无温差);理想流体(无粘性、无热传导、与固体无粘附性有温差);ii)按压缩性分:不可压缩流体,可压缩流体;iii)按本构关系分:牛顿流体(牛顿粘性定律成立),非牛顿流体(牛顿粘性定律不成立),下分纯粘性流体(拟塑性流体,涨塑性流体);粘塑性流体(非宾汉流体、宾汉流体);时间依存性流体(触变流体、振凝流体);粘弹性流体拟塑性流体(剪切流动化流体):剪切应力随剪切速度增加而减小,如淀粉浆糊、玻璃溶液、高分子流体、纤维树脂;涨塑性流体(剪切粘稠化流体):剪切应力随剪切速度增加而减小,如淀粉中加水、某些水-砂混合物;粘塑性(非宾汉和宾汉流体):存在屈服应力,小于该应力无流动,如粘土泥浆、沥青、油漆、润滑脂等,所有粘塑性流体为非宾汉流体,宾汉流体为近似;触变流体(摇溶流体):粘性或剪切应力随时间减小,如加入高分子物质的油、粘土悬浊液;振凝流体:粘性或剪切应力随时间增大,如矿石浆料、膨润土溶胶、五氧化钒溶液等;粘弹性流体:兼有粘性和弹性性质的流体,能量不像弹性体守恒,也不像纯粘性体全部耗散。
第 1 页 共 1 页第 1 页 共 1 页 扩散:指流体在没有对流混合情况下,流体由分子的随机运动引起的质量传递的一种性质。
本构方程:是反应物体的外部效应与内部结构之间关系的方程。
对运动的粘性流体而言,外部黏性应力与内部变形速度之间的关系成为本构方程。
变形速度张量:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz zy zx yz yy yx xz xy xx s εεεεεεεεε,,,,,,,其中,z y v x u zz yy xx ∂∂=∂∂=∂∂=ωεεε,,, ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==x v y u yx xy 21εε,⎪⎭⎫ ⎝⎛∂∂+∂∂==z u x zx xz ωεε21,⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==y z v zy yz ωεε21 雷诺应力:在不可压缩流体的雷诺方程中,j -u u i ''ρ称为雷诺应力(i ,j=1,2,3)当i=j 时为法相雷诺应力,不等时称为切向雷诺应力。
镜像法:是确定干扰后流场的方法之一,是一种特别的奇点法。
粘性:流体微团发生相对滑移时产生切向阻力的性质。
不可压缩流体:0=DtD ρ的流体称为不可压缩流体。
不可压缩均质流体:C =ρ 可压缩流体:密度随温度和压强变化的流体称为可压缩流体。
紊流:是一种随机的三维非定常有旋流动。
紊流的基本特征:1,不规则流动状态;2,参数随时间空间随机变化;3,空间分布大小形状各不相同漩涡;4,具有瞬息万变的流动特征;5,流动参数符合概率规律;6,相邻参数有关联。
流体:通常说能流动的物质为流体,液体和气体易流动,我们把液体和气体称之为流体。
严格地说:在任何微小剪切力的持续作用下,能够连续不断变形的物质称为流体,流体显然不能保持一定的形状,即具有流动性。
耗散函数:ij ij x u p ∂∂'称为耗散函数Γ,Γ表示单位时间内单位体积流体由机械能耗散成热能 ij ij ij i jij x u V div x u p ∂∂⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=∂∂=Γμεδμμ232'' 应力张量:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz zy zx yz yy yx xz xy xx p p p p p p p p p p ,,,,,,称为应力张量,它是描述运动黏性流体内任一点应力状态的物理量。
《高等流体力学》复习题一、基本概念1.什么是流体,什么是流体质点?答:在任何微小剪切应力作用下,都会发生连续不断变形的物质称为流体。
宏观无限小,微观无限大,由大量流体分子组成,能够反映流体运动状态的集合称为流体质点。
2.什么事连续介质模型?在流体力学中为什么要建立连续介质这一理论模型?答:认为流体内的每一点都被确定的流体质点所占据,其中并无间隙,于是流体的任一参数φ(密度、压力、速度等)都可表示为空间坐标和时间的连续函数(,,,)x y z t φφ=,而且是连续可微函数,这就是流体连续介质假说,即流体连续介质模型。
建立“连续介质”模型,是对流体物质结构的简化,使在分析流体问题得到两大方便:第一、 可以不考虑流体复杂的微观粒子运动,只考虑在外力作用下的微观运动;第二、 能用数学分析的连续函数工具。
3.给出流体压缩性系数和膨胀性系数的定义及表达式。
答:压缩性系数:单位体积的相对减小所需的压强增值。
(/)/d d βρρρ=膨胀性系数:在一定压强下,单位温度升高所引起的液体体积的相对增加值。
(/)(/)/v a dV V dT d dT ρρ==-4.什么是理想流体,正压流体,不可压缩流体?答:当流体物质的粘度较小,同时其内部运动的相对速度也不大,所产生的粘性应力比起其它类型的力来说可以忽略不计时,可把流体近似地看为是无粘性的,这样无粘性的流体称为理想流体。
内部任一点的压力只是密度的函数的流体,称为正压流体。
流体的体积或密度的相对变化量很小时,一般可以看成是不可压缩的,这种流体就被称为不可压缩流体。
5.什么是定常场;均匀场;并用数学形式表达。
答:如果一个场不随时间的变化而变化,则这个场就被称为定常场。
其数学表达式为:)(r ϕϕ=如果一个场不随空间的变化而变化,即场中不显含空间坐标变量r ,则这个场就被称为均匀场。
其数学表达式为:)(t ϕϕ=6.分别用数学表达式给出拉格朗日法和欧拉法的流体加速度表达式。
概念第一章绪论连续介质:但流体力学研究的是流体的宏观运动,不以分子作为流动的基本单元,而是以流体质点为基本单元,把流场看做是由无数流体质点组成的连续体。
流体质点:流场中一个体积很小并可以忽略其几何尺寸,但与分子相比,这个体积可容纳足够多的分子数目的流体元,有一个稳定的平均特性,即满足大数定律理想流体:忽略流体黏性的流体,即μ=0.可压缩流体与不可压缩流体:简单地讲,密度为常数的流体为不可压缩流体,如水、石油及低速流动的气体。
反之,密度不为常数的流体为可压缩流体。
牛顿流体与非牛顿流体:根据流体流动时切应力与流速梯度之间的关系,即牛顿内摩擦定律。
凡是符合牛顿内摩擦定律的成为牛顿流体,如水、空气、石油等。
否则为非牛顿流体,如污泥、泥石流、生物流体、高分子溶液等动力粘度与运动粘度:动力粘度又成为动力黏度系数,动力黏度是流体固有的属性。
运动粘度又称为运动粘性系数,运动黏性系数则取决于流体的运动状态体积力与表面力:体积力亦称质量力,是一种非接触力,即外立场对流体的作用,且外立场作用于流体每一质点上,如重力、惯性力、离心力。
表面力是一种表面接触力,指流体与流体之间或流体与物体之间的相互作用,主要指压力、切应力、阻力等定常流与非定常流:又称恒定流与非恒定流。
若流场中流体质点的所有运动要素均不随时间变化,则这种流动称为定常流;反之只要有一个运动要素随时间变化则为非定常流大气层分为5层:对流层、同温层、中间层、电离层及外逸层第二章流体运动学描述流体质点的位置、速度及加速度的两种方法,即拉格朗日法和欧拉法质点导数:亦称随体导数,表示流体质点的物理量对时间的变化率,亦即跟随流体质点求导数那布拉P9流体质点的运动轨迹称为迹线流线:此曲线上任一点的切线方向就是该点流速方向依照一定次序经过流场中某一固定点的各个质点连线称为脉线,也叫序线。
流体线:在流场中任意指定的一段线,该段线在运动过程中始终保持由原来那些规定的质点所组成。
高等流体力学
高等流体力学是研究流体运动的一门学科,涉及到流体的物理、数学和工程学知识。
在高等流体力学的研究中,我们需要了解流体的性质、流体流动的基本方程和变量,以及流体在不同条件下的行为。
在高等流体力学的研究中,我们主要关注流体穿过各种障碍物时的流动和流体的稳定性问题。
首先,我们需要了解导致流体流动的原因。
在我们的日常生活中,我们可以看到流体穿过各种障碍物时的流动,如水管中的水流、喷泉中的水流、空气穿过机翼时的流动等。
这些流体流动受到各种因素的影响,如流体的黏性、密度、速度、压力等等。
流体在不同条件下的行为是高等流体力学研究的重点。
在流体力学中,我们可以使用流体的基本方程来描述流体在不同条件下的行为。
这些方程包括连续性方程、动量方程和能量方程。
这些方程可以帮助我们理解流体在不同情况下的行为,并预测流体的运动趋势。
在高等流体力学的研究中,我们需要探讨流体流动的稳定性问题。
流体流动的稳定性是指流体流动是否会在运动中不断扰动并最终变为混沌状态。
在高等流体力学的研究中,我们需要通过分析流体在不同条件下的稳定性来预测流体流动的发展趋势。
在高等流体力学的研究中,我们还需要掌握一些数值方法和实验技术。
数值方法可以帮助我们模拟流体流动的行为,并预测流体的运动趋势。
实验技术可以帮助我们验证理论和预测,并
提供流体性质和流体流动的数据。
总之,高等流体力学是一门复杂而有关键性的学科。
通过研究流体运动的基本方程和变量,以及探索流体流动的稳定性问题,我们可以更深刻的理解流体的性质和行为,并用数值方法和实验技术来验证我们的理论和预测。
在高等流体力学的研究中,有一些流体流动的现象和实际应用十分广泛。
下面我们将一一探讨。
首先,是流体的湍流流动。
湍流是流体流动的一种不稳定状态,流体在湍流状态下会出现不规则的涡旋和强烈的乱流。
湍流的出现是由于流体在高速流动或流动中受到障碍物的影响而产生的。
在许多实际应用中,如机械运动、空气动力学和海洋运动等,湍流是一个非常重要的研究对象。
研究湍流的机理和控制方法,可以有助于我们更好地理解许多实际问题,并提高许多应用的效率。
其次,是气体和液体的两相流动。
在现实生活中,我们经常会遇到气体和液体同时存在的情况,如汽车发动机燃烧时产生的混合气,水泵中的水气混合物。
气液两相流动的行为比单相流动更加复杂,因为两相之间会产生相互作用,例如气泡和液滴产生的阻力和碰撞等。
这种两相流的研究在许多应用中都非常实用和必要,如化学反应器、油井钻采过程中的气液混合流、风力发电中的风涡浮力等。
除此之外,还有边界层流动、回流流动、旋波流动等流体力学现象和问题都具有高度的实用价值。
这些流动现象通常涉及到
某些机械或装置的工作条件和性质,如汽车车身设计、火箭引擎推进系统设计、飞机的操纵和稳定性问题等。
对这些问题的研究可以帮助我们更好地改进设计和提高应用效率。
与实际应用相伴随的是实验技术的发展。
高等流体力学的研究需要大量的理论分析和数值计算。
但是随着实验技术的发展,越来越多的流体力学研究可以通过实验进行验证和说明。
例如流速仪、数据采集系统、激光测量设备、高速相机等,都是用于测量流体运动和性质的重要工具。
现在的实验技术越来越精细和高效。
它们可以提高实验的精度和准确性,并使得流体力学的研究能够更加全面和具体。
除此之外,高等流体力学也会被应用于解决一些全球性的问题。
例如全球气候变化问题、地球大气环境问题等。
这些问题都与流体力学有关,需要全球范围内的研究合作和探索。
总之,高等流体力学是一门复杂而具有重要实用价值的学科。
它涉及到许多领域,如空气动力学、海洋工程、生物流体力学等。
通过研究流体运动的基本方程和变量,掌握数值方法和实验技术,我们可以更全面地理解流体的性质和运动规律,并找到解决实际问题的有效方法。
我们期待着更多流体力学学者和专业人士的研究和贡献。