高等流体力学第2讲
- 格式:ppt
- 大小:524.00 KB
- 文档页数:63
第二章 流体运动学§2.1描述流体运动的两种方法一、拉格朗日法(Lagrange methord )从流体质点为研究对象研究流体运动的一种方法。
也叫质点系法。
在拉格朗日法中,流体质点的运动轨迹的方程可表示为:⎪⎩⎪⎨⎧===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x (2—1)式中x,y,z 为流体质点的轨迹座标值。
a,b,c 称为拉格朗日变量,是流体质点的标识符,不同的流体质点a,b,c 的值不同t 为时间变量。
式(2—1),当a,b,c 为一组常数时t 为变数时,表示某个确定的流体质点随时间t 运动的运动轨迹座标值轨迹线。
当t 为固定值,a,b,c 为一组变数时,表示该组质点在某一固定时刻所处的位置(即空间位置的座标值)。
流体质点的轨迹也可用向径表示:),,,(t c b a r k z j y i x r =++= 对于某个确定的流体质点,其速度向量V 可用向径随时间的变化率表示:dt dF V =对于不同质点的流体质点,a,b,c 为变数所以速度向量应表示为r 对时间的偏导数形式:),,,(t c b a V tr V =∂∂= 在直角正交坐标系中速度向量的表达为:k w j v i u V ++=其中 t x u ∂∂=,t y v ∂∂=,tz w ∂∂= 质点的加速度:),,,(22t c b a a tF t V a =∂∂=∂∂= k a j a i a a z y x ++=22t x t u a x ∂∂=∂∂=,22t y t v a y ∂∂=∂∂=,22t z t w a z ∂∂=∂∂= 同样,其它流体质点的物理量也均可表示成为拉格朗日变数的函数:密度:),,,(t c b a ρρ=压力:),,,(t c b a p p =温度:),,,(t c b a T T =一般情况下所有的流体质点的物理量均可表示成:),,,(t c b a B B =B 可以是标量,如T p ,,ρ,也可以是矢量如a V r ,,可统一称为流体质点的物理量。
高等计算流体力学讲义(2)第二章 可压缩流动的数值方法§1. Euler 方程的基本理论 0 概述在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。
其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。
所以,本章主要研究无粘的Euler 方程的解法。
在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。
Euler 方程是一种典型的非线性守恒系统。
下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。
1非线性守恒系统和Euler 方程一维一阶非线性守恒系统(守恒律)可写为下列一般形式=∂∂+∂∂xF tU ,0,>∈t R x(1)其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。
T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即:0)(lim=→U F U即通量是对守恒变量的输运,守恒变量为零时,通量也为零。
守恒律的物理意义设U 的初始值为:0(,0)(),U x U x x =∈R 。
如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =⎰⎰RR。
即此时虽然(,)U x t 的分布可以随时间变化,但其总量保持守恒。
多维守恒律可以写为)(=++∙∇+∂∂k H j G i F tU(2)守恒律的空间导数项可以写为散度形式。
守恒系统(1)可以展开成所谓拟线性形式)(=∂∂+∂∂xU U A tU (3)A 是m m ⨯矩阵,称为系数矩阵或Jacobi 矩阵,其具体形式为111122221212.........m m m m mm f f f u u u f f f u u u A f f f u u u ∂∂∂⎡⎤⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂=⎢⎥⎢⎥⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎣⎦(4),容易验证:F U Axx∂∂=∂∂,通常也记F A U∂=∂。
第二章流体静力学作用在流体上的力有面积力与质量力。
静止流体中,面积力只有压应力——压强。
流体静力学主要研究流体在静止状态下的力学规律:它以压强为中心,主要阐述流体静压强的特性,静压强的分布规律,欧拉平衡微分方程,等压面概念,作用在平面上或曲面上静水总压力的计算方法,以及应用流体静力学原理来解决潜体与浮体的稳定性问题等。
第一节作用于流体上的力一、分类1.按物理性质的不同分类:重力、摩擦力、惯性力、弹性力、表面张力等。
2.按作用方式分:质量力和面积力。
二、质量力1.质量力(mass force):是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
对于均质流体(各点密度相同的流体),质量力与流体体积成正比,其质量力又称为体积力。
单位牛顿(N)。
2.单位质量力:单位质量流体所受到的质量力。
(2-1) 单位质量力的单位:m/s2 ,与加速度单位一致。
最常见的质量力有:重力、惯性力。
问题1:比较重力场(质量力只有重力)中,水和水银所受的单位质量力f水和f水银的大小?A. f水<f水银;B. f水=f水银;C. f水>f水银;D、不一定。
问题2:试问自由落体和加速度a向x方向运动状态下的液体所受的单位质量力大小(fX. fY. fZ)分别为多少?自由落体:X=Y=0,Z=0。
加速运动:X=-a,Y=0,Z=-g。
三、面积力1.面积力(surface force):又称表面力,是毗邻流体或其它物体作用在隔离体表面上的直接施加的接触力。
它的大小与作用面面积成正比。
表面力按作用方向可分为:压力:垂直于作用面。
切力:平行于作用面。
2.应力:单位面积上的表面力,单位:或图2-1压强(2-2)切应力(2-3) 考考你1.静止的流体受到哪几种力的作用?重力与压应力,无法承受剪切力。
2.理想流体受到哪几种力的作用?重力与压应力,因为无粘性,故无剪切力。
第二节流体静压强特性一、静止流体中任一点应力的特性1.静止流体表面应力只能是压应力或压强,且静水压强方向与作用面的内法线方向重合。
第二讲 流体运动微分方程一、应力张量作用在流体上的力可以分为两类,即质量力和表面力两大类。
作用在连续介质表面上的表面力通常用作用在单位面积上的表面力——应力来表示,参见图2-1,即0lim n A A∆→∆=∆Pp (2-1)式中 n 为表面积ΔA 的外法线方向;ΔP 为作用在表面积ΔA 上的表面力。
p n 除了与空间位置和时间有关外,还与作用面的取向有关。
因此,有(,,)n n M t =p p n需要特别指出,○1应力p n 表示的是作用在以n 为外法线方向的作用面上应力,其下标n 并不表示应力的方向,而是受力面的外法线方向,见图2-1;○2一般来说,应力p n 的方向并不与作用面的外法线n 一致,p n 除了有n 方向的分量p nn 外,还有τ方向的分量p n τ。
只有当p n τ=0时p n 才与n 的方向一致;○3图中ΔA 右侧的流体通过ΔA 作用在左侧流体上的力为ΔP =p n ΔA ,而ΔA 左侧的流体通过ΔA 作用在右侧流体上的力为ΔP =p -n ΔA ,这两个力互为作用力和反作用力,所以有n n A A -∆=-∆p p可得p n =-p -n (2-2)n -或简写为x y z n n n =++n i j k (2-3)设ΔABC 的面积为ΔS ,于是ΔMBC 、ΔMCA 、ΔMAB 的面积可分别以ΔS x 、ΔS y 、ΔS z表示为x x y y zz S Sn S Sn S Sn∆=∆⎧⎪∆=∆⎨⎪∆=∆⎩ (2-4)四面体的体积可表示为13V Sh ∆=∆式中h 为M 点到ΔABC 的距离。
根据达朗贝尔原理,可给出四面体受力的平衡方程为0x x y y z z n S S S S V ---∆+∆+∆+∆+∆=p p p p f当四面体趋近于M 点时,h 为一阶小量,ΔS 为二阶小量,ΔV 为三阶小量,略去高阶小量后可得0x x y y z z n S S S S ---∆+∆+∆+∆=p p p p再考虑式(2-2)和(2-4)可得n x x y y z z n n n =++p p p p (2-5)上式在直角坐标系中的投影可表示为nx x xx y yx z zx p n p n p n p =++ny x xy y yy z zy p n p n p n p =++ (2-6) nz x xz y yz z zz p n p n p n p =++上式也可以用矩阵形式表示为xxxy xz nxnynz xyz yxyy yz zx zyzz p p p p p p =n n n p p p p p p ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦(2-7) 也可以表示为n =⋅p n P式中 P =xxxy xz yxyy yz zx zyzz p p p p p p p p p ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(2-8)称为应力张量。