高等流体力学第2讲
- 格式:ppt
- 大小:524.00 KB
- 文档页数:63
第二章 流体运动学§2.1描述流体运动的两种方法一、拉格朗日法(Lagrange methord )从流体质点为研究对象研究流体运动的一种方法。
也叫质点系法。
在拉格朗日法中,流体质点的运动轨迹的方程可表示为:⎪⎩⎪⎨⎧===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x (2—1)式中x,y,z 为流体质点的轨迹座标值。
a,b,c 称为拉格朗日变量,是流体质点的标识符,不同的流体质点a,b,c 的值不同t 为时间变量。
式(2—1),当a,b,c 为一组常数时t 为变数时,表示某个确定的流体质点随时间t 运动的运动轨迹座标值轨迹线。
当t 为固定值,a,b,c 为一组变数时,表示该组质点在某一固定时刻所处的位置(即空间位置的座标值)。
流体质点的轨迹也可用向径表示:),,,(t c b a r k z j y i x r =++= 对于某个确定的流体质点,其速度向量V 可用向径随时间的变化率表示:dt dF V =对于不同质点的流体质点,a,b,c 为变数所以速度向量应表示为r 对时间的偏导数形式:),,,(t c b a V tr V =∂∂= 在直角正交坐标系中速度向量的表达为:k w j v i u V ++=其中 t x u ∂∂=,t y v ∂∂=,tz w ∂∂= 质点的加速度:),,,(22t c b a a tF t V a =∂∂=∂∂= k a j a i a a z y x ++=22t x t u a x ∂∂=∂∂=,22t y t v a y ∂∂=∂∂=,22t z t w a z ∂∂=∂∂= 同样,其它流体质点的物理量也均可表示成为拉格朗日变数的函数:密度:),,,(t c b a ρρ=压力:),,,(t c b a p p =温度:),,,(t c b a T T =一般情况下所有的流体质点的物理量均可表示成:),,,(t c b a B B =B 可以是标量,如T p ,,ρ,也可以是矢量如a V r ,,可统一称为流体质点的物理量。
高等计算流体力学讲义(2)第二章 可压缩流动的数值方法§1. Euler 方程的基本理论 0 概述在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。
其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。
所以,本章主要研究无粘的Euler 方程的解法。
在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。
Euler 方程是一种典型的非线性守恒系统。
下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。
1非线性守恒系统和Euler 方程一维一阶非线性守恒系统(守恒律)可写为下列一般形式=∂∂+∂∂xF tU ,0,>∈t R x(1)其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。
T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即:0)(lim=→U F U即通量是对守恒变量的输运,守恒变量为零时,通量也为零。
守恒律的物理意义设U 的初始值为:0(,0)(),U x U x x =∈R 。
如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =⎰⎰RR。
即此时虽然(,)U x t 的分布可以随时间变化,但其总量保持守恒。
多维守恒律可以写为)(=++∙∇+∂∂k H j G i F tU(2)守恒律的空间导数项可以写为散度形式。
守恒系统(1)可以展开成所谓拟线性形式)(=∂∂+∂∂xU U A tU (3)A 是m m ⨯矩阵,称为系数矩阵或Jacobi 矩阵,其具体形式为111122221212.........m m m m mm f f f u u u f f f u u u A f f f u u u ∂∂∂⎡⎤⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂=⎢⎥⎢⎥⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎣⎦(4),容易验证:F U Axx∂∂=∂∂,通常也记F A U∂=∂。
第二章流体静力学作用在流体上的力有面积力与质量力。
静止流体中,面积力只有压应力——压强。
流体静力学主要研究流体在静止状态下的力学规律:它以压强为中心,主要阐述流体静压强的特性,静压强的分布规律,欧拉平衡微分方程,等压面概念,作用在平面上或曲面上静水总压力的计算方法,以及应用流体静力学原理来解决潜体与浮体的稳定性问题等。
第一节作用于流体上的力一、分类1.按物理性质的不同分类:重力、摩擦力、惯性力、弹性力、表面张力等。
2.按作用方式分:质量力和面积力。
二、质量力1.质量力(mass force):是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
对于均质流体(各点密度相同的流体),质量力与流体体积成正比,其质量力又称为体积力。
单位牛顿(N)。
2.单位质量力:单位质量流体所受到的质量力。
(2-1) 单位质量力的单位:m/s2 ,与加速度单位一致。
最常见的质量力有:重力、惯性力。
问题1:比较重力场(质量力只有重力)中,水和水银所受的单位质量力f水和f水银的大小?A. f水<f水银;B. f水=f水银;C. f水>f水银;D、不一定。
问题2:试问自由落体和加速度a向x方向运动状态下的液体所受的单位质量力大小(fX. fY. fZ)分别为多少?自由落体:X=Y=0,Z=0。
加速运动:X=-a,Y=0,Z=-g。
三、面积力1.面积力(surface force):又称表面力,是毗邻流体或其它物体作用在隔离体表面上的直接施加的接触力。
它的大小与作用面面积成正比。
表面力按作用方向可分为:压力:垂直于作用面。
切力:平行于作用面。
2.应力:单位面积上的表面力,单位:或图2-1压强(2-2)切应力(2-3) 考考你1.静止的流体受到哪几种力的作用?重力与压应力,无法承受剪切力。
2.理想流体受到哪几种力的作用?重力与压应力,因为无粘性,故无剪切力。
第二节流体静压强特性一、静止流体中任一点应力的特性1.静止流体表面应力只能是压应力或压强,且静水压强方向与作用面的内法线方向重合。
第二讲 流体运动微分方程一、应力张量作用在流体上的力可以分为两类,即质量力和表面力两大类。
作用在连续介质表面上的表面力通常用作用在单位面积上的表面力——应力来表示,参见图2-1,即0lim n A A∆→∆=∆Pp (2-1)式中 n 为表面积ΔA 的外法线方向;ΔP 为作用在表面积ΔA 上的表面力。
p n 除了与空间位置和时间有关外,还与作用面的取向有关。
因此,有(,,)n n M t =p p n需要特别指出,○1应力p n 表示的是作用在以n 为外法线方向的作用面上应力,其下标n 并不表示应力的方向,而是受力面的外法线方向,见图2-1;○2一般来说,应力p n 的方向并不与作用面的外法线n 一致,p n 除了有n 方向的分量p nn 外,还有τ方向的分量p n τ。
只有当p n τ=0时p n 才与n 的方向一致;○3图中ΔA 右侧的流体通过ΔA 作用在左侧流体上的力为ΔP =p n ΔA ,而ΔA 左侧的流体通过ΔA 作用在右侧流体上的力为ΔP =p -n ΔA ,这两个力互为作用力和反作用力,所以有n n A A -∆=-∆p p可得p n =-p -n (2-2)n -或简写为x y z n n n =++n i j k (2-3)设ΔABC 的面积为ΔS ,于是ΔMBC 、ΔMCA 、ΔMAB 的面积可分别以ΔS x 、ΔS y 、ΔS z表示为x x y y zz S Sn S Sn S Sn∆=∆⎧⎪∆=∆⎨⎪∆=∆⎩ (2-4)四面体的体积可表示为13V Sh ∆=∆式中h 为M 点到ΔABC 的距离。
根据达朗贝尔原理,可给出四面体受力的平衡方程为0x x y y z z n S S S S V ---∆+∆+∆+∆+∆=p p p p f当四面体趋近于M 点时,h 为一阶小量,ΔS 为二阶小量,ΔV 为三阶小量,略去高阶小量后可得0x x y y z z n S S S S ---∆+∆+∆+∆=p p p p再考虑式(2-2)和(2-4)可得n x x y y z z n n n =++p p p p (2-5)上式在直角坐标系中的投影可表示为nx x xx y yx z zx p n p n p n p =++ny x xy y yy z zy p n p n p n p =++ (2-6) nz x xz y yz z zz p n p n p n p =++上式也可以用矩阵形式表示为xxxy xz nxnynz xyz yxyy yz zx zyzz p p p p p p =n n n p p p p p p ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦(2-7) 也可以表示为n =⋅p n P式中 P =xxxy xz yxyy yz zx zyzz p p p p p p p p p ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(2-8)称为应力张量。
高等流体力学笔记第2讲第二章流体运动学§2.1描述流体运动的两种方法一、拉格朗日法(Lagrangemethord)从流体质点为研究对象研究流体运动的一种方法。
也叫质点系法。
在拉格朗日法中,流体质点的运动轨迹的方程可表示为:某某(a,b,c,t)yy(a,b,c,t)(2—1)zz(a,b,c,t)式中某,y,z为流体质点的轨迹座标值。
a,b,c称为拉格朗日变量,是流体质点的标识符,不同的流体质点a,b,c的值不同t为时间变量。
式(2—1),当a,b,c为一组常数时t为变数时,表示某个确定的流体质点随时间t运动的运动轨迹座标值轨迹线。
当t为固定值,a,b,c为一组变数时,表示该组质点在某一固定时刻所处的位置(即空间位置的座标值)。
流体质点的轨迹也可用向径表示:r某iyjzkr(a,b,c,t)对于某个确定的流体质点,其速度向量V可用向径随时间的变化率表示:VdFdt对于不同质点的流体质点,a,b,c为变数所以速度向量应表示为r对时间的偏导数形式:VrV(a,b,c,t)t在直角正交坐标系中速度向量的表达为:Vuivjwk其中u某yz,v,wttt质点的加速度:V2F2a(a,b,c,t)attaa某iayjazku2某v2yw2za某,ay,aztt2tt2tt2同样,其它流体质点的物理量也均可表示成为拉格朗日变数的函数:密度:(a,b,c,t)压力:pp(a,b,c,t)温度:TT(a,b,c,t)一般情况下所有的流体质点的物理量均可表示成:BB(a,b,c,t)B可以是标量,如,p,T,也可以是矢量如r,V,a可统一称为流体质点的物理量。
二、欧拉法(Eulermethord)从流动空间点为研究对象研究流体运动的一种方法,如叫作流场法。
在欧拉法中,流体物理量均为空间位置和时间的函数不再关注流体某一空间位置是何流体质点,因此流体的各种物理量均可表示为:流速(场)VV(某,y,z,t)密度(场)(某,y,z,t)压强(场)pp(某,y,z,t)温度(场)TT(某,y,z,t)在这里的表达式中(某,y,z)是流动空间位置的座标值。
第二讲流体动力学基础【内容提要】流体运动的基本概念:恒定总流的连续性方程,恒定总流的能量方程【重点、难点】恒定总流的连续性方程和能量方程的运用。
【内容讲解】一、流体运动的基本概念(一)流线和迹线流线是在流场中画出的这样一条曲线:同一瞬时,线上各流体质点的速度矢量都与该曲线相切,这条曲线就称为该瞬时的一条流线。
由它确定该瞬时不同流体质点的流速方向。
流线的特征是在同一瞬时的不同流线一般情况下不能相交;流线也不能转折,只能是光滑的曲线。
迹线是某一流体质点在一段时间内运动的轨迹,迹线上各点的切线表示同一质点在不同时刻的速度方向。
(二)元流和总流在流场中任取一微小封闭曲线,通过曲线上的每一点均可作出一根流线,这些流线形成一管状封闭曲面称流管。
由于速度与流线相切,所以穿过流管侧表面的流体流动是不可能的。
这就是说位于流管中的流体有如被刚性的薄壁所限制。
流管中的液(气)流就是元流,元流的极限是一条流线。
总流是无限多元流的总和。
因此,在分析总流前,先分析元流流动,再将元流积分就可推广到总流。
与元流或总流的流线相垂直的截面称过流断面,用符号A表示其断面面积。
在流线平行时,过流断面为平面,流线不平行则过流断面为曲面。
(三)流量和断面平均流速(四)流动分类1.按流动是否随时间变化将流动分为恒定流和非恒定流。
若所有的运动要素(流速、压强等)均不随时间而改变称为恒定流。
反之,则为非恒定流。
恒定流中流线不随时间改变;流线与迹线相重合。
在本节中,我们只讨论恒定流。
2.按流动是否随空间变化将流动分为均匀流和非均匀流。
流线为平行直线的流动称为均匀流。
如等直径长管中的水流,其任一点的流速的大小和方向沿流线不变。
反之,流线不相平行或不是直线的流动称为非均匀流。
即任一点流速的大小或方向沿流线有变化。
在非均匀流中,当流线接近于平行直线,即各流线的曲率很小,而且流线间的夹角也很小的流动称为渐变流。
否则,就称为急变流。
渐变流和急变流没有明确的界限,往往由工程需要的精度来决定。