全面的微系统技术
- 格式:doc
- 大小:201.31 KB
- 文档页数:15
微机电系统的原理和应用技术微机电系统又称MEMS,是利用微纳米加工技术制造的一类微小机电系统,通常尺寸为毫米或微米级别。
其独特之处在于将机电元件、传感器、电子器件、控制器等集成在一个芯片上,实现了微小化、集成化、低成本化等优势。
微机电系统广泛应用于传感器、执行器、生物医学等领域,成为当前智能化、微型化、网络化的重要组成部分。
MEMS的原理主要基于微纳米加工技术,包括微电子加工技术、光刻技术、湿法腐蚀技术、离子注入技术等多种工艺的综合应用。
其制造过程包括设计、光刻、薄膜沉积、湿法腐蚀、离子注入等多个步骤,需要高精度、高技术的设备和技术人员进行操作。
由于MEMS器件具有微小、轻量、低功耗、高灵敏度等特点,因此在传感、控制、通讯、医疗、能源等诸多领域有广泛应用。
在MEMS技术中,传感器是最典型的应用之一,其主要功能是将物理量转化为电信号,并提供测量、检测、控制等重要信息。
常见的MEMS传感器包括加速度计、压力传感器、温度传感器、光学传感器等。
加速度计可用于汽车安全气囊、电子游戏、运动监测等领域,压力传感器可用于空气压力测量、液位控制、工业自动化等领域,温度传感器可用于电子电路温度补偿、环境温度测量等领域。
MEMS传感器具有体积小、响应速度快、适用于多种环境等优点,因此在智能手机、照相机、汽车等产品中得到广泛应用。
除了传感器之外,MEMS技术还可用于制造执行器,即将电信号转化为物理动作。
常见的MEMS执行器包括微型电机、振动器、泵、阀门等。
微型电机可用于风扇、马达、机器人等领域,振动器可用于手机震动、游戏手柄、体感控制等领域,泵和阀门一般应用于微流体控制、药物输送、化学反应等领域。
MEMS执行器具有灵活性高、响应速度快、能量密度高的特点,具有广泛的应用前景。
在医疗和生物医学领域,MEMS技术也被广泛应用。
MEMS传感器可用于生物监测、疾病诊断等领域,如Biosensor可用于葡萄糖监测、尿素测定、心肌酵素测定等;MEMS执行器可用于微型机器人、控制药物输送等领域,如微型钢丝操作器可用于微创手术、组织粉碎、药物输送等。
微系统与纳米技术微系统与纳米技术是当今世界最前沿的科学和技术领域之一,它们不仅在科学研究领域发展迅猛,也在工业、医疗、能源等领域展现出巨大的应用潜力。
微系统是一种由微米级或纳米级尺度的器件、结构和系统组成的集成系统,而纳米技术是研究和应用与纳米尺度相关的科学和工程技术。
本文将从微系统与纳米技术的基本概念、发展历程、应用领域和未来展望等方面进行阐述。
一、微系统与纳米技术的基本概念微系统技术是指在微米尺度制造、组装和集成各种功能器件和系统的技术,它涉及微机械系统、微流控系统、微电子系统等多种领域。
微系统的核心是微机电系统(MEMS),它是融合微机械工程、电子学和计算机技术的交叉学科,以微米级和纳米级器件和机械结构为基础,构成了微型机械系统、微传感器、微执行器等微系统。
纳米技术是一种将原子、分子和纳米尺度结构进行精确控制和创造新材料、新器件和新系统的技术,它是一种高度多学科交叉融合的领域,涉及物理学、化学、生物学、材料科学等众多学科。
纳米技术的基本目标是控制和操纵物质的分子和原子水平,实现对物质特性的精确设计和调控,从而创造出具有特定功能和性能的纳米材料和纳米器件。
二、微系统与纳米技术的发展历程微系统技术起源于20世纪60年代初期的集成电路技术,随着半导体工艺的不断发展,微系统技术逐渐发展成为独立的研究领域。
1965年,Intel公司的联合创始人戈登·摩尔提出了著名的摩尔定律,预言了半导体集成电路性能的指数增长,并引领了微系统技术的飞速发展。
1987年,美国加州大学伯克利分校提出了MEMS概念,开创了微机械系统的研究与应用。
至今,微系统技术取得了巨大的进展,在汽车、医疗、通信等领域得到了广泛应用。
而纳米技术的发展始于20世纪80年代,当时物理学家理查德·费曼第一次提出了利用纳米尺度的技术实现物质操纵的概念,开启了纳米技术的先河。
1991年,IBM的科学家首次成功地对一个单原子进行了操作和操控,标志着纳米技术的开端。
微机电系统的研究与应用前景近年来,微机电系统(MEMS)技术在各个领域得到了广泛的应用,其研究和开发已成为当今科技领域的一个热点。
作为一种高新技术,MEMS系统的研究与应用前景十分广阔,不仅有助于推动信息技术的发展,也对于医疗、环境、能源等领域的发展有着重要的促进作用。
一、MEMS概述MEMS是微型电子机械系统的缩写,也可以称为微机电系统。
它是一种将微电子技术与机械技术相结合的新型技术,它可以制造出微型零部件,如传感器、执行器、微型结构等。
这些微型零部件可以集成到同一芯片上,形成微型系统。
MEMS技术可以利用批量化制造的方式来降低成本,同时还可以提高生产效率,从而实现大规模集成电路制造的梦想。
MEMS 系统具有小尺寸、低功耗、低成本、高稳定性等特点,因此在信息技术领域、医疗、环境、能源等各个领域都有着广泛的应用。
二、MEMS在信息技术领域的应用MEMS技术在信息技术领域有着广泛的应用,其中最重要的是传感器技术。
通过MEMS制造的传感器可以测量各种各样的物理量,如温度、压力、湿度、光强度等。
这些传感器可以集成到智能手机、平板电脑、笔记本电脑等各种便携式设备中,从而实现对设备环境的实时监控。
另外,MEMS加速度传感器也是目前智能手机、平板电脑等设备中最为广泛使用的传感器之一。
通过它们可以探测设备的移动和位置变化,从而实现一系列的交互功能,例如屏幕自动旋转、拍照时的自动对焦等。
MEMS技术与人工智能(AI)的结合也是一个非常重要的方向。
由于MEMS技术可以制造出大量高精度的传感器,这些传感器可以感知环境,收集信息,为AI算法提供数据支持。
目前,许多人工智能应用和设备都采用了MEMS传感器技术,例如智能家居设备、智能汽车、工业4.0等。
三、MEMS在医疗领域的应用MEMS技术在医疗领域也有着广泛的应用。
例如,MEMS技术可以用于制造生物芯片,这些生物芯片可以测量人体内的生物分子,例如蛋白质、DNA等。
这些生物芯片可以用于药物筛选、医学诊断、疫苗研发等领域,对于提高医疗水平和缓解人们的疾病负担有着积极的影响。
微系统工艺技术微系统工艺技术(Microsystem technology)是一种综合应用物理学、材料学、计算机技术、电子技术、光学技术、机械工艺等多学科知识的前沿技术,主要用于设计、制造和应用微小尺寸的部件、器件和系统。
它的核心思想是将传感器、执行器、微处理器和通信模块等功能集成在一起,形成一种体积小、功耗低、功能强大的微型系统。
微系统工艺技术最早应用于军事和航天领域,随着科学技术的进步和工业发展的需求,越来越多的行业开始采用微系统工艺技术。
目前,微系统技术在通信、医疗、交通、环保、能源等领域都有广泛应用。
微系统工艺技术的最大特点是多学科融合,不仅需要对物理学、材料学、机械工艺等基础科学有深入的理解,还需要能够进行系统设计和工艺加工的能力。
首先,微系统工艺技术需要充分理解材料的性能和特性,在设计和制造过程中选择合适的材料。
其次,微系统工艺技术需要掌握精确的加工工艺,以保证微尺度的部件和器件的制造精度。
最后,微系统工艺技术还需要合理的封装和组装技术,以确保微系统的可靠性和稳定性。
微系统工艺技术的应用非常广泛。
在通信领域,微系统工艺技术可以用于制造小型的天线、滤波器和射频开关等部件,提高通信设备的性能和功能。
在医疗领域,微系统工艺技术可以用于制造微型的生物传感器和医疗设备,实现无创医疗和远程监护。
在交通领域,微系统工艺技术可以用于制造车载传感器和控制系统,提高交通运输的安全性和效率。
在环保领域,微系统工艺技术可以用于制造微型的传感器和控制系统,实现对环境的监测和控制。
在能源领域,微系统工艺技术可以用于制造微型的发电设备和储能装置,提高能源利用效率。
微系统工艺技术的发展前景非常广阔。
随着科学技术的进步和工业需求的增加,微系统工艺技术将继续发展。
未来,我们可以预见微系统工艺技术将在更多的领域得到应用,其应用范围将进一步扩大,并带来更多的创新和发展机会。
总之,微系统工艺技术是一种综合应用物理学、材料学、计算机技术、电子技术、光学技术、机械工艺等多学科知识的前沿技术,能够制造小型、功能强大的微型系统。
微机电系统(MEMS)技术介绍微机电系统(MEMS),在欧洲也被称为微系统技术,或在日本被称为微机械,是一类器件,其特点是尺寸很小,制造方式特殊。
MEMS是指采用微机械加工技术批量制作的、集微型传感器、微型机构、微型执行器以及信号处理和控制电路、接口、通讯等于一体的微型器件或微型系统。
MEMS 器件的特征长度从1毫米到1微米--1微米可是要比人们头发的直径小很多。
MEMS往往会采用常见的机械零件和工具所对应微观模拟元件,例如它们可能包含通道、孔、悬臂、膜、腔以及其它结构。
然而,MEMS器件加工技术并非机械式。
相反,它们采用类似于集成电路批处理式的微制造技术。
今天很多产品都利用了MEMS技术,如微换热器、喷墨打印头、高清投影仪的微镜阵列、压力传感器以及红外探测器等。
MEMS技术可以用于制造压力传感器、惯性传感器、磁力传感器、温度传感器等微型传感器,这些传感器以及它们的部分信号处理电路都可以在只有几毫米或更小的芯片上实现。
与传统的传感器相比,MEMS传感器不仅体积更小、功耗更低,而且它们往往会比传统传感器更加准确、更加灵敏。
随着人们对海洋观测的需求不断增加和海洋观测技术的不断发展,MEMS技术也在逐渐进入海洋观测技术研究领域。
一、MEMS概念“他们告诉我一种小手指指甲大小的电动机。
他们告诉我,目前市场上有一种装置,通过它你可以在大头针头上写祷文。
但这也没什么;这是最原始的,只是我打算讨论方向上的暂停的一小步。
在其下是一个惊人的小世界。
公元2000年,当他们回顾当前阶段时,他们会想知道为何直到1960年,才有人开始认真地朝这个方向努力。
”——理查德·费曼,《底部仍然存在充足的空间》发表于1959年12月29日于加州理工大学(Caltech)举办的美国物理学会年会。
但我们可能会问:为什么要在这样一个微小尺上生成这些对象?MEMS器件可以完成许多宏观器件同样的任务,同时还有很多独特的优势。
这其中第一个以及最明显的一个优势就是小型化。
微型机电系统技术及应用研究一、微型机电系统技术的概述微型机电系统(MEMS)是一种结合微电子技术和机械工程学的新型领域,其通过微型化的设计和制造技术,将传统机械结构和微电子器件相结合,形成了微小的机电一体化系统。
微型机电系统技术是一门综合性技术,涵盖了微电子、纳米技术、微流体技术、光学技术、机电一体化技术等多个学科的知识。
它主要应用于机械传感器、微型电子器件、模拟信号处理器、微型加速度计等领域。
二、微型机电系统技术的工艺流程(一)MEMS芯片的设计MEMS芯片的设计过程是从需求分析、系统设计、器件设计、工艺设计、布图设计等方面入手进行的。
需要建立实体模型、分析模型,进行仿真和测试,并不断优化和改进设计。
(二)MEMS芯片的制造MEMS芯片的制造过程一般包括深度反相模法、LIGA工艺、光刻、涂覆、光阻显影、等离子刻蚀、熔合碳化硅、薄膜沉积、蚀刻等多个步骤。
(三)MEMS芯片的封装MEMS芯片的封装是保护器件、连接器件与外部电路的必要措施。
封装过程可以分为晶圆封装和单晶封装两种方式,包括封装底座、焊接、固定器件等多个步骤。
三、微型机电系统技术的应用研究(一)机械传感器微型机械传感器是MEMS技术应用最为广泛的领域,目前已广泛用于医疗、环境、军事、交通等领域。
例如,在医疗领域中,MEMS传感器可用于实时监测病人的脉搏、血压和呼吸等生命体征,为医护人员提供即时的信息。
(二)微型电子器件微型电子器件是MEMS技术的另一个重要应用方向,包括MEMS振荡器、MEMS电容器等。
这些器件的微型化和集成化将会使一些电子设备大幅度缩小,例如手机和手表等。
(三)模拟信号处理器模拟信号处理器是利用MEMS技术构建的一种新型信号处理器,可以将模拟信号进行转换、增强和分析等处理,广泛应用于工业自动化、环境监测、生命科学等领域。
(四)微型加速度计微型加速度计是MEMS技术在工业领域中的应用之一,可以实现对工业设备振动、冲击等数据的监测和控制,对于提高设备的精度和可靠性有非常重要的作用。
微机电系统的应用及其未来发展微机电系统(MEMS)是用微电子技术来制造微米级器件的技术,其特点在于具有微小体积、低成本和高性能等特点,可以广泛应用于人工智能、生物医学、石油勘探、机器人和环境监测等领域。
目前,随着技术的不断发展和应用的不断推广,MEMS已经成为未来技术的发展趋势。
一、MEMS的应用1.人工智能领域MEMS在人工智能领域的应用主要体现在机器人技术中,通过MEMS技术,可以制造出小型化、高精度的感知器件,从而将机器人的实时环境感知和时空定位能力进一步提高。
此外,MEMS还可以制造出高灵敏度的惯性感测器件,如加速度计和陀螺仪等,这些感测器件对于机器人的行动控制和路径规划有着重要的意义。
2.生物医学领域MEMS在生物医学领域的应用十分广泛,例如可以利用MEMS 技术制造出微型传感器,监测人体内的生理参数,如体温、心率、血压等。
同时还可以制造出微型输送器,实现药物的定向输送和递送,有效提高了药物的疗效和减轻了不良反应。
此外,利用MEMS技术还可以制造出微型探针,检测人体内的病变组织和癌细胞,有着广阔的应用前景。
3.石油勘探领域MEMS在石油勘探领域的应用主要体现在测井和地震勘探技术中,通过制造出微小型的传感器和振动器件,可以实现高精度的地层特征探测和分析。
与此同时,MEMS传感器还可以实现地震勘探过程中的震源定位和大气噪声分析等,提高了勘探效率和减少了勘探成本。
4.环境监测领域MEMS在环境监测领域的应用主要集中在大气和水质的监测中,通过利用MEMS技术制造出高灵敏度的传感器,可以实现细颗粒物和有害气体的检测和分析。
同时MEMS技术还可以制造出微型的水质传感器,监测水中的污染物,实现满足环保标准对水质要求。
二、MEMS的未来发展趋势1.高度集成化随着集成电路技术的不断发展,MEMS将趋向于实现高度集成化,通过多层次、多功能集成,可以将MEMS的应用推向更高的层次。
同时,基于微纳加工技术,根据不同的应用需求,可以实现不同功能的MEMS器件的大规模制造和快速生产,促进其在更多领域的应用。
微机电系统技术的发展现状与未来趋势随着科技的不断进步,微机电系统(MEMS)技术作为一种新兴的领域越来越受到关注。
它利用纳米技术和微加工技术,将微型机械、电子、光学和生物等领域的技术结合起来,形成一种新型的智能系统。
本文将探讨微机电系统技术的发展现状和未来趋势,从多个角度剖析其在各个领域的应用。
首先,我们来看看微机电系统技术在医疗领域的应用。
随着人口老龄化趋势的增加,慢性疾病和健康管理成为了全球各个国家面临的重要问题。
微机电系统技术可以在健康监测和疾病诊断方面发挥重要作用。
例如,通过集成心率传感器、血压传感器和温度传感器,可以实时监测病人的健康状况并提前预警,这对于高血压、糖尿病等慢性病的患者来说尤为重要。
此外,微机电系统技术还可以用于制造可植入体内的医疗器械,如心脏起搏器和人工耳蜗等,这些器械的微型化和智能化使得手术风险大大降低,同时也提高了患者的生活质量。
其次,微机电系统技术在智能交通领域的应用也呈现出良好的发展势头。
随着全球城市化进程的加速,交通拥堵和安全问题成为了亟待解决的难题。
微机电系统技术的应用使得车辆能够实时获取路况信息,通过智能导航系统选择最佳路线,从而减少交通拥堵。
此外,MEMS技术还能够制造出高精度的惯性导航系统,使得车辆在行驶过程中更精准地定位,提高行车安全性。
值得一提的是,随着自动驾驶技术的崛起,微机电系统技术将在无人驾驶领域发挥重要作用。
通过集成传感器和控制系统,车辆可以自主感知周围环境并自动规划行驶路线,使驾驶更加便捷和安全。
与此同时,微机电系统技术还在环境监测领域发挥重要作用。
全球气候变化和环境污染成为了全球议题,对环境监测的需求日益增长。
MEMS技术可以制造出微型气象站和空气质量传感器,可以实时监测气温、湿度、大气压力、PM2.5等环境指标,提供准确的数据支持。
这些数据可以帮助政府和民众更好地了解环境状况,及时采取相应的措施改善环境质量,为可持续发展做出贡献。
未来,随着人工智能、物联网和5G技术的不断发展,微机电系统技术有望迎来更广阔的应用前景。
微系统技术的概念、应用及发展论文微系统技术简称MST,它的基本工艺技术是硅的腐蚀和键合。
MST的前景是壮观的,其工艺是从集成电路加工派生出的批量加工技术。
预期,MST将会同集成电路一样,通过新的而且便宜的产品来改变人们的生活。
以下是店铺今天为大家精心准备的:微系统技术的概念、应用及发展相关论文。
内容仅供阅读与参考!微系统技术的概念、应用及发展全文如下:1. 背景最近几年里,在微机系统技术方面具有广泛的研究,普遍认为在未来的十年间微型单元的微机系统和增加对微型设备的应用有很好的发展趋势。
分析家预测在未来的几年间微系统技术在设备制造方面将产生深远的影响。
微系统技术还被作为微型机械电子系统技术。
微型机械电子系统是用小型机械和电子结构结合在一个系统上来命名的。
微机系统技术是80年代出现的,在过去的十年里得到了很好的发展,并且被认为将成为21世纪最终要的技术之一。
微型化的优点有很多,微电子的成功就很好地证明了这一点。
微型设备的小尺寸使得器械越来越小、越来越紧凑,并且便于携带,同时也能手动操作。
当各种功能结合在一起时,设备的功能也增加了,比如:感应器、扬声器和控制器被集成在同一微型设备上。
由于它们有个高频共振频率,微型机械传感器有个动态范围和快速响应时间。
在微小热交换方面能够更加快速、有效地发生,就像一个微型测量设备。
微型机械电子系统现在正处于产品即将进入市场竞争的发展阶段。
微型机械电子系统在全球市场的销售额到2002年将达到3.8亿,到2005年将达到5亿。
微系统技术的应用领域覆盖了一个很广的范围,从电子学到光学,从化学到生物技术和医疗工程。
而且,微型机械电子系统是个类似于集成电路批量制作的技术。
硅晶体是个应用很广的材料。
由于大批量生产属性和高额材料费用,硅晶体的一个缺点是昂贵的价格。
微机系统技术大范围的发展依赖于能够经济可靠地制造成型微小单元的加工系统。
聚合体微小化技术,如,微成型技术就是一个低成本生产微小单元的微系统技术。
一、微系统技术在微系统技术微系统技术的发展历史上,集成电路(IC)是技术的起点。
电子器件小型化和多功能信成是微加工技术的推动力。
如果没有微加工和小型化技术的迅猛发展,许多今天看来理所当然的科学和工程成就都不可能实现。
微系统技术是由集成电路技术发展而来的,经过了大约20年的萌芽阶段,即由20世纪60年代中期到20世纪80年代。
在这段萌芽时期,主要是开展一些微系统技术的零散研究。
例如,开发了硅各向异性腐蚀技术用于在平面硅衬底上加工三维结构;一些研究机构和工业实验室里的研究者开始利用集成电路的加工技术制造微系统技术器件,例如悬臂梁、薄膜和喷嘴;微传感器的关键部件,如单晶硅和多晶硅中的压阻被发现、研究和优化。
在微系统技术的研发时期,涌现出了一些具有重要意义的研究成果。
1967年,Westinghouse公司发明了一种谐振栅晶体管(RGT)。
它与传统的晶体管不同,RGT的电栅极不是固定在栅氧化层上,而是相对硅衬底可动。
由静电力控制栅电极和衬底之间的间距。
RGT是静电微执行器的最早实例。
佳能公司最早开发了基于热气泡技术的喷墨打印技术,而惠普公司在1978年首先发明了基于硅微机械加工技术的喷墨打印机喷嘴。
喷嘴阵列喷射出热气泡膨胀所需液体体积大小的墨滴,如图1-1所示。
气泡破裂又将墨汁吸入到存放墨汁的空腔中,为下一次喷墨做准备。
通过滴入红、蓝、黄三种基本色实现彩色打印。
图1-1在20世纪80年代后期,在微机械技术这个新领域的研究者主要是研究硅的应用——单晶硅衬底或者多晶硅薄膜。
多晶硅薄膜技术的应用产生了一些表面微机械加工的机械结构,如弹簧、传动机械和曲柄等。
20世纪90年代,全世界的微系统技术研究进入一个突飞猛进、日新月异的发展阶段。
非常成功的例子有美国Analog Devices(模拟器件)公司生产的用于汽车安全气囊系统的集成惯性传感器,以及美国Texas Instruments(仪器)公司用于投影显示的数字光处理芯片。
微系统技术在生物医学领域的应用随着现代科技的发展,微系统技术在各个领域得到了广泛的应用,特别是在生物医学领域,微系统技术的应用已经成为不可替代的重要手段。
本文将从微系统技术的定义、生物医学领域的具体应用、技术前景等几个方面来探讨微系统技术在生物医学领域的应用。
一、微系统技术的定义微系统技术是一种将微观领域的现象和机制应用到宏观技术系统中的技术。
微系统技术主要包括微机电系统(MEMS)、纳米系统技术、微流控技术等。
这些技术通过对微观尺度下的物理、化学、生物学等现象进行研究,然后利用芯片加工技术、导电材料、光刻技术等手段,制造出微型器件、微型传感器、微型反应器等微系统组件。
二、生物医学领域的微系统技术应用微系统技术是一种高效、精准、可靠、方便、低成本的技术。
这些特点使微系统技术在生物医学领域的应用领域非常广泛。
以下是微系统技术在生物医学领域的具体应用:1. 细胞操作技术微系统技术为生物学家提供了一种具有微米级别分辨率的细胞操作平台。
通过利用微机电系统制造微型操纵器件和微型反应器,不仅能实现对单个细胞的操作、检测,而且还可以对细胞进行分析和检测。
例如,通过微型技术,可以获取小鼠胚胎干细胞,然后进行维持和培育,再将其移植到体内进行治疗。
2. 微型病毒感染平台微系统技术还可以制造微型病毒感染平台,实现对生物体内病毒的感染研究。
研究人员通过制造微流控系统、光整形技术等,使细胞获得稳定的液流分布,并能够接收病毒,同时实现对感染过程的实时监测,从而掌握病毒在人体内的动态变化。
3. 仿生芯片随着仿生学的发展,人们开始模仿自然界中的叶子、树叶、水草等构建仿生芯片。
这些芯片采用生物学、化学和材料学的原理,制作出能够模拟生物体现象的微型传感器,如植物光合作用中的氧合作用、蜜蜂的感应器等,这些仿生芯片在药物研发、生物检测、环境监测等方面有广阔的应用前景。
4. 微流控芯片技术微流控技术,就是通过小型化和封装化技术,将微观流体处理与微结构化系统相结合,制造出基于芯片的微型实验平台。
微机电MEMS技术随着科技的不断发展,微机电系统(MEMS)技术已经成为了现代科技领域中的一个热点话题。
MEMS技术是一种集成化的技术,它将微型机械结构、电子元件和集成电路等技术融合在一起,形成了一种新型的微型系统。
这种系统的特点是小型化、高集成度、低功耗和低成本等,因此在各个领域都有着广泛的应用。
MEMS技术的发展历程MEMS技术的发展可以追溯到上世纪60年代初期,当时美国贝尔实验室的研究人员发现,可以将晶体管等微型电子元件集成在一起,形成一种新型的微型系统。
这种系统可以实现自动化控制,从而解决了传统机械系统中存在的一些问题。
自此,MEMS技术开始逐渐发展壮大,不断被应用于各个领域。
在20世纪80年代,MEMS技术进一步得到了发展。
当时,研究人员发现,可以将微型机械结构与电子元件融合在一起,形成一种新型的微型系统,称之为微机电系统(MEMS)。
这种系统可以实现微型机械结构的自动化控制,从而实现各种功能。
MEMS技术的发展在20世纪90年代得到了进一步加强,得到了广泛的应用。
MEMS技术的应用领域MEMS技术在各个领域都有着广泛的应用。
其中,最为典型的应用领域是传感器和执行器。
传感器是一种能够将物理量转化为电信号的设备,而执行器则是一种能够将电信号转化为物理量的设备。
这两种设备都是微机电系统的核心组成部分,它们可以实现各种自动化控制功能。
MEMS技术在医疗领域也有着广泛的应用。
例如,可以利用MEMS 技术制造出微型探针,用于检测人体内部的病变情况。
此外,MEMS技术还可以制造出微型药物输送系统,将药物直接输送到患者的病变部位,从而实现更加精准的治疗。
MEMS技术在航空航天领域也有着广泛的应用。
例如,可以利用MEMS技术制造出微型惯性导航系统,用于飞行器的自动导航。
此外,MEMS技术还可以制造出微型加速度计和陀螺仪等设备,用于飞行器的姿态控制和定位。
MEMS技术在汽车领域也有着广泛的应用。
例如,可以利用MEMS 技术制造出微型气体传感器,用于检测汽车尾气的排放情况。
MEMS简介MEMS是Micro Electro Mechanical System的缩写,称为微机电系统或微系统。
MEMS所包含的器件尺寸在1微米到1毫米之间,这些MEMS器件通过封装或一次集成形成一个微系统,该系统主要包含微型传感器、执行器和相应的处理电路三部分,尺寸介于毫米与厘米之间,我们可以通过MEMS系统微型化、集成化来探索具有新原理、新功能的元件和系统。
MEMS是融合了硅微加工、LIGA和精密机械加工等多种微加工技术,并应用现代信息技术构成的微型系统。
它在微电子技术的基础上发展起来的,但又区别于微电子技术,包括感知外界信息(力、热、光、生、磁、化等)的传感器和控制对象的执行器,以及进行信号处理和控制的电路。
MEMS的显著特点是多种学科前沿技术高度综合、交叉和渗透,又为多种学科的发展服务,是国际公认的二十一世纪科技发展的前沿和基础。
它的主要特点是:⏹学科上的交叉综合:MEMS涉及力学、材料、电学、光学、热学、机械、生物、化学等学科,是这些学科前沿的综合。
⏹技术上的微型化、集成化、智能化。
⏹产品上的高功能密度,并能低成本的批量生产。
⏹应用上的高度广泛:MEMS的应用领域包括信息、生物、医疗、环保、电子、机械、航空、航天和军事等等。
它不仅可形成新的产业,还能通过产品的性能提高、成本降低,有力地改造传统产业。
MEMS技术的成功应用是建立在技术进步的基础上的,七十年代KOH腐蚀技术的进步,推动了体加工技术的发展,促进了压力传感器的大量研制、生产和应用,这可认为是MEMS发展的开端;八十年代后期发明的表面牺牲层技术,开发出硅微电机,使人们发现了采用微电子技术制备可大批量、低成本地制作包括可动部件在内的微系统加工手段,MEMS技术开始进入高速发展阶段;九十年代开发出的表面牺牲层技术,可与大规模集成电路技术协同制作,极大地推进了微加速度计的产业化进程,标志着MEMS技术开始走向成熟;近年来,国际上MEMS专利申请更是呈指数上升趋势,预计在未来几年,MEMS将进入产业快速发展阶段。
微系统技术:颠覆未来作战的前沿技术!微系统是以微纳尺度理论为支撑,以微纳制造及工艺等为基础,不断融入微机械、微电子、微光学、微能源、微流动等各种技术,具有微感知、微处理、微控制、微传输、微对抗等功能,并通过功能模块的集成,实现单一或多类用途的综合性前沿技术。
微系统是一项多学科交叉的新兴高新技术,在信息、生物、航天、军事等领域具有广泛的应用前景,对于国家保持技术领先优势具有重要意义。
1引发武器装备重大变革与传统装置相比,微系统由于将各种功能高度集成,因此具有微型化、成本低、性能高等优点,广泛应用于仪器测量、无线通信、军事国防、生物化学、能源环境等领域。
微系统技术正处于向大规模应用转化的关键阶段,由微器件技术制造的芯片已经在诸多领域得到应用,将对武器装备发展与作战影响深远。
微系统对于武器装备发展具有革命性的影响。
微系统技术将多种先进技术高度融合,将传统各自独立的信息获取、处理、命令执行等系统融为一体,能够促进武器装备微小型化和智能化,对于加速武器装备系统性能的全面提高,有效降低尺寸、重量与成本等具有革命性的影响。
例如,采用微系统技术制造的导弹加速度计和陀螺仪的价格仅为原来的1/50,采用微系统技术研制的芯片级原子钟将比传统原子钟体积缩小100倍;由美国国防高级研究计划局(DARPA)主持、霍尼韦尔公司研制的“T-鹰”微型无人机已在阿富汗战场得到了实战检验,其质量仅为9千克,可飞行50分钟。
微系统技术是DARPA近十年来大力发展的现代前沿技术,对美国保持其国防科技领先优势具有重要意义。
自1992年以来,DARPA微系统技术办公室已经对微处理器、微机电系统和光子元器件等微电子产品进行了预先战略投资,取得了显著成果。
近年来,DARPA微系统技术办公室先后组织实施了上百项与先进微系统技术密切关联的研究开发计划,所涉及的项目全面覆盖了先进电子元器件和集成电路发展的前沿领域,例如宽禁带半导体技术、先进微系统技术、电子和光子集成电路、焦点中心研究计划、自适应焦平面阵列、光纤激光器革命、太赫兹成像焦平面技术、微机电系统(MEMS)、微型同位素电源等几十项研究计划。
一、微系统技术在微系统技术微系统技术的发展历史上,集成电路(IC)是技术的起点。
电子器件小型化和多功能信成是微加工技术的推动力。
如果没有微加工和小型化技术的迅猛发展,许多今天看来理所当然的科学和工程成就都不可能实现。
微系统技术是由集成电路技术发展而来的,经过了大约20年的萌芽阶段,即由20世纪60年代中期到20世纪80年代。
在这段萌芽时期,主要是开展一些微系统技术的零散研究。
例如,开发了硅各向异性腐蚀技术用于在平面硅衬底上加工三维结构;一些研究机构和工业实验室里的研究者开始利用集成电路的加工技术制造微系统技术器件,例如悬臂梁、薄膜和喷嘴;微传感器的关键部件,如单晶硅和多晶硅中的压阻被发现、研究和优化。
在微系统技术的研发时期,涌现出了一些具有重要意义的研究成果。
1967年,Westinghouse公司发明了一种谐振栅晶体管(RGT)。
它与传统的晶体管不同,RGT的电栅极不是固定在栅氧化层上,而是相对硅衬底可动。
由静电力控制栅电极和衬底之间的间距。
RGT是静电微执行器的最早实例。
佳能公司最早开发了基于热气泡技术的喷墨打印技术,而惠普公司在1978年首先发明了基于硅微机械加工技术的喷墨打印机喷嘴。
喷嘴阵列喷射出热气泡膨胀所需液体体积大小的墨滴,如图1-1所示。
气泡破裂又将墨汁吸入到存放墨汁的空腔中,为下一次喷墨做准备。
通过滴入红、蓝、黄三种基本色实现彩色打印。
图1-1在20世纪80年代后期,在微机械技术这个新领域的研究者主要是研究硅的应用——单晶硅衬底或者多晶硅薄膜。
多晶硅薄膜技术的应用产生了一些表面微机械加工的机械结构,如弹簧、传动机械和曲柄等。
20世纪90年代,全世界的微系统技术研究进入一个突飞猛进、日新月异的发展阶段。
非常成功的例子有美国Analog Devices(模拟器件)公司生产的用于汽车安全气囊系统的集成惯性传感器,以及美国Texas Instruments(德州仪器)公司用于投影显示的数字光处理芯片。
相对于宏观的机电传感器,微系统技术技术带来了两个重要的优点,即高灵敏度和低噪声。
同时,由于微系统技术技术采用批量生产,而不是采用手工组装的方式,有效地降低了传感器的使用成本。
20世纪90年代后期,光微系统技术发展迅速。
世界各地的研究人员竞相开发微光机电系统和器件,希望能将二元光学透镜、衍射光栅、可调光微镜、干涉滤波器,相位调制器等部件应用到光学显示、自适应光学系统、可调滤波器、气体光谱分析仪和路由器等应用领域。
生物微系统技术包括生物学研究、医疗诊断和临床介入等方面的微系统技术研究和应用。
由于生物微系统技术结构和器件的尺寸大小、集成功能多,它们已经在一些医疗方面得到应用,例如视网膜植入,耳蜗植入、嵌入生理传感器以及含有传感器的智能手术工具等。
二、微系统技术的本质特征2.1小型化毫无疑问,微系统技术将会不断有新的应用领域。
技术发展和商业化的原因有时候并不完全相同。
然而,微系统技术器件和微加工技术具有三种特点,称为“3M”,即小型化、微型电子集成及高精度的批量制造。
典型的微系统技术器件~1cm之间,当然,微系统技术器件阵列或整个微系统的长度尺寸大约在1m技术系统的尺寸会更大一些。
小尺寸能够实现柔性支撑、带来高谐振频率、低热惯性等很多优点。
然而小型化带来的并不全是更好的特性,也可能带来问题。
有些在宏观尺度下非常显著的物理效应,当器件尺寸变小以后,性能可能会变得很差。
与之相反,有些对于宏观器件可忽略的物理效应,在微观尺寸范围内会突然变得突出,这称之为比例尺度定律。
这人定律可以有效解释物理学在不同尺寸下的作用规律。
例如,跳蚤可以跳过自身高度的几十倍,而大象则根本不能跳。
定性观察表明:重量小的物体受重力影响小、小型化可以带来更快的速度、高功率密度和高效率。
尺度效应是微系统技术中许多物理现象不同于宏观现象的一个非常得要的原因,随着尺寸的减小,表面积(2L)与体积(3L)之比相对增大,表面效应十分明显,这将导致微机电系统的受力环境与传统机电系统完全不同。
以潜水艇为例,当把潜水艇缩小到针头大小时,螺旋桨即使转动与很难使潜水艇前进,这主要是由于尺度变化,使得潜水艇受到水的黏性阻力变得相当突出,二者的驱动原理已经完全不同。
正因如此,像细菌一样的微小生物体它们在液体中依靠的是螺旋状长长的鞭毛边旋转边前进。
2.2微系统技术中的力对于我们所考虑的微机电系统,其尺寸量级在微米和纳米之间,在这种范围内起主要作用的是万有引力和电磁力。
物体间作用的万有引力和电磁力的强度主要取决于3个因素,即作用力的密度、物体的尺度及物体间的作用距离。
万有引力和静电力表达方式很相似,从作用距离来看,二者都与距离平方成反比。
从作用体的尺度来看,二者也都与物体尺度成正比。
但从作用力的密度来看,二者有很大区别。
首先引力常数和库仑力常数相差就很大,其次静电力和电荷成正比,万有引力和质量成正比,而单位尺度下的质量却比单位尺度下的电荷也要小很多,因此,静电力的密度要比万有引力的密度大很多个量级。
除此之外,万有引力一定是吸引力,而静电力可以是吸引力也可以是排斥力,取决于电荷的同号或异号。
微机电系统结构的尺寸很小,质量也很小。
由于万有引力的密度极小,因此对于微机电系统来说万有引力是可以忽略的。
与万有引力不同,电磁力的作用却是普遍的和多样的。
电磁力中包括静电力、电场力、磁场力、洛仑兹力、多极电场力以及偶极电场力引发的范德瓦尔斯力等很多形式。
微机电系统的结构尺寸大多数都在微米量级,有的作用尺寸甚至达到纳米量级。
因此,对于微机电系统来说,表面力和线力相对体积力来说起到的作用更明显,如静电力、摩擦力、阻尼力、卡西米尔力等都属于表面力,它们在微机电系统中的重要作用都在不同程度上显现,而安培力属于线力,受尺度的影响最不显著,它在宏观和微观机电系统中,静电力常常可作为一种驱动力来产生电容两极间的相对运动,但当两极板间距较小或电压较大时,两个极板间的静电力也会引起板间的吸合。
对于谐振系统,若要使两极板间产生周期振动,则周期性的驱动力是期望的主动动作,而极板间的吸合趋势就是不期望的被动作用。
对于表电开关,极板间的吸合是期望的主动作用,未吸合的振动就变为不期望的被动作用。
除此之外,微摩擦力和空气阻尼力等也在微机电系统中起着主动或被动的作用。
空气阴尼会影响系统的品质因子,但空气阻尼也常常被用来调节品质因子。
摩擦力会使微构件很快磨损而导致失效,但摩擦力有时也可用来作为约束或固定。
由于上述的在宏观尺度上被忽略的各种面力,在微观尺度下都显现出来。
相对于宏观状态,微机电系统的力学环境发生了很大的变化。
当系统特征尺度达到微米或纳米量级时,许多物理现象与宏观状态也有明显不同,当它受不同环境和不同加工过程的影响时,力学参数也会有明显变化。
与尺度高次方成正比例的惯性力,电磁力等的作用相对减小,而与尺度低次方成比例的摩擦力、黏性力、弹性力、表面张力、静电力的作用相对增大;原来宏观条件下被忽略的毛细力、空气阻尼力、卡西米尔力和范德瓦尔斯力等,在微结构的相互作用中已不能再被忽略,因此微机系统是一个多场力作用的系统。
另外,虽然微机电系统的基本结构都是固体形态的,但从微尺度角度考虑,温度引起的水滴液体形态和固有的空气气体形态等也都是同时存在的。
因此,微机电系统又是一个多相共存的系统。
总之,一般来说,从力学作用的角度看,微机电系统是一个多场共存并耦合和多相共存并耦合的系统。
因此,微机电系统具有特殊的力学环境。
三、集成电路制造工艺也材料概述3.1掺杂定义:将特定杂质参入到半导体规定区域。
目的:改变材料电学性质。
基本方法:扩散法;离子注入法。
3.2外延(常常是用相同材料)定义:在硅衬底上产生单晶层。
目的:产生不同导电类型、电阻率、不同厚度的隔离、防止击穿电压。
基本方法:气相外延。
3.3薄膜层技术(常常用不同的材料)定义:形成厚度在~nm m 间的薄膜。
目的:实现特定功能方法:物理沉积,包括:真空蒸镀;溅工艺。
3.4光刻工艺光刻工艺过程举例:图3-1在图3-1中的是相关的典型步骤:(a )清洁处理、涂敷光刻胶、前烘 (b )暴光 (c )显影 (d )坚膜 (e )腐蚀 (f ) 去胶四、硅微机械加工工艺4.1体硅微机械加工工艺定义:直接在基底材料表面上腐蚀去除材料,形成三维结构。
图4-1如图4-1中所示,体硅微机械加工艺一般是在硅、碳化硅、石英等材料上采用各向同性、各向异性或者自停止方法得到相应三维结构。
4.2表面硅微机械加工工艺定义:通过去除薄膜结构下的支撑层来获得可动的机械单元,而不是在衬底下面加工。
硅二氧化硅多晶硅图4-2如图4-2所示典型牺牲层腐蚀工艺的具体步骤:(1)氧化,做体硅腐蚀掩膜层;(2)光刻氧化层,开体硅腐蚀窗口;(3)体硅腐蚀出所需底层结构;(4)去除SiO2;(5)生长或淀积牺牲层材料;(6)光刻牺牲层材料成所需结构;(7)生长结构材料;(8)光刻结构材料;(9)牺牲层腐蚀,释放结构层;(10)防粘结处理。
五、微系统技术的封装技术5.1封装的定义与目的:(1)狭义封装(PKG)把微裸芯片固定于基板上,用外壳包封在基板上,包封腔内灌注树脂或惰性气体,引出I/O接线端子。
起防护目的。
(2)系统封装(SIP)不同功能裸芯片通过微互联技术,混截于一个封装体内,完成系统功能集成,对外引出I/O端子和机械固连方式。
封装的目的是把功能集成,并使设备小型化,增强包容性、兼容性,减小信号传输路径。
5.2微系统技术加工的新发展趋势及存在的问题(1)趋势:◆低温键合(150℃以下);◆防粘附(表面粗糙技术、表面钉台技术);◆片上封装(在晶圆上);◆特高深宽比(与现有工艺兼容);◆传统特种加工进军微系统技术;◆发展封装技术(已相对独立于IC、微系统技术)。
(2)存在的问题◆层间、焊盘、焊点的界面应力清除问题;◆热胀系数不匹配、残余应力、变形、本征应力清除问题;◆微结构工作过程中热变形;◆结构粘附(由于加工过程中干、湿引起的问题)。
六、微结构静电场及电场力6.1无限大平板模型两个导体可组成一个电容。
当在导体上施加一电压时,导体上就会产生电荷。
导体形成的电容可定义为qCu在微机电系统中,许多微结构间都是通过构成电容来工作的。
结构间的静电力就是电荷之间库仑力的宏观表现。
因此可以应用库仑定律计算结构间的静电力。
在实际应用中,一般不去计算点电荷之间的库仑力,取而代之的是计算两导体之间的电势能,然后应用虚位移原理,确定微结构间的静电力。
任意两导体之间储存的能量实际上是电容的能量,可表示为212W CU = 无限大平板模型是目前微结构中应用最多的,此模型假设a 、b 相对于d 无限大,即忽略电容的边缘效应,根据电容定义,可求得ab C dε= 利用电势能和虚位移原理可求得平行运动静电力为22122x W C b F U U a a dε∂∂===∂∂ 以及垂直运动静电力为22122y W C b F U U d d dε∂∂===-∂∂ 对于微机电系统中的静电微结构,尺度为微米量级甚至更小,而且由于加工条件限制,a 、b 不能过长,而间距d 不能太小,d 相对于a 、b 不能取无限大,一般不能简单直接应用上述公式,而需要考虑边缘效应带来的影响。