微系统技术基础微系统工作原理
- 格式:ppt
- 大小:10.97 MB
- 文档页数:15
微机电系统技术及应用微机电系统技术(Micro-Electro-Mechanical Systems,MEMS)是指一种集成微型机械、电子和计算机技术的系统,它利用微型加工技术将传感器、执行器和电子元器件等多种功能集成到一个芯片上,从而实现在微小空间内进行感测、信号处理和控制的复杂系统。
自20世纪80年代以来,MEMS技术在各个领域得到了广泛的应用,成为现代科技进步的重要方向之一。
一、MEMS技术的基本原理MEMS技术的实现基于微机械制造技术,即利用光刻、蚀刻、离子注入、薄膜沉积、微调工艺等多种微加工技术,在硅基底板上制造出微型机械和微型电子元器件,将它们集成在一起实现控制系统的复杂功能。
常见的MEMS元件包括传感器和执行器两类。
传感器一般是将物理量转换成电信号输出的元件,MEMS传感器主要有压力传感器、加速度传感器、角速度传感器、温度传感器、化学传感器等,它们的结构和工作原理各不相同。
以加速度传感器为例,它主要是通过微型悬臂等结构感受加速度的作用,在振动部件上加上感应电极,利用柔性连接器将机械运动转化成电信号输出。
执行器是将电信号转换成物理运动的设备,MEMS执行器主要有微型电机、微泵、微阀门和微喷头等。
以微型电机为例,它主要包括固定部件和旋转部件,其结构具有一定的复杂性。
电机的旋转部件通常采用转子-定子结构,采用MEMS技术可以制造出特殊形状的转子并将其悬挂在薄膜支撑结构上,转子与定子之间通过电容传感器实现控制,电容传感器输出的信号被用于控制电机的转速和方向。
二、MEMS技术的应用领域MEMS技术的应用范围非常广泛,包括空间、军事、医疗、汽车、电子信息等多个领域,在以下几个方面得到了广泛应用。
1.传感器MEMS传感器可以感测体积小、重量轻、功耗低、响应速度快、精度高等诸多优点,使之成为传感器领域的重要技术。
它广泛应用于汽车行业、工业自动化控制、医疗设备等领域,如安全气囊用于汽车碰撞检测、指纹识别传感器、手机加速度传感器等。
微型计算机系统原理及应用第一篇: 微型计算机系统的概述随着计算机技术的发展,计算机已经成为了我们日常生活中不可或缺的一部分。
微型计算机系统是我们日常使用的计算机中最为常见的一种,它广泛应用于个人和工业领域。
本文将对微型计算机系统进行概述,包括其定义、结构、组成部分以及应用。
一、微型计算机系统的定义微型计算机系统是指由微型计算机和相关设备组成的计算机系统,它是一种小型的、使用方便的数字计算机。
微型计算机系统可以单独应用,也可以联网使用,使用者既可以是个人也可以是企业、学校等机构。
二、微型计算机系统的结构微型计算机系统主要由三部分组成:硬件、软件和数据。
其中,硬件包括计算机主机、输入设备、输出设备、存储设备等组成部分;软件包括操作系统、应用软件等;数据则是指微型计算机系统中处理的信息和数据。
三、微型计算机系统的组成部分1.计算机主机计算机主机是微型计算机最重要的一个组成部分,它包含了CPU、内存、主板、BIOS等重要部件。
计算机主机的选购需要根据使用需求和预算做出决策。
2.输入设备输入设备是指微型计算机系统中用于输入数据和指令的设备,主要包括键盘、鼠标、扫描仪、数码相机等。
不同的输入设备适用于不同的场合和需求。
3.输出设备输出设备是指微型计算机系统中用于输出计算结果或其他数据的设备,主要包括显示器、打印机、语音设备等。
输出设备的质量和性能对于提高用户体验至关重要。
4.存储设备存储设备是指微型计算机系统中用于存储大量数据和程序的设备,包括硬盘、U盘、光盘等。
存储设备的选择需要考虑数据存储容量、数据传输速度和价格等因素。
四、微型计算机系统的应用微型计算机系统在日常生活和工业领域都有广泛的应用。
在个人领域,微型计算机可以用于处理文档、玩游戏、浏览网页等。
在工业领域,微型计算机可以应用于自动化、数据采集和控制等领域。
总之,微型计算机系统已经成为我们生活和工作中不可或缺的一部分,了解微型计算机系统的结构和应用对于提高用户体验和使用效率至关重要。
微机技术原理知识点总结微机技术是计算机科学与技术的一个重要分支,是现代信息社会的基石。
微机技术的发展对人类社会的生产、生活和文化产生了深远的影响。
微机技术主要包括微处理器技术、微系统技术、微机系统及应用等方面的内容。
下面就微机技术原理进行总结,从微处理器、微型计算机系统、微机应用等几个方面进行介绍。
一、微处理器技术1. 微处理器的发展微处理器是微机的核心部件,它起着控制和运算的作用。
20世纪70年代初,英特尔公司推出了8位微处理器8080,从此开启了微处理器技术的发展时代。
而后,英特尔公司相继推出了8085、8086等一系列产品,为微处理器技术的发展做出了贡献。
2. 微处理器的功能微处理器作为微机的核心组件,其功能主要包括指令译码、运算逻辑单元、寄存器组等内容。
其中,指令译码是微处理器对指令进行解码并执行相应的操作;运算逻辑单元则负责对操作数执行各种算术逻辑运算;寄存器组则存储指令、操作数及中间结果。
3. 微处理器的结构微处理器的结构主要包括控制单元、运算逻辑单元、寄存器组等部分。
其中,控制单元负责指令译码及执行整个微处理器的工作;运算逻辑单元则负责进行各种运算操作;寄存器组则存储数据和指令。
微处理器的结构经过了多次改进,如哈佛结构、冯诺伊曼结构等,以提高其运算效率。
4. 微处理器的性能参数微处理器的性能参数主要包括指令执行速度、执行效率、指令集等参数。
其中,指令执行速度是指微处理器执行指令的速度,其影响因素主要包括时钟频率、指令集等;执行效率是指微处理器在执行各种任务时的效率。
指令集则是微处理器所支持的指令种类及其格式,不同的微处理器支持的指令集不同。
5. 微处理器的发展趋势随着科技的不断发展,微处理器技术也在不断更新,其发展趋势主要包括多核技术、多线程技术、嵌入式技术等方向。
其中,多核技术是指将多个核心集成到一个处理器中,以提高微处理器的运算能力;多线程技术则是通过同时处理多条指令以提高微处理器的运算效率;而嵌入式技术则是将微处理器集成到各种设备中,以满足不同的需求。
一、微系统技术在微系统技术微系统技术的发展历史上,集成电路(IC)是技术的起点。
电子器件小型化和多功能信成是微加工技术的推动力。
如果没有微加工和小型化技术的迅猛发展,许多今天看来理所当然的科学和工程成就都不可能实现。
微系统技术是由集成电路技术发展而来的,经过了大约20年的萌芽阶段,即由20世纪60年代中期到20世纪80年代。
在这段萌芽时期,主要是开展一些微系统技术的零散研究。
例如,开发了硅各向异性腐蚀技术用于在平面硅衬底上加工三维结构;一些研究机构和工业实验室里的研究者开始利用集成电路的加工技术制造微系统技术器件,例如悬臂梁、薄膜和喷嘴;微传感器的关键部件,如单晶硅和多晶硅中的压阻被发现、研究和优化。
在微系统技术的研发时期,涌现出了一些具有重要意义的研究成果。
1967年,Westinghouse公司发明了一种谐振栅晶体管(RGT)。
它与传统的晶体管不同,RGT的电栅极不是固定在栅氧化层上,而是相对硅衬底可动。
由静电力控制栅电极和衬底之间的间距。
RGT是静电微执行器的最早实例。
佳能公司最早开发了基于热气泡技术的喷墨打印技术,而惠普公司在1978年首先发明了基于硅微机械加工技术的喷墨打印机喷嘴。
喷嘴阵列喷射出热气泡膨胀所需液体体积大小的墨滴,如图1-1所示。
气泡破裂又将墨汁吸入到存放墨汁的空腔中,为下一次喷墨做准备。
通过滴入红、蓝、黄三种基本色实现彩色打印。
图1-1在20世纪80年代后期,在微机械技术这个新领域的研究者主要是研究硅的应用——单晶硅衬底或者多晶硅薄膜。
多晶硅薄膜技术的应用产生了一些表面微机械加工的机械结构,如弹簧、传动机械和曲柄等。
20世纪90年代,全世界的微系统技术研究进入一个突飞猛进、日新月异的发展阶段。
非常成功的例子有美国Analog Devices(模拟器件)公司生产的用于汽车安全气囊系统的集成惯性传感器,以及美国Texas Instruments(仪器)公司用于投影显示的数字光处理芯片。
微系统技术:颠覆未来作战的前沿技术!微系统是以微纳尺度理论为支撑,以微纳制造及工艺等为基础,不断融入微机械、微电子、微光学、微能源、微流动等各种技术,具有微感知、微处理、微控制、微传输、微对抗等功能,并通过功能模块的集成,实现单一或多类用途的综合性前沿技术。
微系统是一项多学科交叉的新兴高新技术,在信息、生物、航天、军事等领域具有广泛的应用前景,对于国家保持技术领先优势具有重要意义。
1引发武器装备重大变革与传统装置相比,微系统由于将各种功能高度集成,因此具有微型化、成本低、性能高等优点,广泛应用于仪器测量、无线通信、军事国防、生物化学、能源环境等领域。
微系统技术正处于向大规模应用转化的关键阶段,由微器件技术制造的芯片已经在诸多领域得到应用,将对武器装备发展与作战影响深远。
微系统对于武器装备发展具有革命性的影响。
微系统技术将多种先进技术高度融合,将传统各自独立的信息获取、处理、命令执行等系统融为一体,能够促进武器装备微小型化和智能化,对于加速武器装备系统性能的全面提高,有效降低尺寸、重量与成本等具有革命性的影响。
例如,采用微系统技术制造的导弹加速度计和陀螺仪的价格仅为原来的1/50,采用微系统技术研制的芯片级原子钟将比传统原子钟体积缩小100倍;由美国国防高级研究计划局(DARPA)主持、霍尼韦尔公司研制的“T-鹰”微型无人机已在阿富汗战场得到了实战检验,其质量仅为9千克,可飞行50分钟。
微系统技术是DARPA近十年来大力发展的现代前沿技术,对美国保持其国防科技领先优势具有重要意义。
自1992年以来,DARPA微系统技术办公室已经对微处理器、微机电系统和光子元器件等微电子产品进行了预先战略投资,取得了显著成果。
近年来,DARPA微系统技术办公室先后组织实施了上百项与先进微系统技术密切关联的研究开发计划,所涉及的项目全面覆盖了先进电子元器件和集成电路发展的前沿领域,例如宽禁带半导体技术、先进微系统技术、电子和光子集成电路、焦点中心研究计划、自适应焦平面阵列、光纤激光器革命、太赫兹成像焦平面技术、微机电系统(MEMS)、微型同位素电源等几十项研究计划。