12第十二章 回归分析
- 格式:pdf
- 大小:367.07 KB
- 文档页数:39
分层回归其实是对两个或多个回归模型进行比较。
我们可以根据两个模型所解释的变异量的差异来比较所建立的两个模型。
一个模型解释了越多的变异,则它对数据的拟合就越好。
假如在其他条件相等的情况下,一个模型比另一个模型解释了更多的变异,则这个模型是一个更好的模型。
两个模型所解释的变异量之间的差异可以用统计显著性来估计和检验。
模型比较可以用来评估个体预测变量。
检验一个预测变量是否显著的方法是比较两个模型,其中第一个模型不包括这个预测变量,而第二个模型包括该变量。
假如该预测变量解释了显著的额外变异,那第二个模型就显著地解释了比第一个模型更多的变异。
这种观点简单而有力。
但是,要理解这种分析,你必须理解该预测变量所解释的独特变异和总体变异之间的差异。
一个预测变量所解释的总体变异是该预测变量和结果变量之间相关的平方。
它包括该预测变量和结果变量之间的所有关系。
预测变量的独特变异是指在控制了其他变量以后,预测变量对结果变量的影响。
这样,预测变量的独特变异依赖于其他预测变量。
在标准多重回归分析中,可以对独特变异进行检验,每个预测变量的回归系数大小依赖于模型中的其他预测变量。
在标准多重回归分析中,回归系数用来检验每个预测变量所解释的独特变异。
这个独特变异就是偏相关的平方(Squared semi-partial correlation)-sr2(偏确定系数)。
它表示了结果变量中由特定预测变量所单独解释的变异。
正如我们看到的,它依赖于模型中的其他变量。
假如预测变量之间存在重叠,那么它们共有的变异就会削弱独特变异。
预测变量的独特效应指的是去除重叠效应后该预测变量与结果变量的相关。
这样,某个预测变量的特定效应就依赖于模型中的其他预测变量。
标准多重回归的局限性在于不能将重叠(共同)变异归因于模型中的任何一个预测变量。
这就意味着模型中所有预测变量的偏决定系数之和要小于整个模型的决定系数(R2)。
总决定系数包括偏决定系数之和与共同变异。
第十二章简单回归分析习题一、是非题1.直线回归反映两变量间的依存关系,而直线相关反映两变量间的相互线性伴随变化关系.2.对同一组资料,如相关分析算出的r越大,则回归分析算出的b值也越大. 3.对同一组资料,对r与b分别作假设检验,可得t r=t b4.利用直线回归估计X值所对应的Y值的均数置信区间时,增大残差标准差可以减小区间长度.5.如果直线相关系数r=0,则直线回归的SS残差必等于0.二、选择题1. 用最小二乘法确定直线回归方程的原则是各观察点距直线的( ).A.纵向距离之和最小 B. 纵向距离的平方和最小C. 垂直距离之和最小D.垂直距离的平方和最小E.纵向距离的平方和最大2.Y=14十4X是1~7岁儿童以年龄(岁)估计体质量(市斤)的回归方程,若体质量换成位kg,则此方程( )A 截距改变B 回归系数改变C 两者都改变D 两者都不改变E.相关系数改变4.直线回归系数假设检验,其自由度为( )A.n B. n-1C.n-2 D. 2n-1E.2(n-1)5.当r=0时,Y=a+b X回归方程中( )A a必大于零B a必大于XC a必等于零D a必大于YE a必等于b6.在多元线性回归分析中,反应变量总离均差平方和可以分解为两部分,残差是指( ).A.观察值与估计值之差B.观察值与平均值之差C.估计值与平均值的平方和之差D.观察值与平均值之差的平方和E.观察值与估计值之差的平方和三、筒答题1.用什么方法考察回归直线是否正确?2.简述回归系数方差分析Y的平方和与自由度的分解.3. 举例说明如何用直线回归方程进行预测和控制?4. 直线回归分析时怎样确定自变量和因变量?5. 简述曲线回归常用的几种曲线形式.。
第十二章 相关与回归分析四、名词解释1.消减误差比例变量间的相关程度,可以用不知Y 与X 有关系时预测Y 的误差0E ,减去知道Y 与X 有关系时预测Y 的误差1E ,再将其化为比例来度量。
将削减误差比例记为PRE 。
2. 确定性关系当一个变量值确定后,另一个变量值夜完全确定了。
确定性关系往往表现成函数形式。
3.非确定性关系在非确定性关系中,给定了一个变量值,另一个变量值还可以在一定范围内变化。
4.因果关系变量之间的关系满足三个条件,才能断定是因果关系。
1)连个变量有共变关系,即一个变量的变化会伴随着另一个变量的变化;2)两个变量之间的关系不是由其他因素形成的,即因变量的变化是由自变量的变化引起的;3)两个变量的产生和变化有明确的时间顺序,即一个在前,另一个在后,前者称为自变量,后者称为因变量。
5.单相关和复相关单相关只涉及到两个变量,所以又称为二元相关。
三个或三个以上的变量之间的相关关系则称为复相关,又称多元相关。
6.正相关与负相关正相关与负相关:正相关是指一个变量的值增加时,另一变量的值也增加;负相关是指一个变量的值增加时,另一变量的值却减少。
7.散点图散点图:将相关表所示的各个有对应关系的数据在直角坐标系上画出来,以直观地观察X 与Y 的相互关系,即得相关图,又称散点图。
8.皮尔逊相关系数r皮尔逊相关系数是协方差与两个随机变量X 、Y 的标准差乘积的比率。
9.同序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y Y <,则称这一配对是同序对。
10.异序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y >Y ,则称这一配对是异序对。
11.同分对如果在X 序列中,我们观察到i j X =X (此时Y 序列中无i j Y =Y ),则这个配对仅是X 方向而非Y 方向的同分对;如果在Y 序列中,我们观察到i jY =Y (此时X 序列中无i j X =X ),则这个配对仅是Y 方向而非X 方向的同分对;我们观察到i j X =X ,也观察到i j Y =Y ,则称这个配对为X 与Y 同分对。
第十二章相关与回归分析四、名词解释1 •消减误差比例变量间的相关程度,可以用不知Y与X有关系时预测Y的误差E0,减去知道Y与X有关系时预测Y的误差E i,再将其化为比例来度量。
将削减误差比例记为PRE。
2 •确定性关系当一个变量值确定后,另一个变量值夜完全确定了。
确定性关系往往表现成函数形式。
3 •非确定性关系在非确定性关系中,给定了一个变量值,另一个变量值还可以在一定范围内变化。
4 •因果关系变量之间的关系满足三个条件,才能断定是因果关系。
1)连个变量有共变关系,即一个变量的变化会伴随着另一个变量的变化;2)两个变量之间的关系不是由其他因素形成的,即因变量的变化是由自变量的变化引起的; 3 )两个变量的产生和变化有明确的时间顺序,即一个在前,另一个在后,前者称为自变量,后者称为因变量。
5 .单相关和复相关单相关只涉及到两个变量,所以又称为二元相关。
三个或三个以上的变量之间的相关关系则称为复相关,又称多兀相关。
6 •正相关与负相关正相关与负相关:正相关是指一个变量的值增加时,另一变量的值也增加;负相关是指一个变量的值增加时,另一变量的值却减少。
7 .散点图散点图:将相关表所示的各个有对应关系的数据在直角坐标系上画出来,以直观地观察X与Y的相互关系,即得相关图,又称散点图。
8 .皮尔逊相关系数r皮尔逊相关系数是协方差与两个随机变量X、Y的标准差乘积的比率。
9 .同序对在观察X序列时,如果看到X i X j ,在Y中看到的是Y i : Y j,则称这一配对是同序对。
10. 异序对在观察X序列时,如果看到X i X j,在Y中看到的是Y i>Y j,则称这一配对是异序对。
11. 同分对女口果在X序列中,我们观察到X i=X j (此时Y序列中无Y i二Y j),则这个配对仅是X 方向而非Y方向的同分对;如果在Y序列中,我们观察到Y j二Y j (此时X序列中无X i=X j), 则这个配对仅是Y方向而非X方向的同分对;我们观察到X i=X j,也观察到Y i二Y j,则称这个配对为X与Y同分对。
-131-第十二章 回归分析前面我们讲过曲线拟合问题。
曲线拟合问题的特点是,根据得到的若干有关变量的一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数据拟合得最好。
通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要作的工作是由数据用最小二乘法计算函数中的待定系数。
从计算的角度看,问题似乎已经完全解决了,还有进一步研究的必要吗?从数理统计的观点看,这里涉及的都是随机变量,我们根据一个样本计算出的那些系数,只是它们的一个(点)估计,应该对它们作区间估计或假设检验,如果置信区间太大,甚至包含了零点,那么系数的估计值是没有多大意义的。
另外也可以用方差分析方法对模型的误差进行分析,对拟合的优劣给出评价。
简单地说,回归分析就是对拟合问题作的统计分析。
具体地说,回归分析在一组数据的基础上研究这样几个问题:(i )建立因变量y 与自变量m x x x ,,,21 之间的回归模型(经验公式); (ii )对回归模型的可信度进行检验;(iii )判断每个自变量),,2,1(m i x i =对y 的影响是否显著;(iv )诊断回归模型是否适合这组数据;(v )利用回归模型对y 进行预报或控制。
§1 多元线性回归回归分析中最简单的形式是x y 10ββ+=,y x ,均为标量,10,ββ为回归系数,称一元线性回归。
它的一个自然推广是x 为多元变量,形如m m x x y βββ+++= 110 (1)2≥m ,或者更一般地)()(110x f x f y m m βββ+++= (2)其中),,(1m x x x =,),,1(m j f j =是已知函数。
这里y 对回归系数),,,(10m ββββ =是线性的,称为多元线性回归。
不难看出,对自变量x 作变量代换,就可将(2)化为(1)的形式,所以下面以(1)为多元线性回归的标准型。
1.1 模型在回归分析中自变量),,,(21m x x x x =是影响因变量y 的主要因素,是人们能控制或能观察的,而y 还受到随机因素的干扰,可以合理地假设这种干扰服从零均值的正态分布,于是模型记作⎩⎨⎧++++=),0(~2110σεεβββN x x y m m (3) 其中σ未知。