基于Poincare变换的滑动轴承非线性油膜力数据库方法
- 格式:pdf
- 大小:199.88 KB
- 文档页数:5
基于FLUENT的径向滑动轴承油膜压力仿真黄首峰;郭红;张绍林;岑少起【摘要】Now domestic and overseas scholars usually use the finite difference method or the finite element method to research the static and dynamic characteristics of the different structure journal bearings. In order to simplify the mathematical models, these methods often neglect the influence of other factors such as inertia source term and oil film curvature and so on,in addition, re search on characteristics of complex shape bearing is very difficult through the finite difference method-Based on original N-S equations and CATIA fluid models, the fluid pressure distribution and static characteristics of externally pressurized journal bearing under different eccentricity and different rotational speed was established through FLUENT 0simulation.lt can be seen from the results that the pressure values increase with the increment of rotational speed and eccentricity ratio.FLUENT simulation results are close to the numerical calculation of references. A theoretical basis for the further study of the sliding bearing performance is provided.%目前,对于不同结构形式的滑动轴承,通常采用差分法或者有限元法来研究轴承的静、动态特性,在建立数学模型时要进行很多简化,往往忽略惯性项、油膜曲率等因素的影响,并且差分法不易对复杂形状的轴承进行特性计算.以外部供油的径向滑动轴承为研究对象,从原始的N-S方程出发,基于CATIA建立了油膜的流场模型,通过FLUENT仿真得到了不同偏心率和不同转速下轴承油膜的压力分布.仿真结果表明:在偏心率一定的情况下,轴承压力值随着转速的增加而增加;在转速一定的情况下,轴承压力值随着偏心率的增加而增加.FLUENT仿真结果与文献中数值计算结果相吻合,为进一步研究滑动轴承的其他性能提供了一种新的方法.【期刊名称】《机械设计与制造》【年(卷),期】2012(000)010【总页数】3页(P248-250)【关键词】径向滑动轴承;FLUENT;油膜压力分布;偏心率【作者】黄首峰;郭红;张绍林;岑少起【作者单位】郑州大学机械工程学院,郑州450001;郑州大学机械工程学院,郑州450001;郑州大学机械工程学院,郑州450001;郑州大学机械工程学院,郑州450001【正文语种】中文【中图分类】TH16;TH133.31 引言随着旋转机械向着高速和重载的方向发展,机械行业对轴承的性能要求也越来越高。
振 动 与 冲 击第18卷第1期JOU RNAL O F V I BRA T I ON AND SHOCK V o l.18N o.11999 Jeffcot转子2滑动轴承系统不平衡响应的非线性仿真Ξ王德强 张直明(山东省内燃机研究所) (上海大学轴承研究室)摘 要 本文用动力仿真法考察了Jeffco t转子2椭圆轴承系统的不平衡响应。
计入了轴承油膜力的非线性。
仿真计算前,先以非定常雷诺方程和雷诺破膜条件为依据,生成了轴瓦非定常油膜力数据库。
用龙格2库塔法对运动方程作步进积分,同时反复对轴瓦力数据库进行插值以获得轴承力的瞬时值。
考察了支撑于一对椭圆轴承上的Jeffco t转子的不平衡响应。
所得的动力学行为以及转子和轴颈的涡动轨迹,均与线性动力学(以轴承的线性化动特性系数为依据)所得的结果相比较。
两者虽在很小的不平衡量下吻合良好,但凡当不平衡量不是很小时就有显著差别。
可见有必要计入油膜力的非线性,特别是当需要计算大不平衡量下的不平衡响应时。
关键词:非线性仿真,不平衡响应,转子动力学中图分类号:TH11330 前 言在工程实践中,常常用线性动力理论来计算转子2滑动轴承系统的不平衡响应,即:计算时以线性化的轴承动力特性(轴承的八个刚度和阻尼)来表达轴承油膜的动态力[1]。
但油膜力实际上是非线性的动力元素,因此这样的线性化不可避免地要导致不平衡响应计算中的误差。
本文目的在于用非线性和线性动力学两种计算来考察不平衡响应,并作比较,以明确其异同。
符 号c m in 轴承最小半径间隙(m) x j、y j 以c m in为参考的轴颈中心坐标无量纲值d轴承直径(m)x r、y r以c m in为参考的转子中心坐标无量纲值e u转子质量中心的偏心距(m)Λ润滑油的动力粘度(Pa.s)E u质量中心的相对偏心(e u c m in)F轴承的静载荷(N)f轴在自重下的静挠度(m)Ξ转子角速度Γ轴的相对挠度(f c m in)Ξk转子固有频率l轴承长度(m)8相对速度(Ξ Ξk)SO k以转子固有频率为参考的轴承7m in轴承的最小间隙化Somm erfeld数7m in=c m in rSO k=FΩ3m in d lΛΞk1 线性分析本文以Jeffco t转子2轴承系统(图1)为考察对象。