3.2空间向量解决角度问题
- 格式:ppt
- 大小:704.50 KB
- 文档页数:10
2020-2021学年高中数学第三章空间向量与立体几何3.2 第3课时用空间向量解决空间角与距离问题课时跟踪训练新人教A版选修2-1年级:姓名:用空间向量解决空间角与距离问题[A 组 学业达标]1.如图,正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( ) A.15 B.25 C.35D.45解析:以D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Dxyz , 设AB =1.则B (1,1,0),A 1(1,0,2),A (1,0,0),D 1(0,0,2),A 1B →=(0,1,-2),AD 1→=(-1,0,2),cos 〈A 1B →,AD 1→〉=A 1B →·AD 1→|A 1B →||AD 1→|=-45×5=-45,∴异面直线A 1B 与AD 1所成角的余弦值为45.答案:D2.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°解析:由条件,知CA →·AB →=0,AB →·BD →=0, CD →=CA →+AB →+BD →.∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD → =62+42+82+2×6×8cos〈CA →,BD →〉 =(217)2,∴cos 〈CA →,BD →〉=-12,〈CA →,BD →〉=120°,∴二面角的大小为60°. 答案:C3.把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( ) A .30° B .90° C .120°D .60°解析:OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 答案:C4.正方体ABCD A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( )A.23B.33C.23D.63解析:建系如图,设正方体棱长为1, 则BB 1→=(0,0,1). ∵B 1D ⊥面ACD 1,∴取DB 1→=(1,1,1)为面ACD 1的法向量. 设BB 1与平面ACD 1所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪BB 1→·DB 1→|BB 1→||DB 1→|=13=33,∴cos θ=63. 答案:D5.如图所示,在几何体A BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =1,CD =2,点E 为CD 中点,则AE 的长为( ) A. 2 B.3 C .2 D.5解析:AE →=AB →+BC →+CE →, ∵|AB →|=|BC →|=1=|CE →|, 且AB →·BC →=AB →·CE →=BC →·CE →=0. 又∵AE →2=(AB →+BC →+CE →)2, ∴AE →2=3, ∴AE 的长为 3. 故选B.答案:B6.如图,在正三棱柱ABCA1B1C1中,已知AB=1,点D在棱BB1上,且BD=1,则AD与平面AA1C1C所成角的正弦值为________.解析:取AC、A1C1的中点M、M1,连接MM1、BM.过D作DN∥BM,交MM1于点N,则容易证明DN⊥平面AA1C1C.连接AN,则∠DAN就是AD与平面AA1C1C所成的角.在Rt△DAN中,sin∠DAN=ND AD=322=64.答案:647.正方体ABCDA1B1C1D1中,直线BC1与平面A1BD所成的角的正弦值是________.解析:如图,以DA、DC、DD1分别为x轴,y轴,z轴建立空间直角坐标系,取正方体的棱长为1,则A(1,0,0),B(1,1,0),C1(0,1,1),易证AC1→是平面A1BD的一个法向量.AC1→=(-1,1,1),BC1→=(-1,0,1).。
3.2.3空间向量与空间角(一)教学目标1.知识与技能:掌握空间立体几何中用向量方法求角度问题2.过程与方法:通过分析、推导让学生掌握空间立体几何中用向量方法求角度问题。
3。
情感、态度与价值观:通过学生对问题的探究思考,广泛参与,提高学习质量,会用空间想像思维解决生活中实际问题。
(二)教学重点与难点重点:掌握空间立体几何中用向量方法求角度问题难点:掌握空间立体几何中用向量方法求角度问题(三)教学过程活动一:创设情景、引入课题问题1:在空间中,用空间向量解决立体几何的步骤? 问题2:空间中的距离有多少种?用空间向量如何解决?今天我们将在前面学习的基础上,进一步学习空间向量来表示并进行解决一些角度的应用.点题:今天我们学习“用空间向量方法求角度问题”活动二:师生交流、进入新知问题3:回忆立体几何中有那些空间角?求空间角有那些步骤?1 异面直线所成的角 范围 0°<θ≤90°方法 ①平移法;②补形法2 直线与平面所成的角 范围 0°≤θ≤90°方法 关键是作垂线,找射影3 二面角方法 ①定义法;②三垂线定理及其逆定理;③垂面法4、空间角的计算步骤 一作、二证、三算问题4:想一想平面向量中两个向量的数量积的定义呢?a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a b a b ⋅⋅,可求两个向量的数量积或夹角问题;新课:三种空间角的向量法计算公式: ⑴线线角:异面直线,a b 所成的角θ:cos cos ,a b θ=<>;⑵线面角:直线a 与平面α(法向量n )所成的角θ:sin cos ,a n θ=<>;⑶二面角:锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量.活动三:合作学习、探究新知利用向量知识求线线角,线面角,二面角的大小。
(1)异面直线a、b所成的角:在空间中任取一点O,过点O分别引/a∥a,/b∥b,则/a,/b所成的锐角(或直角)叫做两条异面直线所成的角。
专题七 立体几何第2课时 空间关系与空间角命题人: 审核人: 时间:教学班级行政班级 姓名 学号 面批时间课前自学案【考情分析】立体几何是高考的重点内容之一,从近几年高考试题来看,主要是考查线面位置关系的判断与证明;三是考查空间向量的应用,尤其空间向量法求空间角(特别是二面角)是考查的热点之一.主要问题类型:(1)空间线面关系的证明;(2)空间角的求法;(3)存在性问题的处理方法.求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围; (2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角. 【要点梳理】1.平行关系及垂直关系的转化2.空间角的求解(1)异面直线所成的角:若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ(0<θ≤π2),则cos θ=|cos 〈v 1,v 2〉|.(2)线面角:设直线l 与平面α所成的角为θ(0≤θ≤π2),直线l 的方向向量为a ,平面α的法向量为μ,则sin θ=|cos 〈a ,μ〉|=|a ·μ||a ||μ|. (3)二面角:设二面角大小为θ(0≤θ≤π),两个面的法向量分别为μ和v ,则|cos θ|=|cos 〈μ,v 〉|=|μ·v ||μ||v |.易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,是线面角的正弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.编号012【课前自测】1.(2013年高考卷理 4)已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面积是边长为 3的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 ( )(A ) 512π (B )3π (C ) 4π (D ) 6π2.(2009年高考卷理5)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件课内探究案【考点突破】考点一:空间位置关系的判定例1.(1)(2013年高考广东卷理科6)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥(2)平面α∥平面β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α变式训练:(1) (2014年高考广东卷理 7)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是( )A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定(2)设m 、n 是不同的直线,α、β是不同的平面,有以下四个命题:①若α⊥β,m ∥α,则m ⊥β ②若m ⊥α,n ⊥α,则m ∥n ③若m ⊥α,m ⊥n ,则n ∥α ④若n ⊥α,n ⊥β,则β∥α 其中真命题的序号为( )A .①③B .②③C .①④D .②④ 考点二:空间位置关系的证明例2.(2013广东卷文)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三图 4GEF ABCD图 5DGBFCAE棱锥A BCF -,其中22BC =.(1) 证明:DE //平面BCF ;(2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.考点三:空间角的求解例3.(12理18)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF. (Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F -BD -C 的余弦值.【当堂检测】1. 【2014全国2高考理第11题】直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.3010D.22 2. 已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为_____________.3. 【2014高考全国1第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.专题七 立体几何编号第2课时 空间关系与空间角命题人: 审核人: 时间:教学班级 行政班级 姓名 学号 面批时间课后拓展案A 组1. 【2014高考卷第17题】如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点. (Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD 且13CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.2.【2014高考天津第17题】如图,在四棱锥PABCD 中,PA 底面ABCD ,AD AB ,//AB DC ,2AD DC AP ,1AB ,点E 为棱PC 的中点.(Ⅰ)证明:BE DC;(Ⅰ)求直线BE与平面PBD所成角的正弦值;(Ⅰ)若F为棱PC上一点,满足BF AC,求二面角F AB P的余弦值.B组3.(2013年高考北京卷理科17)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面AB C⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求二面角A1-BC1-B1的余弦值;(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求1BDBC的值.4.【2014高考全国2第18题】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,3求三棱锥E-ACD的体积.反思:这节课不满意的几点:(1) 题量的安排。