北师大版八年级下期第13周练习题
- 格式:doc
- 大小:111.02 KB
- 文档页数:4
锦华学校八年级下数学培优试卷姓名: 班级: 2017.5.13一、计算练习 1、计算 (1)111x x x --- (2)(3)112---x x x (4)4412222+----+x x x x x x(5))11)(2x y x x xy -+-((6)(7)⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 (8)(22+--x x x x )24-÷x x2、解方程:(1)141-22-=x x (2)13132=-+--x x x(3)223-x +x -11 =3 (4)114112=---+x x x ;3、有一道题: “先化简,再求值:22241()244x x x x x -+÷+-- 其中,x=—3”. 小玲做题时把“x=—3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?4、如果关于x 的方程xmx x -=--552无解,则m 等于( ) A.3 B. 4 C.-3 D.55、若方程xx x --=+-34731有增根,则增根为 . 6、若分式方程0123=---x ax 无解,那么a 的值应为 。
7、当k 时关于x 的方程4162222-=--+-x kx x x x 有解。
8、若关于x 的方程313292-=++-x x x m 有增根, 则增根是多少?产生增根的m 值又是多少?9、若关于x 的方程11122+=-+-x x x k x x 不会产生增根,求k 的值。
10、知关于x 的方程323-=--x m x x 解为正数,求m 的取值范围.11、当a 为何值时, )1)(2(21221+-+=+----x x ax x x x x 的解是负数?12、如图,已知A (-3,-3),B (-2,-1),C (-1,-2)是直角坐标平面上三点.(1)请画出△ABC 关于原点O 对称的△A 1B 1C 1; (2)请写出点B 关于y 轴对称的点B 2的坐标,若将点B 2向上平移h 个单位,使其落在△A 1B 1C 1内部,指出h 的取值范围.13、如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG .求证:(1)AD=AG ;(2)AD ⊥AG .。
线段的垂直平分线第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为()A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是()A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为()A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是()A.P是AC的垂直平分线与AB的交点B.P是BC的垂直平分线与AB的交点C.P是∠ACB的平分线与AB的交点D.P是以点B为圆心,AC长为半径的弧与边AB的交点8.如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D.求证:点D在AB的垂直平分线上.9.在△ABC中,AB=AC,边AB的垂直平分线与边AC所在的直线相交所得的锐角为50°,则∠C的度数为.10.下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB;②若PA=PB,EA=EB,则直线PE是线段AB的垂直平分线;③若EA=EB,则直线EP是线段AB的垂直平分线;④若PA=PB,则点P在线段AB的垂直平分线上.其中正确的有()A.1个B.2个C.3个D.4个11.如图,在△ABC中,DE是AC的垂直平分线,AC=6 cm,且△ABD的周长为13 cm,则△ABC的周长为()A.13 cm B.19 cmC.10 cm D.16 cm第11题图第12题图12.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=.13.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.第13题图第14题图14.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=39°,则∠AOC=.15.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE交AC于点F.求证:点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在()A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是()A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD .过点P 作直线AB 的垂线6.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是( )A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE = ;(2)AE EC ;(填“=”“>”或“<”)(3)当AB =3,AC =5时,△ABE 的周长等于 .8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.A 村 ·B 村 ·C 村·9.在平面内,到三点A,B,C距离相等的点()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有10.如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则()A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.参考答案:第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为(D)A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是(B)A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为(B)A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为30°.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.证明:∵DE是AB的垂直平分线,∴EA=EB.∴∠EAB=∠B.∵∠C=90°,∴∠CAB+∠B=90°.又∵∠AED+∠EAB=90°,∴∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有(A)A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是(B)A.P是AC的垂直平分线与AB的交点B .P 是BC 的垂直平分线与AB 的交点 C .P 是∠ACB 的平分线与AB 的交点D .P 是以点B 为圆心,AC 长为半径的弧与边AB 的交点8.如图,在△ABC 中,∠C =90°,∠A =30°,BD 平分∠ABC 交AC 于点D.求证:点D 在AB 的垂直平分线上.证明:∵∠C =90°,∠A =30°, ∴∠ABC =90°-30°=60°. ∵BD 平分∠ABC , ∴∠ABD =12∠ABC =30°.∴∠A =∠ABD. ∴DA =DB.∴点D 在AB 的垂直平分线上.9.在△ABC 中,AB =AC ,边AB 的垂直平分线与边AC 所在的直线相交所得的锐角为50°,则∠C 的度数为20°或70°.10.下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ;②若PA =PB ,EA =EB ,则直线PE 是线段AB 的垂直平分线;③若EA =EB ,则直线EP 是线段AB 的垂直平分线;④若PA =PB ,则点P 在线段AB 的垂直平分线上.其中正确的有(C)A .1个B .2个C .3个D .4个11.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6 cm ,且△ABD 的周长为13 cm ,则△ABC 的周长为(B)A .13 cmB .19 cmC .10 cmD .16 cm第11题图 第12题图12.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,将AB 边沿AD 折叠,发现B 点的对应点E 正好在AC 的垂直平分线上,则∠C =30°.13.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为76.第13题图 第14题图14.(2020·南京)如图,线段AB ,BC 的垂直平分线l 1,l 2相交于点O.若∠1=39°,则∠AOC =78°.15.如图,在△ABC 中,∠ACB =90°,D 是BC 延长线上一点,E 是BD 的垂直平分线与AB 的交点,DE 交AC 于点F.求证:点E 在AF 的垂直平分线上.证明:∵E 是BD 的垂直平分线上的一点, ∴EB =ED. ∴∠B =∠D. ∵∠ACB =90°,∴∠A=90°-∠B,∠CFD=90°-∠D.∴∠CFD=∠A.又∵∠AFE=∠CFD,∴∠AFE=∠A.∴EF=EA.∴点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.解:(1)证明:∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD垂直平分BC.(2)选择A,证明:由(1),得AD⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠CAF=∠ADE.∴∠BAF=∠ADE.∴DE=AE.选择B,线段DE,AC,BE之间的等量关系为DE=BE+AC.证明:由(1),得AF⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠EDA=∠CAF.∴∠BAF=∠EDA.∴AE=DE.∵AE=EB+AB,AB=AC,∴DE=BE+AC.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定(D)A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形(C)A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是(D) A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在(A)A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是(D)A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD.过点P作直线AB的垂线6.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是(A)A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE =90°;(2)AE =EC ;(填“=”“>”或“<”) (3)当AB =3,AC =5时,△ABE 的周长等于7.8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.解:已知:A ,B ,C 三点不在同一直线上. 求作:作一点P ,使PA =PB =PC. 如图所示,点P 即为所求的点.9.在平面内,到三点A ,B ,C 距离相等的点(D) A .只有一个B .有两个C .有三个或三个以上D .有一个或没有10.如图,在△ABC 中,∠BAC =90°,AB >AC.按下列步骤作图:①分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是(C)A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则(B)A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案③.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).解:作法:(1)作线段AD=a;(2)过点D作直线MN⊥AD于点D;(3)以点A为圆心,b为半径画弧,交MN于B,C两点,连接AB,AC,△ABC即为所求,如图所示.14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.解:(1)∵DM,EN分别垂直平分AC和BC,∴AM=CM,CN=BN.∴∠A=∠ACM,∠B=∠BCN.∴∠MCN=180°-(∠CMN+∠CNM)=180°-(2∠A+2∠B)=180°-2(180°-∠ACB)=60°.(2)∵AM=CM,BN=CN,∴△CMN的周长为CM+MN+CN=AM+MN+BN=AB.∵△CMN的周长为15 cm,∴AB=15 cm.(3)∵∠MFN=70°,∴∠MNF+∠NMF=180°-70°=110°.∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠NMF+∠MNF=110°.∴∠A+∠B=90°-∠AMD+90°-∠BNE=70°.又∵∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°-2(∠A+∠B)=40°.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.解:(1)设∠PAQ=x,∠CAP=y,∠BAQ=z,∵MP和NQ分别垂直平分AB和AC,∴AP=PB,AQ=CQ.∴∠B=∠BAP=x+z,∠C=∠CAQ=x+y.∵∠BAC=80°,∴∠B+∠C=100°,即x+y+z=80°,x+z+x+y=100°.∴x=20°.∴∠PAQ=20°.(2)∵△APQ周长为12,∴AQ+PQ+AP=12.∵AQ=CQ,AP=PB,∴CQ+PQ+PB=12,即BC+2PQ=12.∵BC=8,∴PQ=2.21。
【巩固练习】一.选择题1.如图,在△ABC 中,若 AB =AC ,BC =BD ,AD =DE =EB ,则∠A 等于().A .30°B .36°C .45°D .54° 2.用反证法证明:a ,b 至少有一个为 0,应假设( )A. a ,b 没有一个为 0B. a ,b 只有一个为 0C. a ,b 至多有一个为 0D. a ,b 两个都为 03. 如图,在△ABC 中,∠ABC 、∠ACB 的平分线相交于 F ,过 F 作 DE∥BC ,交 AB 于 D ,交 AC 于 E ,那么下列结论正确的有( ①△BDF ,△CEF 都是等腰三角形; ②DE =DB +CE ;③AD +DE +AE =AB +AC ; ④BF =CF.A .1 个B .2 个 D .4 个)C .3 个 4. 等腰三角形一腰上的高与底边所成的角等于( )A .顶角的一半B .底角的一半C .90°减去顶角的一半D .90°减去底角的一半5.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,ED⊥AB 于 D .如果∠A=30°,AE=6cm , 那么 CE 等于( )A . cmB .2cmC .3cmD .4cm6. 如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点 P 是 BC 边上的动点,则 AP 长不可能 是( )A .3.5B .4.2C .5.8D .7二.填空题7.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的 度数为 8. 用反证法证明“若|a|≠|b|,则 a≠b .”时,应假设,则其余两边长分别为________... 9. 等腰三角形的周长为 22cm ,其中一边的长是 8cm10.(2015 春•盐城校级月考)如图,在Rt△ABC 中,∠ACB=90°,AB=5cm ,BC=4cm .动点 D 从点 A 出发,以每秒 1cm 的速度沿射线 AC 运动,当 t= 等腰三角形. 时,△ABD 为 11.如图,钝角三角形纸片 ABC 中,∠BAC =110°,D 为 AC 边的中点.现将纸片沿过点 D 的直线折叠,折痕与 BC 交于点 E ,点 C 的落点记为 F .若点 F 恰好在 BA 的延长线上,则∠ ADF =_________°.12. 如图,在ΔABC 中,∠ABC =120°,点 D 、E 分别在 AC 和 AB 上,且 AE =ED =DB =BC ,则∠A 的度数为______°.三.解答题13. 用反证法证明:一条线段只有一个中点.14.(2016 秋•宜昌期中)一个等腰三角形的三边长分别为x ,2x ﹣3,4x ﹣6,求这个三角形 的周长.15.(2015 秋•东台市期中)如图,△ABC 中,∠C=90°,AB=10cm ,BC=6cm ,若动点 P 从点C 开始,按 C→A→B→C 的路径运动,且速度为每秒 1cm ,设出发的时间为 t 秒.(1)出发 2 秒后,求△ABP 的周长.(2)问 t 为何值时,△BCP 为等腰三角形?(3)另有一点 Q ,从点 C 开始,按 C→B→A→C 的路径运动,且速度为每秒 2cm ,若 P 、Q两点同时出发,当 P 、Q 中有一点到达终点时,另一点也停止运动.当 t 为何值时,直 线 PQ 把△ABC 的周长分成相等的两部分?【答案与解析】一.选择题1. 【答案】C ;x 【解析】设∠A = x ,则由题意∠ADE =180°-2 x ,∠EDB = ,∠BDC =∠BCD =90°- 2x ,因为∠ADE +∠EDB +∠BDC =180°,所以 x =45°. 22. 【答案】A ;【解析】由于命题:“a ,b 至少有一个为 0”的反面是:“a ,b 没有一个为 0”,故选 A.3. 【答案】C ;【解析】①②③正确.4. 【答案】A ;【解析】解 : △ ABC 中 , ∵ AB=AC ,BD 是高, 180A∴ ∠ ABC= ∠C= 2 180 A A 在 Rt △ BDC 中 , ∠ CBD=90 °-∠ C=90 °- 故选 A .= . 2 25. 【答案】C ;【解析】解:∵ED⊥AB ,∠A=30°,∴AE=2ED ,∵AE=6cm ,∴ED=3cm ,∵∠ACB=90°,BE 平分∠ABC ,∴ED=CE ,∴CE=3cm ;故选:C .6. 【答案】D;【解析】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选D.二.填空题7.【答案】69°或21°;【解析】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.8.【答案】a=b;【解析】a,b的等价关系有a=b,a≠b两种情况,因而a≠b的反面是a=b.9.【答案】7cm ,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)+4=t,222解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=,∠BED=∠EBD=2,∠CBD=120°-2,∠C=∠BDC=30°+,x x x x而∠A+∠C=60°,所以+30°+=60°,解得=15°.x x x三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x= ,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P 从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2 秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2 cm∴△ABP的周长为:AP+PB+AB=6+10+2 =(16+2 )cm;(2)若P 在边AC 上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P 在AB 边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P 运动的路程为12cm,所以用的时间为12s,故t=12s 时△BCP为等腰三角形;②若CP=BC=6cm,过C 作斜边AB 的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P 运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s 时,△BCP为等腰三角形.∴t=6s或13s 或12s 或 10.8s 时△BCP为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ 把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ 把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t 为4 或12 秒时,直线PQ 把△ABC的周长分成相等的两部分.9.【答案】7cm ,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)+4=t,222解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=,∠BED=∠EBD=2,∠CBD=120°-2,∠C=∠BDC=30°+,x x x x而∠A+∠C=60°,所以+30°+=60°,解得=15°.x x x三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x= ,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P 从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2 秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2 cm∴△ABP的周长为:AP+PB+AB=6+10+2 =(16+2 )cm;(2)若P 在边AC 上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P 在AB 边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P 运动的路程为12cm,所以用的时间为12s,故t=12s 时△BCP为等腰三角形;②若CP=BC=6cm,过C 作斜边AB 的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P 运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s 时,△BCP为等腰三角形.∴t=6s或13s 或12s 或 10.8s 时△BCP为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ 把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ 把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t 为4 或12 秒时,直线PQ 把△ABC的周长分成相等的两部分.9.【答案】7cm ,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)+4=t,222解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=,∠BED=∠EBD=2,∠CBD=120°-2,∠C=∠BDC=30°+,x x x x而∠A+∠C=60°,所以+30°+=60°,解得=15°.x x x三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x= ,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P 从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2 秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2 cm∴△ABP的周长为:AP+PB+AB=6+10+2 =(16+2 )cm;(2)若P 在边AC 上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P 在AB 边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P 运动的路程为12cm,所以用的时间为12s,故t=12s 时△BCP为等腰三角形;②若CP=BC=6cm,过C 作斜边AB 的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P 运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s 时,△BCP为等腰三角形.∴t=6s或13s 或12s 或 10.8s 时△BCP为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ 把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ 把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t 为4 或12 秒时,直线PQ 把△ABC的周长分成相等的两部分.。
北师大版八年级数学下册第13周周测试卷组卷人:家长签名:班级:_________________ 姓名:_________________ 座号:________________一. 选择题(共10小题,答案写在表格内)的长度为(*)(第1题图)(第2题图)A.B.C.D.32.“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=196,大正方形的面积为100,则小正方形的面积为(*)A.4B.9C.96D.63.关于x,y的方程组的解中,x与y的和不大于3,则k的取值范围是(*)A.k≥2B.k≤2C.k≥1D.k≤14.某学校举行“创新杯”篮球比赛,比赛方案规定:每场比赛都要分出胜负,每队胜1场积2分,负1场积1分,每只球队在全部8场比赛中积分不少于12分,才能获奖.小明所在球队参加了比赛并计划获奖,设这个球队在全部比赛中胜x场,则x应满足的关系式是(*)A.2x+(8﹣x)≥12B.2x+(8﹣x)≤12C.2x﹣(8﹣x)≥12D.2x≥125.下列生活中的现象,属于平移的是(*)A.摩天轮在运行B.抽屉的拉开C.坐在秋千上人的运动D.树叶在风中飘落6.如图,把△ABC绕着点C顺时针方向旋转32°,得到△A'B'C,点B刚好落在边A'B'上,则∠B'的度数为(*)A.74°B.72°C.68°D.66°7.下列各式中,能用平方差公式分解因式的是(*)A.x2+4y2B.x2+2x﹣1C.﹣x2﹣4y2D.﹣x2+4y28.若多项式x2+px+q因式分解的结果为(x+5)(x﹣4),则p+q的值为(*)A.﹣19B.﹣20C.1D.99.如果一个数等于两个连续偶数的平方差,那么我们称这个数为“和融数”,如:因为20=62﹣42,所以称20为“和融数”,下面4个数中为“和融数”的是(*)A.2020B.2021C.2022D.202310.已知a+b=1,ab=﹣6,则a3b﹣2a2b2+ab3的值为(*)A.57B.120C.﹣39D.﹣150二.填空题11.若m+2n=1,则m2+2mn+2n的值为.12.已知长方形的长和宽分别为a、b,且长方形的周长为10,面积为6,则a3b+2a2b2+ab3的值为.13.若x2+x﹣3=0,则x3+2x2﹣2x+5的值为.14.已知直角三角形的两条边长分别为5和3,则第三边长为.15.如图,边长分别为a,b的长方形,它的周长为15,面积为10,则3a2b+3ab2=.16.若不等式组的解集是1<x<3,则a=,b=.17.一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,如:甲同学答对25道题,答错5道题,则甲同学得90分;若得分不低于60分者获奖,则获奖者至少应答对道题.18.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设.19.如图所示图案,绕它的中心至少旋转后可以和自身重合.20.若点P(m,﹣2)与点Q(3,n)关于原点对称,则(m+n)2033=.三.解答题21.分解因式:(1)a2+ab+2a;(2)(2m+n)2﹣(m+n)2.22.分解因式:(1)3xy﹣9y;(2)4a2﹣9;(3)3x3﹣6x2+3x;(4)﹣4x3y3+6x2y﹣2xy;(5)p4﹣1;(6)(a+1)(a﹣1)﹣(1﹣a)2.23.已知关于x的不等式组无解,则m的取值范围.24.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项而分解成2(x﹣2)(x﹣4),请将原多项式分解因式.北师大版八年级数学下册第13周周测试卷参考答案一.选择题二.填空题11. 112. 15013. 8 14. 415. 225 16. 3;2 17. 20 18. a不平行b或a与b相交19. 120°20. 1−三.解答题21.解:(1)a2+ab+2a=a(a+b+2);(2)(2m+n)2﹣(m+n)2=[(2m+n)+(m+n)][(2m+n)﹣(m+n)]=(2m+n+m+n)(2m+n﹣m﹣n)=m(3m+2n).22.解:(1)3xy﹣9y=3y(x﹣3);(2)4a2﹣9=(2a+3)(2a﹣3);(3)3x3﹣6x2+3x=3x(x2﹣2x+1)=3x(x﹣1)2;(4)﹣4x3y3+6x2y﹣2xy=﹣2xy(2x2y2﹣3x+1);(5)p4﹣1=(p2+1)(p2﹣1)=(p2+1)(p﹣1)(p+1);(6)(a+1)(a﹣1)﹣(1﹣a)2=(a﹣1)[(a+1)﹣(a﹣1)]=2(a﹣1).23.解:由x﹣m≤2m+3,得:x≤3m+3,由≥m,得:x≥2m+1,∵不等式组无解,∴3m+3<2m+1,解得m<﹣2.24.解:设原多项式为ax2+bx+c(其中a、b、c均为常数,且abc≠0).∵2(x﹣1)(x﹣9)=2(x2﹣10x+9)=2x2﹣20x+18,∴a=2,c=18;又∵2(x﹣2)(x﹣4)=2(x2﹣6x+8)=2x2﹣12x+16,∴b=﹣12.∴原多项式为2x2﹣12x+18,将它分解因式,得2x2﹣12x+18=2(x2﹣6x+9)=2(x﹣3)2.。
知识点1 平行四边形的定义知识点2 平行四边形的性质知识点3 平行四边形的面积【例1】如图,在ABCD中,AD=6(A. 8B. 9C. 10D. 11(.(知识点4 两条平行线间的距离知识点5 平行四边形的判定方法【例4】点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若是平行四边形.(.AC=BD C.AC⊥BD D.平行四边形ABCD是轴对称图形(1)(2)(3如图,在□ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( ).如图,已知:等腰△(7如图,在平行四边形。
(8)(题)(10的对角线交于点O,且AB=6,△OCD段EC′与线段AF交于点G,连接(如图,E、F是平行四边形ABCD对角线(如图,平行四边形ABCD中,(14四边形,则点D的坐标是(15求证:∠ADE=∠CDF;(2)如果∠B=120(16知识点1 三角形的中位线的定义知识点2 中位线定理【例1】如图,DE是△ABC(例AC=18,BC=12,则△CEG的周长为(【例3】如图, 已知四边形(例知识点3 多边形的内角和公式知识点4 多边形的外角及外角和【例4】一个多边形的内角和比四边形内角和的3倍多180°,这个多边形的边数是. CPD= .(A.110°B.108°C. 105°D.100°(题)(题)(题)(能判定四边形是平行四边形的条件是()CD;③S△EDF=S△如图,△ABC中,(如图,M是△ABC的边BC的中点((12FCB的周长为22,则FC的长为(13相平分;(2)若BC=4,求DF的长(点,连结DE、FE,求证:(A.18B.28C.36D.46(5=∠2 C.AB=AD D(题)(题)(98. 如图,D,E分别为△的AC,BC边的中点,将此三角形沿.48° C.52° D如图,过正五边形ABCDE(10)(一个多边形每一个外角都等于40° ,则这个多边形的边数是如图, E,F是四边形ABCD的对角线(C.S<S1+S2 D(题)(A时, 一共走了 m(BC= .(8连接BG、DE.①∠ACB与∠GCD有怎样的数量关系?请说明理由(。
2020学年八下第13周B 班培优班级:___________姓名:___________学号:___________成绩:___________1. 下列四个图案中,是中心对称图形的是( )A. B. C. D. 2. 下列从左到右的变形中,是因式分解的是( )A. ()ay ax y x a +=+B. ()1255102-=-x x x xB. ()22244-=++y y y D. ()43432-+=-+m m m m3. 下列分式中,是最简分式的是( )A. x 63B. yx y x ++22 C. x x +-11 D. 112--x x 4. 不等式组⎪⎩⎪⎨⎧≤+->-23121712x x 的解集在数轴上表示正确的是( )5. 一个等腰三角形的其中一个角是40°,那么它的顶角为( )A. 40°B. 70°C. 40°或100°D. 70°或100°6.到三角形三个顶点的距离都相等的点是这个三角形的( )A .三条边的垂直平分线的交点B .三条角平分线的交点C .三条中线的交点D .三条高的交点7.将点A(−2, 3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移4个单位长度后得到的点A ′的坐标为( )A.(1, 7)B.(1,−1)C.(−5, −1)D.(−5, 7) 8.若关于x 的分式方程2m−1x−1−7xx−1=5有增根,则m 的值是( ) A .4 B .3C .2D .1 9. 如图,P 是∠BAC 的平分线AD 上的一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( )A.3B.4C.5D.无法确定10.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( ) A.30x =40x−15 B.30x−15=40x C.30x =40x+15 D.30x+15=40x11.当x = 时,分式392--x x 的值为0. 12.若一元一次不等式组⎩⎨⎧<≤-a x x 32的解集为a x <,则a 的取值范围是 13.如图,△COD 是由△AOB 绕点O 按顺时针方向旋转40°后得到的图形,点C 恰好在边AB 上.若∠AOD =100°,则∠D 的度数是 °.14.因式分解:x 3−2x 2+x =________________________.15. 解不等式组 {x −4≤32(2x −1),2x −1+3x 2<1,把它的解集表示在数轴上,并求出不等式组的非负整数解.16.因式分解:(1)27a 3−3. (2)a 3b 3+2a 2b 2+ab .17. 先化简,再求值:2a+1−a−2a 2−1÷a 2−2a a 2−2a+1,其中a =√2.18.先化简:(a+7a−1−2a+1)÷a 2+3a a 2−1,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a 的值代入求值.18.如图,DE ⊥AB 于点E ,DF ⊥AC 于点F ,若BD =CD 、BE =CF .(1)求证:AD 平分∠BAC ;(2)已知AC =18,BE =4,求AB 的长.19.已知直线l1:y1=x+m与直线l2:y2=nx+3相交于点C(1, 2).(1)求m、n的值.(2)在给出的直角坐标系中画出直线l1和直线l2的图象.(3)求nx+3>x+m的解集.20.甲、乙两座城市的高铁站A,B两站相距480km.一列特快动车组与一列普通动车组分别从A,B两站同时出发相向而行,特快动车组的平均速度比普通动车组快80km/ℎ,当特快动车组到达B站时,普通动车组恰好到达距离A站120km处的C站.求普通动车组和特快动车组的平均速度各是多少?。
最新北师大版八年级数学下册单元测试题全套及答案第1章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为( B )A .23°B .46°C .67°D .78°2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是( D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE,第2题图) ,第3题图) ,第4题图)3.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 34.如图,在△ABC 中,∠B =40°,∠BAC =75°,AB 的垂直平分线交BC 于点D ,垂足为E.则∠CAD 等于( B )A .30°B .35°C .40°D .50°5.如图,AC =BD ,则补充下列条件后仍不能判定△ABC ≌△BAD 的是( D ) A .AD =BC B .∠BAC =∠ABD C .∠C =∠D =90° D .∠ABC =∠BAD6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为( D )A .20B .10 3C .5 3 D.2532,第5题图) ,第7题图) ,第8题图) ,第10题图)7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,AC 等于( A )A. 2 B .2 C. 6 D .2 28.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC边上一动点,则DP 长的最小值为( C )A .2B .2 2C .4D .4 29.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠C =90°,∠A =30°,若AB =6 cm ,则BC =__3__cm .12.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为__4__.,第11题图 第12题图 第13题图 第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是__AC =DF (答案不唯一)__.(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =__8__cm .15.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.若AB =4 cm ,则DE =__23__cm .,第15题图) ,第16题图) ,第17题图)16.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__5__.17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE =__143__米时,有DC 2=AE 2+BC 2.18.下列命题:①到三角形三边距离相等的点是这个三角形三条角平分线的交点;②三角形三边的垂直平分线的交点到这个三角形的三个顶点的距离相等;③一个锐角和一条边分别相等的两个直角三角形全等;④顶角和底边对应相等的两个等腰三角形全等.其中真命题是__①②④__(填序号)三、解答题(共66分)19.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D.若△ABC的周长为20 cm,△BCE的周长为12 cm,求BC的长.解:∵DE垂直平分AB,∴AE=BE,∵△BCE的周长为12 cm,即BC+BE+CE=12,∴BC+AE +CE=12,即BC+AC=12,又∵△ABC的周长为20 cm,即AB+BC+AC=20,∴AB+12=20,则AB =8,∴AC=8,∴BC=20-AB-AC=20-8-8=4(cm)21.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BE,CD是两条高,∴∠BDC=∠CEB=90°,又∵BC =CB,∴△BDC≌△CEB(AAS),∴∠DBC=∠ECB,∴AB=AC,∴△ABC是等腰三角形(2)点O 在∠BAC 的平分线上.理由:如图,连接AO.∵△BDC ≌△CEB ,∴DC =EB ,∵OB =OC ,∴OD =OE ,∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上(或通过证Rt △ADO ≌Rt △AEO (HL ),得出∠DAO =∠EAO 也可)22.(8分)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA ,OB 相交于点C ,D ,问PC 与PD 相等吗?试说明理由.解:PC =PD.理由:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∵OM 平分∠AOB ,点P 在OM 上,∴PE =PF ,又∵∠AOB =90°,∴∠EPF =90°,∴∠EPF =∠CPD ,∴∠EPC =∠FPD.又∵∠PEC =∠PFD =90°,∴△PCE ≌△PDF (ASA ),∴PC =PD23.(10分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD ,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC ,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m24.(12分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎨⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC (AAS ),∴EG =EC25.(12分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA (等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形第2章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t (℃)的变化范围是( D )A .t >22B .t ≤22C .11<t <22D .11≤t ≤222.(2016·新疆)不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C )A .>4B .x ≤3C .3≤x <4D .无解3.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( A ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-34.如图a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( C )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.如果点P(3-m ,1)在第二象限,那么关于x 的不等式(2-m)x +2>m 的解集是( B ) A .x >-1 B .x <-1 C .x >1 D .x <16.如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( C ) A .x <1 B .x >1 C .x <3 D .x >37.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是( D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-18.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集为3≤x <5,则a ,b 的值为( A )A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =39.如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x <ax +4的解集为( A )A .x <32 B .x <3C .x >32D .x >310.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( B )A .买甲站的B .买乙站的C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二、填空题(每小题3分,共24分)11.(2016·绍兴)不等式3x +134>x3+2的解是__x >-3__.12.(2016·巴中)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x +1的最大整数解为__0__.13.如果关于x 的不等式组⎩⎪⎨⎪⎧x >m -1,x >m +2的解集是x >-1,那么m =__-3__.14.要使关于x 的方程5x -2m =3x -6m +1的解在-3与4之间,m 的取值范围是__-74<m <74__.15.如图,函数y =ax -1的图象经过点(1,2),则不等式ax -1>2的解集是__x >1__.,第15题图),第16题图)16.已知不等式组⎩⎪⎨⎪⎧x +2a ≥1,2x -b <3的解集如图所示,则a -b 的值为__0__.17.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__k >2__.18.商店购进一批文具盒,进价每个4元,零售价每个6元,为促进销售,决定打折销售,但利润率仍不低于20%,那么该文具盒实际价格最多可打__8__折销售.三、解答题(共66分)19.(10分)解下列不等式组,并把解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2(x +1)≤x +3,x -4<3x ; (2)⎩⎪⎨⎪⎧2x >3x -2,①2x -13≥12x -23.② 解:-2<x ≤1 数轴表示略 解:-2≤x <2 数轴表示略20.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组得⎩⎨⎧x =3a +2,y =4-2a ,∵x >0,y >0,∴⎩⎨⎧3a +2>0,4-2a >0,解得-23<a <221.(8分)解不等式组⎩⎪⎨⎪⎧3(x -2)≥x -4,①2x +13>x -1,②并写出它所有的整数解.解:解不等式①得x ≥1,解不等式②得x <4,∴原不等式的解集是1≤x <4,∴原不等式组的整数解是x =1,2,322.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a 恰有三个整数解,求实数a 的取值范围. 解:解不等式x 2+x +13>0得x >-25,解不等式3x +5a +4>4(x +1)+3a 得x <2a ,∵不等式组恰有三个整数解,∴2<2a ≤3,∴1<a ≤3223.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1).(1)求k ,b 的值;(2)利用图象求当x 取何值时,y 1≥y 2?(3)利用图象求当x 取何值时,y 1>0且y 2<0?解:(1)将A 点坐标代入y 1=kx -2,得2k -2=-1,即k =12;将A 点坐标代入y 2=-3x +b 得-6+b=-1,即b =5 (2)从图象可以看出当x ≥2时,y 1≥y 2 (3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为(53,0),从图象可以看出当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<024.(12分)甲,乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x 元,其中x >100.(1)根据题意,填写下表(物购计累 费花际实 130 290 … x 在甲商场127…在乙商场 126 …(2)当x 取何值时,(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?解:(1)271 100+(x -100)×90% 278 50+(x -50)×95% (2)根据题意得100+(x -100)×90%=50+(x -50)×95%,解得x =150.即当x =150时,小红在甲、乙两商场的实际花费相同 (3)由100+(x -100)×90%<50+(x -50)×95%,解得x >150;由100+(x -100)×90%>50+(x -50)×95%,解得x <150.∴当小红累计购物超过150元时,选择甲商场实际花费少,当小红累计购物超过100元而不到150元时,选择乙商场实际花费少25.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲,乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲,乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x 件,则蔬菜有(x -80)件,由题意得x +(x -80)=320,解得x =200,∴x -80=120.则饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆,由题意得⎩⎨⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆 (3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.则运输部门应安排甲车2辆,乙车6辆,可使运费最少,最少运费是2960元第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B ,则点B 的坐标是( B ) A .(-5,3) B .(1,3) C .(1,-3) D .(-5,-1)2.如图,下列四个图形中,△ABC 经过旋转之后不能得到△A ′B ′C ′的是( D )3.(2016·青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )4.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( C )A .30°B .40°C .50°D .60°5.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( C )A.①②③B.①②④C.①③④D.②③④6.(2016·枣庄)已知点P(a+1,-a2+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )7.如图,将△ABC沿射线BC向右平移到△DCE的位置,连接AD,则下列结论:①AB∥CD;②AC=DE;③AD=BC;④∠B=∠ADC;⑤△ACD≌△EDC.其中正确的结论有( A )A.5个B.4个C.3个D.2个,第7题图),第8题图),第9题图),第10题图)8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2.△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6 B.4 3 C.3 3 D.39.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′是点B的对应点,点C′是点C的对应点),连接CC′,则∠CC′B′的度数是( D ) A.45°B.30°C.25°D.15°10.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C )A.(1,1) B.(2,2) C.(-1,1) D.(-2,2)二、填空题(每小题3分,共24分)11.如图,点D是等边三角形ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了__60__度.12.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=__4.5__cm,A,A′两点之间的距离为__3__cm.,第11题图),第12题图),第14题图),第15题图)13.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C,的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为__(7,-2)__.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为__2α__.15.如图,在△ABC中,∠BAC=115°,∠ACB=25°,把△ABC以AC为对称轴作对称变换得△ADC,又把△ABC绕点B逆时针旋转55°得△FBE,则∠α的度数为__145°__.16.如图,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__63__cm2.,第16题图),第17题图),第18题图)17.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正形内的数字是__3__.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为__40°或20°__时,△ADF是等腰三角形.三、解答题(共66分)19.(7分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6 cm,则BE=__6__cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.解:根据平移的性质得AC∥BE,∠ABC=∠BDE=100°,∴∠C=180°-∠CAB-∠ABC=180°-50°-100°=30°,由AC∥BE得∠CBE=∠C=30°20.(7分)如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A ′B ′C ′D 是什么图形?面积是多少?(3)求∠C ′DC 和∠CDA ′的度数;(4)连接AA ′,求∠DAA ′的度数.解:(1)点D (2)四边形A ′B ′C ′D ′是正方形,面积为4×4=16 (3)由题意得∠C ′DC =30°,∠CDA ′=90°-∠C ′DC =60° (4)∵AD =A ′D ,∠ADA ′=30°,∴∠DAA ′=(180°-30°)×12=75°21.(8分)(1)在平面直角坐标系中找出点A(-3,4),B(-4,1),C(-1,1),D(-2,3)并将它们依 次连接;(2)将(1)中所画图形先向右平移4个单位,再向下平移3个单位,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?解:(1)画图略 (2)画图略 (3)将A 点与它的对应点A ′连接起来,则AA ′=32+42=5,∴将(1)中所画图形沿A 到A ′的方向平移5个单位长度得到(2)中所画图形.四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别减少了322.(10分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)画出△ABC 关于原点对称的△A 3B 3C 3.解:图略23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2.(1)求∠BAD的度数;(2)求AD的长.解:(1)因为△DCE是由△DBA旋转后得到的,∴DE=DA,∵∠BDC=60°,∴∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∠BAD=∠BAC-∠DAE=120°-60°=60°(2)AD=AE =AC+CE=AC+AB=2+3=524.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合;(3)求OE的长.解:(1)△OMN如图所示(2)△A′B′C′如图所示(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知B′C′平分∠A′B′O,且C′O⊥OB ′,∴B ′F =B ′O =OE =x ,FC ′=OC ′=OD =3.∵A ′C ′=AC =5,∴A ′F =52-32=4,∴A ′B ′=x +4,A ′O =5+3=8.在Rt △A ′B ′O 中,x 2+82=(4+x )2,解得x =6,即OE =625.(12分)如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm ,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图⑥中统一用F 表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请证明:AH =DH.解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm (2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS ).∴AH =DH期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( D )2.若a >b ,则下列不等式变形错误的是( D )A .a +3>b +3 B.a 3>b 3C .2a -3>2b -3D .3-2a >3-2b3.(2016·临沂)不等式组⎩⎪⎨⎪⎧3x <2x +4,3-x 3≥2的解集,在数轴上表示正确的是( A )4.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( D )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)5.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′等于( A )A .30°B .35°C .40°D .50°,第5题图) ,第6题图) ,第7题图),第8题图)6.在△ABC 中,∠C =90°,AD 平分∠BAC ,DE 垂直平分AB ,垂足为E.若CD =2,则BD 的长为( C )A .2B .3C .4D .57.如图,AD ⊥CD ,AE ⊥BE ,垂足分别为D ,E ,且AB =AC ,AD =AE.则下列结论:①△ABE ≌△ACD ;②AM =AN ;③△ABN ≌△ACM ;④BO =EO.其中正确的有( B )A .4个B .3个C .2个D .1个8.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( C )A .7 cmB .10 cmC .12 cmD .22 cm9.如图,已知MN 是△ABC 的边AB 的垂直平分线,垂足为点F ,∠CAB 的平分线AD 交BC 于点D ,且MN 与AD 交于点O ,连接BO 并延长交AC 于点E ,则下列结论中不一定成立的是( B ) A .∠CAD =∠BAD B .OE =OF C .AF =BF D .OA =OB,第9题图) ,第10题图)10.如图,将边为3的正方形ABCD 绕点A 沿逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( B ) A.32- 3 B .3- 3 C .2- 3 D .2-32 二、填空题(每小题3分,共24分)11.如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE(不标注新的字母,不添加辅助线).则添加的条件是__AB =AC (答案不唯一)__.12.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =10 cm ,BC =8 cm ,BD =5 cm ,则△ABD 的面积为__15_cm 2__.,第11题图) ,第12题图) ,第13题图),第14题图)13.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为__33__.14.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a +b =__2__.15.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围__a >-1__. 16.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4,若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC 的长度为__2__.,第16题图) ,第17题图),第18题图)17.如图,点E 是正方形ABCD 内的一点,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =__135__°.18.如图,在△ABC 中,∠ACB =90°,AC =BC ,O 是AB 的中点,点D 在AC 上,点E 在BC 上,且∠DOE =90°.则下列结论:①OA =OB =OC ;②CD =BE ;③△ODE 是等腰直角三角形;④四边形CDOE 的面积等于△ABC 的面积的一半;⑤AD 2+BE 2=2OD 2;⑥CD +CE =2OA.其中正确的有__①②③④⑤⑥__(填序号)三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E.(1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.解:(1)∵AD 平分∠CAB ,∴∠CAD =∠EAD ,∵∠C =90°,DE ⊥AB ,∴∠C =∠DEA =90°,又∵AD =AD ,∴△ACD ≌△AED (AAS ) (2)∵DE ⊥AB ,∴∠DEB =90°,又∵由(1)得△ACD ≌△AED ,∴DE =CD =1,在Rt △BDE 中,∵∠B =30°,∴BD =2DE =220.(8分)解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -12≥2x -4,并指出它的所有非负整数解. 解:解不等式组得-2<x ≤73,∴不等式组的非负整数解是0,1,221.(8分)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:FD =BE.解:根据中心对称的性质可得BO =DO ,AO =CO ,又∵AF =CE ,∴AO -AF =CO -CE ,即OF =OE.在△ODF 和△OBE 中,DO =BO ,∠DOF =∠BOE (对顶角相等),OF =OE ,∴△ODF ≌△OBE (SAS ),∴FD =BE22.(8分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国某岛位于O 点,我国渔政船在点B 处发现有一艘不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向该岛所在地O 点,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)如答图,连接AB,作AB的垂直平分线与OA交于点C.点C即为所求(2)连接BC,设BC=x海里,则CA=x海里,OC=(45-x)海里,在Rt△OBC中,BO2+OC2=BC2,即152+(45-x)2=x2,解得x=25.则我国渔政船行驶的航程BC为25海里23.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.解:(1)图略(2)(2,-1)24.(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角板的平移过程中,在图②中线段EB =AH 是否始终成立(假定AB ,AC 与三角板斜边的交点为G ,H)?如果成立,请证明;如果不成立,请说明理由.解:(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC.∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC.∴CF =AC =BC ,∴EF =2BC (2)成立.∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC ,∵∠F =30°,∴∠CHF =60°-30°=30°.∴∠CHF =∠F .∴CH =CF .∵EF =2BC ,∴EB +CF =BC.又∵AH +CH =AC ,AC =BC ,∴EB =AH25.(12分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,根据题意得⎩⎨⎧2x +3y =156,3x +y =122, 解得⎩⎨⎧x =30,y =32 (2)根据题意得y 1=0.8×30x ,即y 1=24x.当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即当购买数量超过5个而小于30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即当购买数量为30个时,购买A 品牌和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即当购买数量超过30个时,购买B 品牌的计算器更合算第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形,属于因式分解的是( C )A .(3-x )(3+x )=9-x 2B .(y +1)(y -3)=-(3-y )(y +1)C .m 4-n 4=(m 2+n 2)(m +n )(m -n )D .4yz -2y 2z +z =2y (2z -yz )+z2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)2 3.下列各式中,能用公式法分解因式的有( B )①-x 2-y 2;②-14a 2b 2+1;③a 2+ab +b 2;④-x 2+2xy -y 2;⑤14-mn +m 2n 2.A .2个B .3个C .4个D .5个4.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2-4x +4) B .3x (x -4)2 C .3x (x +2)(x -2) D .3x (x -2)25.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( B ) A .4x 2-4x +1=(2x -1)2 B .x 3-x =x (x 2-1) C .x 2y -xy 2=xy (x -y ) D .x 2-y 2=(x +y )(x -y ) 6.若a 2-b 2=14,a -b =12,则a +b 的值为( B )A .-12 B.12C .1D .27.已知多项式2x 2+bx +c 因式分解后为2(x -3)(x +1),则b ,c 的值为( D )A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 8.计算(-2)99+(-2)100的结果为( A ) A .299 B .2100 C .-299 D .-29.若多项式x 2-2(k -1)x +4是一个完全平方式,则k 的值为( D ) A .3 B .-1 C .3或0 D .3或-110.若三角形的三边长分别是a ,b ,c ,且满足a 2b -a 2c +b 2c -b 3=0,则这个三角形是( A ) A .等腰三角形 B .直角三角形C .等边三角形D .三角形的形状不确定 二、填空题(每小题3分,共24分)11.分解因式:4+12(x -y)+9(x -y)2=__(2+3x -3y )2__.12.若2a -b +1=0,则8a 2-8ab +2b 2的值为__2__.13.已知实数x ,y 满足x 2+4x +y 2-6y +13=0,则x +y 的值为__1__. 14.多项式2ax 2-8a 与多项式2x 2-8x +8的公因式为__2(x -2)__.15.若多项式(3x +2)(2x -5)+(5-2x)(2x -1)可分解为(2x +m)(x +n),其中m ,n 均为整数,则mn 的值为__-15__.16.已知长方形的面积为6m 2+60m +150(m >0),长与宽的比为3∶2,则这个长方形的周长为__10m +50__.17.已知代数式a 2+2a +2,当a =__-1__时,它有最小值,最小值为__1__.18.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为__a 2-b 2=(a +b )(a -b )__.三、解答题(共66分)19.(12分)将下列各式分解因式:(1)2x 2y -8xy +8y; (2)a 2(x -y)-9b 2(x -y); 解:2y (x -2)2 解:(x -y )(a +3b )(a -3b )(3)9(m +2n )2-4(m -2n )2; (4)(y 2-1)2+6(1-y 2)+9. 解:(5m +2n )(m +10n ) 解:(y +2)2(y -2)220.(10分)先分解因式,再求值:(1)已知x -y =-23,求(x 2+y 2)2-4xy(x 2+y 2)+4x 2y 2的值;解:原式=(x -y )4,当x -y =-23时,原式=1681(2)已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.解:原式=-2xy (x +y ),当x +y =1,xy =-,原式=-2×(-12)×1=121.(6分)下列三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再将结果因式分解.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)(答案不唯一)22.(8分)甲,乙两同学分解因式x 2+mx +n ,甲看错了n ,分解结果为(x +2)(x +4);乙看错了m ,分解结果为(x +1)(x +9),请分析一下m ,n 的值及正确的分解过程.解:∵(x +2)(x +4)=x 2+6x +8,甲看错了n 的值,∴m =6,又∵(x +1)(x +9)=x 2+10x +9,乙看错了m 的值,∴n =9,∴原式为x 2+6x +9=(x +3)223.(8分)阅读下列解题过程:已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4, (A)∴c2(a2-b2)=(a2+b2)(a2-b2), (B)则c2=a2+b2, (C)∴△ABC为直角三角形. (D)(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号__C__;(2)错误的原因__忽略了a2-b2=0,即a=b的可能__;(3)请写出正确的解答过程.解:∵a2c2-b2c2=a4b4,∴c2(a2-b2)=(a2+b2)(a2-b2),即c2(a2-b2)-(a2+b2)(a2-b2)=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,即a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形24.(10分)有足够多的长方形和正方形的卡片,如图①(1)如果选取1号,2号,3号卡片分别为1张,2张,3张(如图②),可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系将多项式a2+3ab+2b2分解因式;(2)小明想用类似的方法将多项式2a2+7ab+3b2分解因式,那么需要1号卡片__2__张,2号卡片__3__张,3号卡片__7__张.试画出草图,写出将多项式2a2+7ab+3b2分解因式的结果.解:(1)画图略.a2+3ab+2b2=(a+b)(a+2b)(2)2,3,7.画图略.2a2+7ab+3b2=(2a+b)(a+3b)25.(12分)阅读下列计算过程:多项式x2-11x+24分解因式,可以采取以下两种方法:①将-11x拆成两项,即-6x-5x;将24拆成两项,即9+15,则:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)(x-3-5)=(x-3)(x-8);②添加一个数(112)2,再减去这个数(112)2,则:x 2-11x +24=x 2-11x +(112)2-(112)2+24=[x 2-11x +(112)2]-254=(x -112)2-(52)2=(x -112+52)(x -112-52)=(x -3)(x -8). (1)根据上面的启发,请任选一种方法将多项式x 2+4x -12分解因式;(2)已知A =a +10,B =a 2-a +7,其中a >3,指出A 与B 哪个大,并说明理由.解:(1)x 2+4x -12=x 2+4x +4-16=(x +2)2-16=(x +6)(x -2) (2)B >A.理由:B -A =a 2-a +7-a -10=a 2-2a +1-4=(a -3)(a +1),∵a >3,∴a -3>0,a +1>0,∴B -A >0,即B >A第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( B )A .5B .4C .3D .22.若分式x 2-1x +1的值为零,则x 的值为( B )A .0B .1C .-1D .±1 3.在下列分式中,最简分式是( B ) A.x +1x 2-1 B.x +2x 2+1 C.y 2y 2 D.63y +34.下列各式从左到右的变形中正确的是( A ) A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +b a +2b C .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b5.计算a b +b a -a 2-b 2ab 的结果是( B )A.2a bB.2ba C.-2ab D.-2b a6.分式方程2x -2+3x 2-x =1的解为( A )A .1B .2 C.13D .0。
2直角三角形第1课时直角三角形的性质与判定1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.120°B.90°C.60°D.30°2.已知a∥b,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°第2题图第3题图3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为()A.1 B.2 C.3 D.44.如图,数轴上点A表示的实数是.5.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.6.由下列条件不能判定△ABC是直角三角形的是()A.∠A=37°,∠C=53°B.∠A-∠C=∠BC.∠A∶∠B∶∠C=3∶4∶5D.∠A∶∠B∶∠C=2∶3∶57.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5 B.6,8,11C.5,12,12 D.1,1,28.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.求阴影部分的面积.9.下列定理中,没有逆定理的是()A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等C.全等三角形的周长相等D.等边三角形的三个角都相等10.下列命题的逆命题是真命题的是()A.对顶角相等B.同位角相等,两直线平行C.直角都相等D.全等三角形的面积相等11.在Rt△ABC中,已知其中两边分别为6和8,则其面积为.12.已知下列命题:①若a+b=0,则|a|=|b|;②等边三角形的三个内角都相等;③底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的有()A.1个B.2个C.3个D.0个13.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB于点E,则下列结论一定成立的是()A.BC=EC B.EC=BEC.BC=BE D.AE=EC第14题图第15题图15.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 3 B.6 C.3 2 D.2116.已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为.17.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm.(杯壁厚度不计)18.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x →利用勾股定理求出AD的长,再计算三角形面积19.观察下列勾股数组:3,4,5;5,12,13;7,24,25;9,40,41;…;a,b,c.根据你发现的规律,请写出:(1)当a=19时,b,c的值是多少?(2)当a=2n+1时,求b,c的值.第2课时直角三角形全等的判定1.如图,点P是∠BAC内一点,PE⊥AC于点E,PF⊥AB于点F,PE=PF,则能直接得到△PEA≌△PFA的理由是()A.HL B.ASAC.AAS D.SAS第1题图第2题图2.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°3.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°第3题图第4题图4.如图,点D,A,E在直线l上,AB=AC,BD⊥l于点D,CE⊥l于点E,且BD=AE.若BD=3,CE=5,则DE=8.5.如图,AC⊥BC,BD⊥AD,AC=BD.求证:∠ABC=∠BAD.6.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和斜边分别对应相等7.如图所示,已知BE⊥AD,CF⊥AD,垂足分别为E,F,则在下列条件中选择一组,可以判定Rt△ABE≌Rt△DCF的是.(填序号)①AB=DC,∠B=∠C;②AB=DC,AB∥CD;③AB=DC,BE=CF;④AB=DF,BE=CF.8.如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,且DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F.求证:AB=BF.9.如图,点C是路段AB的中点,小明和小红两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,并且DA⊥AB于点A,EB⊥AB于点B.此时小明到路段AB的距离是50米,则小红到路段AB的距离是多少米?10.已知在Rt△ABC中,∠C=90°,∠B=30°,AB=4,则下列图中的直角三角形与Rt△ABC全等的是()11.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD和CE交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有()A.3对B.4对C.5对D.6对12.如图所示,过正方形ABCD的顶点B作直线a,过点A,C作a的垂线,垂足分别为E,F.若AE=1,CF=3,则AB的长为.第12题图第13题图13.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=时,△ABC和△PQA全等.14.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.15.如图1,E,F分别为线段AC上的两个动点,且DE⊥AC于点E,BF⊥AC于点F.若AB=CD,BF=DE,BD交AC于点M.(1)求证:AE=CF,MD=MB;(2)当E,F两点移动到如图2的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.参考答案:2直角三角形第1课时直角三角形的性质与判定1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是(D)A.120°B.90°C.60°D.30°2.已知a∥b,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为(B)A.35°B.55°C.56°D.65°第2题图第3题图3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为(D)A.1 B.2 C.3 D.44.如图,数轴上点A5.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°.∴∠ACD=∠B.(2)∵AF平分∠CAB,∴∠CAF=∠DAE.又∵在Rt△AFC中,∠CFA=90°-∠CAF,在Rt△AED中,∠AED=90°-∠DAE,∴∠AED=∠CFE.又∵∠CEF=∠AED,∴∠CEF=∠CFE.6.由下列条件不能判定△ABC是直角三角形的是(C)A.∠A=37°,∠C=53°B.∠A-∠C=∠BC.∠A∶∠B∶∠C=3∶4∶5D.∠A∶∠B∶∠C=2∶3∶57.下列各组数中,以它们为边长的线段能构成直角三角形的是(D)A.2,4,5 B.6,8,11C.5,12,12 D.1,1,28.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.求阴影部分的面积.解:在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB=AC2+BC2=5.在△ABD中,∵AD=13,BD=12,AB=5,∴AB2+BD2=AD2.∴△ABD是直角三角形,∠ABD=90°.∴S阴影=S△ABD-S△ABC=12AB·BD-12BC·AC=30-6=24.9.下列定理中,没有逆定理的是(C)A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等C.全等三角形的周长相等D.等边三角形的三个角都相等10.下列命题的逆命题是真命题的是(B)A.对顶角相等B.同位角相等,两直线平行C.直角都相等D.全等三角形的面积相等11.在Rt△ABC中,已知其中两边分别为6和8,则其面积为12.已知下列命题:①若a+b=0,则|a|=|b|;②等边三角形的三个内角都相等;③底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的有(A)A.1个B.2个C.3个D.0个13.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB 于点E,则下列结论一定成立的是(C)A.BC=EC B.EC=BEC.BC=BE D.AE=EC第14题图第15题图15.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.2116.已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为17.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)18.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x →利用勾股定理求出AD的长,再计算三角形面积解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x.由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,∴152-x2=132-(14-x)2.解得x=9.∴AD=AB2-BD2=152-92=12.∴S△ABC=12BC·AD=12×14×12=84.19.观察下列勾股数组:3,4,5;5,12,13;7,24,25;9,40,41;…;a,b,c.根据你发现的规律,请写出:(1)当a=19时,b,c的值是多少?(2)当a=2n+1时,求b,c的值.解:(1)当a=19时,设b=k,则c=k+1,观察有如下规律:192+k2=(k+1)2.解得k=180.∴b=180,c=181.(2)当a=2n+1时,设b=k,则c=k+1,根据勾股定理a2+b2=c2得(2n+1)2+k2=(k +1)2,解得k=2n(n+1).∴b=2n(n+1),c=2n(n+1)+1.第2课时直角三角形全等的判定1.如图,点P是∠BAC内一点,PE⊥AC于点E,PF⊥AB于点F,PE=PF,则能直接得到△PEA≌△PFA的理由是(A)A .HLB .ASAC .AASD .SAS第1题图 第2题图2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(A) A .AB =AC B .∠BAC =90° C .BD =ACD .∠B =45°3.如图,∠B =∠D =90°,BC =CD ,∠1=40°,则∠2=(B) A .40° B .50° C .60°D .75°第3题图 第4题图4.如图,点D ,A ,E 在直线l 上,AB =AC ,BD ⊥l 于点D ,CE ⊥l 于点E ,且BD =AE.若BD =3,CE =5,则DE =8.5.如图,AC ⊥BC ,BD ⊥AD ,AC =BD.求证:∠ABC =∠BAD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠ACB =∠BDA =90°. 在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AC =BD ,AB =BA ,∴Rt △ABC ≌Rt △BAD(HL). ∴∠ABC =∠BAD.6.下列条件中不能判定两个直角三角形全等的是(A)A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和斜边分别对应相等7.如图所示,已知BE⊥AD,CF⊥AD,垂足分别为E,F,则在下列条件中选择一组,可以判定Rt△ABE≌Rt△DCF的是①②③.(填序号)①AB=DC,∠B=∠C;②AB=DC,AB∥CD;③AB=DC,BE=CF;④AB=DF,BE=CF.8.如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,且DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F.求证:AB=BF.证明:∵EF⊥AC,∴∠F+∠C=90°.∵∠ABC=90°,∴∠A+∠C=90°.∴∠A=∠F.又∵DB=BC,∠FBD=∠ABC=90°,∴△FBD≌△ABC(AAS).∴AB=BF.9.如图,点C是路段AB的中点,小明和小红两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,并且DA⊥AB于点A,EB⊥AB于点B.此时小明到路段AB的距离是50米,则小红到路段AB的距离是多少米?解:∵DA⊥AB,EB⊥AB,∴△ADC和△BEC为直角三角形.∵点C是路段AB的中点,∴AC=BC.∵小明和小红两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,∴CD=CE.∴Rt△ADC≌Rt△BEC(HL).∴BE=AD=50米.答:小红到路段AB的距离是50米.10.已知在Rt△ABC中,∠C=90°,∠B=30°,AB=4,则下列图中的直角三角形与Rt△ABC全等的是(A)11.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD和CE交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有(D)A.3对B.4对C.5对D.6对12.如图所示,过正方形ABCD的顶点B作直线a,过点A,C作a的垂线,垂足分别为E,F.若AE=1,CF=3,则AB第12题图 第13题图13.如图,在Rt △ABC 中,∠C =90°,AC =10,BC =5,线段PQ =AB ,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AO 上运动,当AP =5或10时,△ABC 和△PQA 全等.14.如图,在△ABC 中,AB =CB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF.(1)求证:Rt △ABE ≌Rt △CBF ; (2)若∠CAE =30°,求∠ACF 的度数.解:(1)证明:∵∠ABC =90°, ∴∠CBF =∠ABE =90°. 在Rt △ABE 和Rt △CBF 中,⎩⎨⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF(HL). (2)∵AB =CB ,∠ABC =90°, ∴∠CAB =∠ACB =45°.∴∠BAE =∠CAB -∠CAE =45°-30°=15°. 由(1)知Rt △ABE ≌Rt △CBF , ∴∠BCF =∠BAE =15°.∴∠ACF =∠BCF +∠ACB =15°+45°=60°.15.如图1,E ,F 分别为线段AC 上的两个动点,且DE ⊥AC 于点E ,BF ⊥AC 于点F.若AB =CD ,BF =DE ,BD 交AC 于点M.(1)求证:AE =CF ,MD =MB ;(2)当E ,F 两点移动到如图2的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.解:(1)证明:在Rt △ABF 和Rt △CDE 中,⎩⎨⎧AB =CD ,BF =DE ,∴Rt △ABF ≌Rt △CDE(HL). ∴AF =CE.∴AF -EF =CE -EF ,即AE =CF. ∵DE ⊥AC ,BF ⊥AC , ∴∠DEM =∠BFM =90°.在△DEM 和△BFM 中,⎩⎨⎧∠DEM =∠BFM ,∠DME =∠BMF ,DE =BF ,∴△DEM ≌△BFM(AAS). ∴MD =MB.(2)AE =CF ,MD =MB 仍然成立.证明: 在Rt △ABF 和Rt △CDE 中,⎩⎨⎧AB =CD ,BF =DE ,∴Rt △ABF ≌Rt △CDE(HL). ∴AF =CE.∴AF +EF =CE +EF ,即AE =CF.在△DEM 和△BFM 中,⎩⎨⎧∠DEM =∠BFM ,∠DME =∠BMF ,DE =BF ,∴△DEM ≌△BFM(AAS). ∴MD =MB.。
2022-2023学年北师大版八年级数学下册《2.6一元一次不等式组》同步自主提升练习题(附答案)一.选择题2.下列选项中是一元一次不等式组的是()A.B.C.D.1.关于x,y的方程组,若2<k<4,则x﹣y的取值范围是()A.﹣1<x﹣y<0B.0<x﹣y<1C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<1 2.不等式组的解集是()A.无解B.x<﹣1C.x≥D.﹣1<x≤3.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3B.﹣3<a<1C.a>﹣3D.a>15.已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.a<﹣3D.﹣4<a<6.关于x的不等式组的所有整数解的积为2,则m的取值范围为()A.m>﹣3B.m<﹣2C.﹣3≤m<﹣2D.﹣3<m≤﹣2 7.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.8.“a与5的和是正数且a的一半不大于3”用不等式组表示,正确的是()A.B.C.D.9.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.10.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A.x>23B.23<x≤47C.11≤x<23D.x≤47二.填空题11.写出一个无解的一元一次不等式组为.12.不等式组的解集为.13.不等式组有3个整数解,则a的取值范围是.14.某种植物生长的适宜温度不能低于18℃.也不能高于22℃.如果该植物生长的适宜温度为x℃.则有不等式.15.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2,则x的取值范围是.三.解答题16.解不等式组,并把解集表示在数轴上.17.解不等式组,并把解集在数轴上表示出来.18.已知关于x、y的方程组的解满足,求整数k的值.19.求不等式组的正整数解.20.已知两个语句:①式子2x﹣1的值在1(含1)与3(含3)之间;②式子2x﹣1的值不小于1且不大于3.请回答以下问题:(1)两个语句表达的意思是否一样(不用说明理由)?(2)把两个语句分别用数学式子表示出来.参考答案一.选择题1.解:A、含有三个未知数,不符合题意;B、未知数的最高次数是2,不符合题意;C、含有两个未知数,不符合题意;D、符合一元一次不等式组的定义,符合题意;故选:D.2.解:,解得:,x﹣y=,∵2<k<4,∴0<x﹣y<1,故选:B.3.解:解不等式3﹣2x<5,得:x>﹣1,解不等式2(x﹣2)≤1,得:x≤,则不等式组的解集为﹣1<x≤,故选:D.4.解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.5.解:解不等式x﹣a>0,得:x>a,解不等式3﹣2x>0,得:x<1.5,∵不等式组的整数解有5个,∴﹣4≤a<﹣3.故选:B.6.解:由x≤﹣且不等式组的所有整数解的积为2知整数解为﹣1、﹣2这2个,所以﹣3≤m<﹣2,故选:C.7.解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列不等式组为:,即.故选:C.8.解:由题意可得:.故选:A.9.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.10.解:由题意得,,解不等式①得,x≤47,解不等式②得,x>23,∴23<x≤47,故选:B.二.填空题11.解:根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即.12.解:解不等式x﹣1≤2,得:x≤3,解不等式3﹣4x<﹣5,得:x>2,则不等式组的解集为2<x≤3,故答案为:2<x≤3.13.解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解集为:4<x≤2﹣a,由关于x的不等式组有3个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故答案为:﹣6<a≤﹣514.解:根据题意温度不能低于18℃可得x≥18,根据不能高于22℃可得x≤22,故18≤x≤22.故答案为:18≤x≤22.15.解:矩形的周长是2(x+10)cm,面积是10xcm2,根据题意,得,解不等式:2(x+10)<80,解得:x<30,解不等式:10x>100,解得:x>10,所以x的取值范围是:10<x<30.故答案为:10<x<30.三.解答题16.解:.解不等式①,得:x≥﹣3;解不等式②,得:x<2.∴不等式组的解集为:﹣3≤x<2.将其表示在数轴上,如图所示.17.解:解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式>x﹣1,得:x<4,则不等式组的解集为x≤1,将不等式组的解集表示在数轴上如下:18.解:两方程分别相加和相减可得,∴,解得,∴整数k的值为1、2.19.解:解不等式5x﹣12≤2(4x﹣3),得:x≥﹣2,解不等式<5,得:x<3,则不等式组的解集为﹣2≤x<3,所以不等式组的正整数解为1、2.20.解:(1)一样;(2)①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;②式子2x﹣1的值不小于1且不大于3可得.。
第一二三章综合测试卷一、选择题1.下列图形是中心对称图形的个数有()A. 1个B. 2个C. 3个D. 4个2.下列标志图中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列所述图形中,是轴对称图形但不是中心对称图形的是()A. 圆B. 菱形C. 平行四边形D. 等腰三角形4.既是轴对称图形又是中心对称图形的是()A. 直角三角形B. 等边三角形C. 等腰直角三角形D. 圆5.如图,在Rt△ABC中,AB=AC,D,E是斜边上BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①BF⊥BC;②△AED≌△AEF;③BE+DC=DE;④BE2+DC2=DE2其中正确的个数是()A. 1B. 2C. 3D. 46.若x<y,且(a+5)x>(a+5)y,则a的取值范围()A. a>−5B. a≥−5C. a<−5D. a<57.若关于x的不等式组{x−a>03x−15<1无解,则a的取值范围是()A. a>2B. a≥2C. 1<a≤2D. 1≤a<28.已知点P(2a+1,1−a)在第一象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.9.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(−2,1)的对应点为A′(3,−1),点B的对应点为B′(4,0),则点B的坐标为()A. (9,−1)B. (−1,0)C. (3,−1)D. (−1,2)10.如图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为()A. 20°B. 25°C. 22.5°D. 30°11.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A. 20B. 24C. 25D. 2612.点A(−3,2)关于原点对称的点是B,点B关于y轴对称的点是C,则点C的坐标是()A. (3,−2)B. (3,2)C. (−3,−2)D. (−3,2)13.如图,方格纸中的△ABC经过变换得到△DEF,正确的变换是()A. 把△ABC向右平移6格B. 把△ABC向右平移4格,再向上平移1格C. 把△ABC绕着点A顺时针方向旋转90∘,再向右平移7格D. 把△ABC绕着点A逆时针方向旋转90∘,再向右平移7格二、填空题14.若关于x的方程3k−5x+9=0的解是非负数,则k的取值范围为______ .15.如图,已知一次函数y=kx+b和y=mx+n的图象交于点P,则根据图象可得不等式组0<mx+n<kx+b的解集是______ .16.一次函数y=kx+b的图象如图所示,则当kx+b>0时,x的取值范围为______.17.已知y=1+√2x−1+√1−2x,则2x+3y的平方根为______.18.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有______ (将所有正确答案的序号都填在横线上)AB;③△ADC是等边三角形;④若∠E=30°,则DE=①∠DCB=∠B;②CD=12EF+CF.19.如图,∠AOE=∠BOE=15°,EF//OB,EC⊥OB,若EC=1,则EF=______.20. 如图,在△ABC 中,∠C =90°,∠B =30°,AB =6,AD 是∠BAC 的角平分线,则AD 的长为______.三、计算题21. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.22. 已知方程{x +y =−7−a x −y =1+3a的解x 为非正数,y 为负数. (1)求a 的取值范围;(2)在(1)的条件下,若不等式2ax +x <2a +1的解为x >1,求整数a 的值.四、解答题23.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.(1)直接写出A、B、O三个对应点D、E、F的坐标;(2)求△DEF的面积.24.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点A逆时针旋转90°得到△AB2C2,③△A1B1C1中顶点A1坐标为______ .25.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.26.我县某商场计划购进甲、乙两种商品共80件,这两种商品的进价、售价如表所示:进价(元/件)售价(元/件)甲种商品1520乙种商品2535设其中甲种商品购进x件,售完此两种商品总利润为y元.(1)写出y与x的函数关系式;(2)该商场计划最多投入1500元用于购进这两种商品共80件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?27.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=3,求AF的长.28.已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.29.如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E是AD上的一点.(1)求证:△BEC是等腰三角形.(2)若AB=AC=13,BC=10,点E是AD的中点,求BE的长.答案和解析1.【答案】B【解析】【分析】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析.【解答】解:第一、四个图形是中心对称图形,第二、三个图形不是中心对称图形,故选B.2.【答案】B【解析】【分析】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后能与自身重合.结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选B.3.【答案】D【解析】【分析】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选D.4.【答案】D【解析】解:A、直角三角形不一定是轴对称图形,也不一定是中心对称图形;B、等边三角形是轴对称图形,不是中心对称图形;C、等腰直角三角形是轴对称图形,不是中心对称图形;D、圆是轴对称图形,是中心对称图形;故选:D.根据轴对称图形与中心对称图形的概念判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】C【解析】【分析】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了三角形全等的判定与性质以及勾股定理.①根据旋转的性质得BF=DC、∠FBA=∠C、∠BAF=∠CAD,由∠ABC+∠C= 90°知∠ABC+∠FBA=90°,即可判断①;②由∠BAC=90°、∠DAE=45°知∠BAE+∠CAD=∠DAE=45°,继而可得∠EAF=∠EAD,可判断②;③由BF=DC、EF=DE,根据BE+BF>EF可判断③;④根据BE2+BF2=EF2可判断④.【解答】解:∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△ADC≌△AFB,∴BF=DC,∠FBA=∠C,∠BAF=∠CAD,AF=AD,又∵∠ABC+∠C=90°,∴∠ABC+∠FBA=90°,即∠FBC=90°,∴BF⊥BC,故①正确;∵∠BAC=90°,∠DAE=45°,∴∠BAE+∠CAD=∠DAE=45°,∴∠BAE+∠BAF=∠DAE=45°,即∠EAF=∠EAD,在△AED和△AEF中,∵{AF=AD∠EAF=∠EADAE=AE,∴△AED≌△AEF,故②正确;∵BF=DC,∴BE+DC=BE+BF,∵△AED≌△AEF,∴EF=DE,在△BEF中,∵BE+BF>EF,∴BE+DC>DE,故③错误,∵∠FBC =90°,∴BE 2+BF 2=EF 2,∵BF =DC ,EF =DE ,∴BE 2+DC 2=DE 2,故④正确;故选C .6.【答案】C【解析】【分析】本题考查的是不等式的性质,熟知不等式“两边同时乘以(或除以)同一个负数,不等号的方向改变”的性质是解答此题的关键.【解答】解:∵x <y ,且(a +5)x >(a +5)y ,∴a +5<0,即a <−5.故选C .7.【答案】B【解析】解:不等式组整理得:{x >a x <2, 由不等式组无解,得到a ≥2,故选:B .分别表示出不等式组中两不等式的解集,由不等式组无解,确定出a 的范围即可. 此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键. 8.【答案】C【解析】【分析】本题考查的是解一元一次不等式组,根据题意准确列出不等式组,求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.根据点在坐标系中位置得关于a 的不等式组,解不等式组求得a 的范围,即可判断.【解答】解:根据题意,得:{2a +1>0①1−a >0②, 解不等式①,得:a >−12,解不等式②,得:a <1,∴该不等式组的解集为:−12<a <1,故选:C .9.【答案】D【解析】【分析】本题考查了坐标与图形变化−平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.利用点A与点A′的坐标特征得到平移的规律,然后利用此平移规律由B′点的坐标确定点B的坐标.【解答】解:∵点A(−2,1)的对应点为A′(3,−1),∴线段A′B′是由线段AB先向右平移5个单位,再向下平移2个单位得到,而点B的对应点为B′(4,0),∴点B的坐标为(−1,2).故选D.10.【答案】C【解析】【分析】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,以及直角三角形两锐角互余的性质,三角形内角和定理的有关知识,熟记性质并列出方程是解题的关键.根据线段垂直平分线上的点到线段两端点的距离相等可得AD=DB,再根据等边对等角可得∠A=∠DBA,然后在Rt△ABC中,根据三角形的内角和列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∴∠CBD=2∠DBA,∴∠ABC=∠A+2∠A,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°.解得∠A=22.5°.故选C.11.【答案】D【解析】解:∵平移距离为4,∴BE=4,∵AB=8,DH=3,∴EH=8−3=5,∵S△ABC=S△DEF,∴S四边形ABEH =S阴∴阴影部分的面积为=12×(8+5)×4=26故选:D .由S △ABC =S △DEF ,推出S 四边形ABEH =S 阴即可解决问题;此题主要考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,要熟练掌握. 12.【答案】C【解析】解:点A(−3,2)关于原点对称的点B 的坐标是(3,−2),则点B 关于y 轴对称的点是C 的坐标是(−3,−2).故选:C .本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),即关于原点的对称点,横纵坐标都变成相反数.对知识点的记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数;关于纵轴的对称点,纵坐标不变,横坐标变成相反数.13.【答案】D【解析】【分析】本题考查用旋转变换作图,用平移变换作图,掌握旋转、平移的性质是解题的关键;观察图形可确定两个三角形的对应顶点,发现其摆放位置不同,则需将△ABC 在其高低位置不变的情况下,绕其一个顶点旋转一定的度数,使之和△DEF 的摆放位置相同;再根据旋转后对应点间的距离确定平移的方向及距离,问题即可迎刃而解.【解答】解:由题图知△ABC 绕着点A 逆时针方向旋转90∘,再向右平移7格就可以与△DEF 重合.故选D .14.【答案】k ≥−3【解析】【分析】本题主要考查解一元一次方程和解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.解关于x 的方程得x =3k+95,根据方程的解为非负数得3k+95≥0,解之即可. 【解答】解:∵5x =3k +9,∴x =3k+95,∵方程3k −5x +9=0的解是非负数,∴3k+95≥0,解得:k≥−3,故答案为k≥−3.15.【答案】−3<x<−1【解析】解:∵一次函数y=kx+b和y=mx+n的图象交于点P(−1,3),由图象上可以看出:当x<−1时,y=mx+n<kx+b=y,又∵0<mx+n,∴x>−3,∴不等式组0<mx+n<kx+b的解集为:−3<x<−1.故答案为−3<x<−1.由已知一次函数y=kx+b和y=mx+n的图象交于点P(−1,3),根据一次函数的增减性,由图象上可以看出当x>−1是y=mx+n>kx+b,当x<−1时,一次函数y=kx+b>mx+n,从而可以求出不等式组0<mx+n<kx+b的解集.此题考查一次函数的基本性质:函数的增减性,把函数图象与不等式的解集联系起来,是道非常好的题,难度适中.16.【答案】x>1【解析】解:根据图象和数据可知,当kx+b>0时,即y>0,图象在x轴上面,此时x>1.故答案为:x>1.根据图象的性质,当y>0即图象在x轴上面,x>1.本题考查一次函数的图象,考查学生的分析能力和读图能力.17.【答案】±2【解析】【分析】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键,先根据二次根式有意义的条件求出x的值,进而得出y的值,根据平方根的定义即可得出结论.【解答】解:∵{2x−1≥0 1−2x≥0,∴x=12,∴y=1,∴2x+3y=2×12+3×1=4,∴2x+3y的平方根为±2.故答案为±2.18.【答案】①②④【解析】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=BD,AB;故②正确;∴CD=12∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=30°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故答案为:①②④.由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B 正确;AB正确;由①可证得AD=BD=CD,即可得②CD=12易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+ CF.此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB的中点是解此题的关键.19.【答案】2【解析】解:作EG⊥OA于G,∵EF//OB,∴∠OEF=∠COE=15°,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∵EG=CE=1,∴EF=2×1=2.故答案为2.作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.本题考查了角平分线的性质和含30°角的直角三角形,综合性较强,是一道好题. 20.【答案】2√3 【解析】解:作DE ⊥AB 于E ,∵∠C =90°,∠B =30°,AB =6,∴AC =12AB =3, ∴BE =3,由勾股定理得,BC =3√3,∵AD 是∠BAC 的角平分线,∠C =90°,DE ⊥AB ,∴DE =DC ,AE =AC =3,在Rt △BDE 中,32+DE 2=(3√3−DE)2,解得,DE =√3,即CD =√3,则AD =√CD 2+AC 2=2√3,故答案为:2√3.作DE ⊥AB 于E ,根据直角三角形的性质得到AC =12AB =3,根据勾股定理求出DE ,根据勾股定理计算即可.本题考查的是直角三角形的性质、角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 21.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤−2, 所以不等式组的解集为x ≤−2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >−2,解②得x ≤2,所以不等式组的解集为−2<x ≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x <1和x ≤−2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x >−2和x ≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.22.【答案】解:(1){x +y =−7−a①x −y =1+3a ②, ①+②得,2x =−6+2a ,解得:x =a −3,①−②得,2y =−8−4a ,解得y =−2a −4,∵x 为非正数,y 为负数,∴{a −3≤0①−2a −4<0②, 由①得,a ≤3,由②得,a >−2,所以a 的取值范围是−2<a ≤3;(2)∵2ax +x >2a +1的解为x <1,∴2a +1<0,∴a <−12,又∵−2<a ≤3,∴整数a 的值为−1.【解析】(1)先解方程组求出x 、y ,再根据x 为非正数,y 为负数列出不等式组,求解即可得到a 的取值范围;(2)根据不等式的解法,不等式两边都除以2a +1,不等号的方向改变,2a +1<0,列式求解即可.本题考查了二元一次方程组的解法,解一元一次不等式组,以及一元一次不等式的解法,先把a 看作常数,表示出x 、y 是解题的关键.23.【答案】解:(1)∵点A(1,3),B(3,1),O(0,0),∴把△ABO 向下平移3个单位再向右平移2个单位后A 、B 、O 三个对应点D(1+2,3−3)、E(3+2,1−3)、F(0+2,0−3),即D(3,0)、E(5,−2)、F(2,−3);(2)S △DEF =S △ABO =3×3−12×1×3−12×1×3−12×2×2=4.【解析】此题主要考查了三角形的面积,平移中的坐标变换的有关知识.(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A 、B 、O 三个对应点D 、E 、F 的坐标;(2)根据平移的性质可知△DEF 的面积与△ABO 的面积相等,再利用矩形的面积减去周围多余三角形的面积即可.24.【答案】解:①如图,△ABC 与△A 1B 1C 1关于原点O 的中心对称;②如图,△AB 2C 2是由△ABC 绕点A 逆时针旋转90°得到的三角形;③(1,−2).【解析】【分析】本题主要考查了利用旋转变换进行作图,旋转作图有自己独特的特点,决定图形位置的因素有旋转角度、旋转方向、旋转中心,得到的图形与原图形全等.①把△ABC 绕着点O 旋转180°,得到△A 1B 1C 1,那么这两个三角形关于这个点成中心对称;②按照旋转角度、旋转方向、旋转中心进行作图即可;③在直角坐标系中,点A 1在第四象限,距离x 轴2个单位,距离y 轴1个单位,据此求得其坐标.【解答】解:(1)见答案;(2)见答案;(3)由(1)所求图形可知:△A 1B 1C 1中顶点A 1坐标为(1,−2).故答案为(1,−2).25.【答案】(1)解:设甲种书柜单价为x 元,乙种书柜的单价为y 元,由题意得: {3x +2y =10204x +3y =1440, 解之得:{x =180y =240, 答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m 个,则乙种书柜购买(20−m)个;由题意得:{20−m ≥m 180m +240(20−m)≤4320解之得:8≤m ≤10因为m 取整数,所以m 可以取的值为:8,9,10即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x 元,乙种书柜的单价为y 元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m 个,则乙种书柜购买(20−m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.26.【答案】解:(1)y =5x +10(80−x)=−5x +800.(2)设购进甲种商品x 件,由题意15x +25(80−x)≤1500,解得x ≥50.∴至少要购进50件甲种商品.∵y =−5x +800,∴k =−5<0,∴y 随x 增大而减小,∴x =50时,y 最大值=550元.∴售完这些商品,商场可获得的最大利润是550元.【解析】(1)根据总利润=甲种商品利润+乙种商品利润即可解决问题.(2)设购进甲种商品x 件,列出不等式即可解决问题,然后根据一次函数的增减性解决最大值问题.本题考查一次函数的应用、一元一次不等式的应用,解题的关键是理解题意,学会利用一次函数的性质解决实际问题中的最值问题,属于中考常考题型.27.【答案】解:(1)AD ⊥BD ,∠BAD =45°,∴AD =BD ,∵∠BFD =∠AFE ,∠AFE +∠CAD =90°,∠CAD +∠ACD =90°,∴∠BFD =∠ACD ,在△BDF 和△ACD 中,{∠BFD =∠ACD ∠BDF =∠ADC BD =AD,∴△BDF≌△ACD(AAS),∴BF=AC;(2)连接CF,∵△BDF≌△ADC,∴DF=DC,∴△DFC是等腰直角三角形.∵CD=3,CF=√2CD=3√2,∵AB=BC,BE⊥AC,∴AE=EC,BE是AC的垂直平分线.∴AF=CF,∴AF=3√2.【解析】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了等腰三角形底边三线合一的性质,本题中求证△BDF≌△ACD是解题的关键.(1)根据等腰三角形腰长相等性质可得AD=BD,即可求证△BDF≌△ACD,即可解题;(2)连接CF,根据全等三角形的性质得到DF=DC,得到△DFC是等腰直角三角形.推出AE=EC,BE是AC的垂直平分线.于是得到结论.28.【答案】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°−∠B−∠C=180°−50°−70°=60°,∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°−∠BAD−∠DEA=180°−30°−90°=60°;(2)如图,过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC=12×AB×DE+12×AC×DF=12×10×3+12×8×3=27.【解析】(1)直接利用三角形内角和定理得出∠BAC的度数,再利用角平分线的定义得出答案;(2)过D作DF⊥AC于F,依据角平分线的性质,即可得到DF=DE=3,再根据S△ABC=1 2×AB×DE+12×AC×DF进行计算即可.本题主要考查了角平分线的性质以及三角形的面积,角的平分线上的点到角的两边的距离相等.29.【答案】(1)证明:∵等腰△ABC,AD是BC边上的高,∴AD为BC边上的垂直平分线,∵E在AD上,∴BE=CE,∴△BEC为等腰三角形;(2)解:∵AB=AC,AD为BC边上的高,∴D为BC中点,BC=5,∴BD=12∵在Rt△ABD中,∠ADB=90°,∴AD2+BD2=AB2,即AD2=132−52=122,∴AD=12,∵E为AD中点,AD=6,∴DE=12∵在RT△BDE中,∠BDE=90°,∴BE2=DE2+BD2=52+62=(√61)2,∴BE=√61.【解析】本题考查了等腰三角形的判定与性质,勾股定理以及线段的垂直平分线的性质,正确证明AD是线段BC的垂直平分线是关键.(1)首先利用等腰三角形的性质得到AD为BC边上的垂直平分线,可得到BE=CE,即可证得;BC=5,然后根据勾股定理求得AD,又E为AD (2)根据等腰三角形的性质求得BD=12AD=6,再利用勾股定理即可求得.中点,可得DE=12。
2016级八年级下期数学第13周周练
一、选择题
1.若分式2||323
x x x ---的值为零,则x 的值是( ) A. 3 B.-3 C.±3 D. 0
2.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( )
A. 6折
B. 7折
C. 8折
D. 9折
3.若关于x 的方程2
22-=-+x m x x +2无解,则m 的值是( ) A.m=0 B. m=2 C.m=4 D.m=6
4.若不等式组⎩⎨⎧<<-a
x x 312的解集是2<x ,则a 的取值范围是( )
A .2<a
B .2≤a
C .2≥a
D .无法确定
5.下列命题是假命题的是( )
A .平行四边形的对边相等
B .四条边都相等的四边形是菱形
C .矩形的两条对角线互相垂直
D .平行四边形的两条对角线互相平分
6.如图,下列条件之一能使平行四边形ABCD 是矩形的为( )
①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD =
A .①或②
B .②或③
C .②或④
D .①或②或④
7.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为( )
A. 4
B.6
C.8
D. 10
8.顺次连接对角线互相垂直的四边形的四边中点所得的四边形一定是( )
A.平行四边形
B.矩形
C.菱形
D.正方形
9.如图,梯形ABCD 中,AD//BC ,将AD 叠合到BC 上,出现折痕MN ,若MN=6,梯形MBCN 的高h=3,则该梯形ABCD 的面积为( ) A.18 B.24
C.36
D.72
二、填空题
1.已知关于x 的方程11
m =-x 的解是正数,则m 的取值范围为______ 2.已知不等式组⎩⎨⎧≤-≥m
x x 4有两个整数解,则m 的取值范围是____________
3.直角三角形斜边上的高与中线分别是5cm 和6cm ,则它的面积为
4.如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为__________
三.解答题
1.按要求解下列各题
(1)322242y xy y x +-(因式分解) (2)解方程:.41622222-+-+=+-x x x x x
(3)解不等式组⎪⎩⎪⎨⎧++≤+-<+32112
1313x x x x ,把它的解集表示在数轴上
(4)先化简,再求值:
,其中x 满足x 2+x ﹣2=0.
2. 如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .
⑴求证:CE =CF ;⑵在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么?
⑶运用⑴⑵解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.
3.在正方形ABCD 中,线段EF 与GH 相交成的锐角为45°,且AD=1,2
5
EF ,求GH 的长
4.如图,在△OAB 中,OA 边在x 轴上,已知︒=∠30AOB ,OB=8,点C 坐标为(0,8),D
是OB 的中点,BO AD 2
1=,连结AD 并延长交OC 于点E. (1)求点B 的坐标;
(2)求证:四边形ABCE 是平行四边形;
(3)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求直线AG 的解析式
∙
∙。