博弈论ch8
- 格式:ppt
- 大小:357.50 KB
- 文档页数:54
博弈论是一种处理竞争与合作问题的数学决策方法;研究竞争中参加者为争取最大利益应当如何做出决策的数学方法;根据信息分析及能力判断,研究多决策主体之间行为相互作用及其相互平衡,以使收益或效用最大化的一种对策理论;研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。
博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。
博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
博弈的分类根据不同的基准也有所不同。
一般认为,博弈主要可以分为合作博弈和非合作博弈。
它们的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。
从行为的时间序列性,博弈论进一步分为两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。
博弈论知识点总结完整版博弈论是数学和经济学中一个重要的分支,研究决策制度下的相互作用和决策策略。
它是通过数学模型来描述和分析不同参与者的决策行为和决策结果,并找到最优的决策策略。
下面是博弈论中的一些重要知识点的总结。
1.博弈的定义和基本概念:-博弈是指参与者在一定的规则下做出决策,并根据其他参与者的决策结果来确定自己的收益或损失。
-参与者称为博弈者,他们的决策称为策略,策略的组合称为策略组合。
-博弈可以是合作博弈或非合作博弈,合作博弈强调协作,非合作博弈强调竞争。
2.标准博弈:-标准博弈是博弈论中最基础的形式,参与者之间的策略和收益都是确定的。
-标准博弈可以是零和博弈(总收益为零)或非零和博弈(总收益不为零)。
3.纳什均衡:-纳什均衡是指在博弈中,不存在一个参与者可以通过改变自己的策略来获得更高收益的情况。
-纳什均衡是博弈论中的核心概念,它描述了博弈中的稳定状态。
-一个博弈可能有一个或多个纳什均衡,也可能没有纳什均衡。
4.基本博弈:-二人零和博弈是一种特殊的博弈,其中一个参与者的利益是另一个参与者的损失。
-石头、剪刀、布是一个典型的二人零和博弈,存在一个纳什均衡策略。
-行棋游戏如国际象棋、围棋也是二人零和博弈,但策略空间较复杂。
5.博弈理论的扩展:-广义博弈是对博弈理论的扩展,考虑了更复杂的情况,如多人博弈、不完全信息博弈等。
-多人博弈是指博弈中有多个参与者,每个参与者都会影响其他参与者的决策。
-不完全信息博弈是指博弈中参与者对其他参与者的信息是不完全的。
6.博弈论在经济学中的应用:-博弈论在经济学中有广泛的应用,如市场竞争、拍卖等。
-例如,决定定价策略的厂商可以使用博弈论来确定最优的定价策略。
-拍卖是一种常见的博弈形式,在博弈过程中参与者可以选择不同的竞标策略。
7.演化博弈:-演化博弈是博弈论的一个重要分支,研究博弈在一定的演化过程中的演化规律。
-演化博弈通过数学模型来描述和分析参与者的策略演化和演化结果。
第八章 博弈论前面章节对经济人最优决策的讨论,是在简单环境下进行的,没有考虑经济人之间决策相互影响的问题。
本章讨论这个问题,建立复杂环境下的决策理论。
开展这种研究的的理论叫做博弈论,也称为对策论(Game Theory)。
最近十几年来,博弈论在经济学中得到了广泛应用,在揭示经济行为相互制约性质方面取得了重大进展。
大部分经济行为都可视作博弈的特殊情况,比如把经济系统看成是一种博弈,把竞争均衡看成是该博弈的古诺-纳什均衡。
博弈论的思想精髓与方法,已成为经济分析基础的必要组成部分。
第一节 博弈事例博弈是一种日常现象,例如棋手下棋,双方都要根据对方的行动来决定自己的行动,双方的目的都是要战胜对方,互不相容,互相影响,互相制约。
一般来讲,博弈现象的特征表现为两个或两个以上具有利害冲突的当事人处于一种不相容的状态中,一方的行动取决于对方的行动,每个当事人的收益都取决于所有当事人的行动。
当所有当事人都拿定主意作出决策时,博弈的局势就暂时确定下来。
博弈论就是研究这种不相容现象的一种理论,并把当事人叫做局中人(player)。
博弈论推广了标准的一人决策理论。
在每个局中人的收益都依赖于其他局中人的选择的情况下,追求收益最大化的局中人应该如何采取行动?显然,为了确定出可行的策略,每个局中人都必须考虑其他局中人面临的问题。
下面来举例说明。
例1.便士匹配(Matching Pennies)(二人零和博弈)设博弈中有两个局中人甲和乙,每个局中人都有一块硬币,并且各自独立安排硬币是否正面朝上。
局中人的收益情况是这样的:如果两个局中人同时出示硬币正面或反面,那么甲赢得1元,乙输掉1元;如果一个局中人出示硬币正面,另一个局中人出示硬币反面,那么甲输掉1元,乙赢得1元。
对于这个博弈,每个局中人可选择的策略都有两种:正面朝上和反面朝上,即甲和乙的策略集合都是{正面,反面}。
当甲和乙都作出选择时,博弈的局势就确定了。
显然,该博弈的局势集合是{(正面,正面),(正面,反面),(反面,正面),(反面,反面)},即各种可能的局势的全体,也称为局势表,即表1。
博弈论1 引言博弈论包括局中人,策略和支付函数三个要素。
有n个局中人参入的博弈称为n人博弈, n≥ 2。
每个局中人有个支付函数,其收益或损失由所有局中人的策略按照该支付函数计算。
每个局中人采用的策略可以是其多个策略中的某一个,或者是策略的某种概率分布。
前者称为纯策略博弈,后者称为混合策略博弈。
纯策略可以看作是混合策略的特殊情形。
根据局中人之间的关系,博弈分为合作博弈和非合作博弈。
每个局中人都希望使自己的利益最大化。
但是在非合作博弈中,由于局中人的利益是互相冲突的,只能寻求一组策略使每个局中人较为满意。
一组策略是指由每个局中人的一种策略构成的策略组合。
如果存在一个策略组合,无论那个局中人单方面地改变其策略,不会使其收益增加,只可能使其收益减少,这个策略组合就叫做納什均衡(或納什均衡解、納什均衡点)。
以下是关于納什均衡的正式定义及其存在性定理(见[1])。
Formal definitionLet (S,f) be a game with n players, where S i is the strategy set for player i, S = S1⨯S2⨯…⨯S n is the set of strategy profiles and f = (f1(x), f2(x), … , f n(x)) is the payoff function for x∈S. Let x i be a strategy profile of player i and x-i be a strategy profile of all players except for player i. When each player i∈ {1, 2, … , n} chooses strategy x i resulting in strategy profile x = (x1, x2, … , x n) then player i obtains payoff f i(x). Note that the payoff depends on the strategy profile chosen, i.e., on the strategy chosen by play i as well as the strategies chosen by all the other players. A strategy profile x*∈S is a Nash Equilibrium (NE) if no unilateral deviation in strategy by any single player is profitable for the player, that is∀i, x i∈S i: f i(x i*, x-i*) ≥f i(x i, x-i*).Nash’s Existence TheoremIf we allow mixed strategies, then every game with a finite many pure strategies has at least one Nash Equilibrium.(有限策略的非合作n人博弈至少有一个納什均衡)2 二人博弈2.1 纯策略博弈局中人I有m个策略A1, A2, … , A m,局中人II有n个策略B1, B2, … ,B n,不同策略下双方的收益如表2.1所示([2]p72)。