博弈论入门
- 格式:pdf
- 大小:121.09 KB
- 文档页数:24
近日,我有幸参加了一场关于博弈论的入门讲座,主讲人是我国知名博弈论专家李教授。
此次讲座让我受益匪浅,不仅让我对博弈论有了初步的了解,还让我对现实生活中的诸多问题有了全新的认识。
以下是我对此次讲座的一些心得体会。
一、博弈论的基本概念博弈论,又称为对策论,是研究具有冲突和合作的个体或群体之间决策行为的数学理论。
在博弈论中,个体或群体被称为“博弈者”,他们通过策略的选择来影响博弈的结果。
博弈论主要研究以下几个方面:1. 博弈者:参与博弈的个体或群体。
2. 策略:博弈者在博弈过程中采取的行动方案。
3. 博弈结果:博弈者采取策略后所达到的状态。
4. 博弈类型:根据博弈者之间信息是否对称、博弈是否完全等标准,博弈论可分为多种类型,如零和博弈、非零和博弈、完全信息博弈、不完全信息博弈等。
二、博弈论在现实生活中的应用通过学习博弈论,我发现它在现实生活中的应用十分广泛。
以下列举几个例子:1. 经济领域:在市场竞争中,企业通过制定合理的定价策略、广告策略等,以期在博弈中获得优势。
此外,博弈论还可以用于分析国际贸易、资源配置等问题。
2. 政治领域:在政治决策中,博弈论可以用于分析不同政治势力之间的博弈关系,为决策者提供参考。
3. 社会领域:在人际交往中,博弈论可以帮助我们理解他人行为背后的动机,从而更好地处理人际关系。
4. 法律领域:在法律诉讼中,博弈论可以用于分析被告和原告之间的博弈策略,为律师提供辩护或诉讼策略。
三、博弈论的核心思想1. 利己主义:博弈论认为,博弈者追求自身利益最大化,这是博弈行为的基本出发点。
2. 策略互动:博弈者之间的决策并非孤立存在,而是相互影响的。
一个博弈者的策略选择会影响到其他博弈者的决策。
3. 有限理性:博弈者并非完全理性,他们在决策过程中会受到自身认知、信息获取等因素的限制。
4. 预测与应对:博弈者需要预测其他博弈者的行为,并制定相应的应对策略。
四、个人感悟通过此次讲座,我对博弈论有了以下几点感悟:1. 博弈论是一门实用的学科,它可以帮助我们更好地理解现实生活中的诸多问题。
「算法笔记」博弈论⼊门⼀、公平组合游戏 ICG1. 公平组合游戏的定义若⼀个游戏满⾜:1. 游戏有两个⼈参与,⼆者轮流做出决策。
2. 在游戏进程的任意时刻,可以执⾏的合法⾏动与轮到哪名玩家⽆关。
3. 不能⾏动的玩家判负。
则称该游戏为⼀个公平组合游戏。
2. ⼀些说明我们把游戏过程中⾯临的状态称为局⾯,整局游戏第⼀个⾏动的为先⼿,第⼆个⾏动的为后⼿。
我们讨论的博弈问题⼀般只考虑理想情况,即两⼈均⽆失误,都采取最优策略⾏动时游戏的结果。
定义必胜态为先⼿必胜的状态,必败态为先⼿必败的状态。
注意,在⼀般确定操作状态的组合游戏中,只会存在这两种状态,如果先⼿和后⼿都⾜够聪明,不会出现介于必胜态和必败态之间的状态。
⼀个重要的性质:⼀个状态是必败态当且仅当它的所有后继都是必胜态。
⼀个状态是必胜态当且仅当它⾄少有⼀个后继是必败态。
特别地,没有后继状态的状态是必败态(因为⽆法操作则负)。
⼆、Nim 博弈\(\text{Nim}\) 游戏是⼀个公平组合游戏。
⼤概是这样的:现在有 \(n\) 堆⽯⼦,第 \(i\) 堆有 \(a_i\) 个。
两⼈轮流操作,每⼈每次可以从任选⼀堆中取⾛任意多个⽯⼦,但是不能不取。
取⾛最后⼀个⽯⼦的⼈获胜(即⽆法再取的⼈就输了)。
结论:\(\text{Nim}\) 博弈先⼿必胜,当且仅当 \(a_1\oplus a_2\oplus \cdots \oplus a_n\neq 0\)。
证明:为了证明这个结论,我们需要证明:1. 所有⽯⼦都被取⾛是⼀个必败局⾯。
2. 对于任意⼀个局⾯,若 \(a_1\oplus a_2\oplus \cdots \oplus a_n\neq 0\),⼀定能得到⼀个 \(a_1\oplus a_2\oplus \cdots \oplusa_n=0\) 的局⾯。
3. 对于任意⼀个局⾯,若 \(a_1\oplus a_2\oplus \cdots \oplus a_n=0\),⼀定不能得到⼀个 \(a_1\oplus a_2\oplus \cdots \oplusa_n=0\) 的局⾯。
博弈论基础第一节博弈问题概述一、博弈的基本概念博弈论的基本概念包括:参与人、行为、信息、战略、支付函数、结果、均衡。
参与人是指博弈中选择行动以最大化自身利益(效用、利润等)的决策主体(如个人、厂商、国家)。
行动是指参与人的决策变量。
战略是指参与人选择行动的规则,它告诉参与人在什么时候选择什么行动。
例如,“人不犯我、我不犯人;人若犯我、我必犯人”是一种战略。
这里,“犯”与“不犯”是两种不同的行动。
战略规定了什么时候选择“犯”,什么时候选择“不犯”。
信息是指参与人在博弈中的知识,特别是有关其他参与人(对手)的特征和行动的知识。
支付函数是参与人从博弈中获得的效用水平,它是所有参与人战略或行动的函数,是每个参与人真正关心的东西。
结果是指博弈者感兴趣的要素的集合。
均衡是所有参与人的最优战略或行动的组合。
上述概念中,参与人、行动、结果统称为博弈规则。
博弈分析的目的是使用博弈规则决定均衡。
二、博弈的分类根据博弈者选择的战略,可以将博弈分成合作博弈(cooperative games)与非合作博弈(non-cooperative games).合作博弈与非合作博弈之间的区别,主要在于博弈的当事人之间能否达成一个有约束力的协议。
如果有,就是合作博弈;反之,就是非合作博弈。
根据参与人行动的先后顺序,可以将博弈分成静态博弈(static game)与动态博弈(dynamic game)。
静态博弈是指,博弈中参与人同时选择行动;或者虽非同时行动,但行动在后者并不知道行动在先者采取了什么具体行动。
动态博弈是指参与人的行动有先后顺序,而且行动在后者可以观察到行动在先者的选择,并据此作出相应的选择。
根据参与人对其他参与人的了解程度,可以将博弈分成完全信息博弈(games of complete information)和不完全信息博弈(games of incomplete information)。
完全信息博弈是指:在每个参与人对所有其他参与人(对手)的特征、战略和支付函数都有精确了解的情况下,所进行的博弈。
博弈论前四章笔记整理第一章:博弈论基础概念。
- 博弈的定义与要素。
- 博弈是指在一定的规则下,多个参与者(至少两个)进行策略选择并得到相应结果(收益)的过程。
- 要素包括参与者(局中人)、策略(每个参与者可选择的行动方案)、收益(每个参与者在不同策略组合下的所得)。
例如在“囚徒困境”中,两个囚犯是参与者,坦白或不坦白是他们的策略,不同策略组合下的刑期长短就是收益。
- 博弈的分类。
- 按参与者数量可分为两人博弈和多人博弈。
- 按策略空间是否有限分为有限博弈和无限博弈。
如猜硬币是有限博弈(正面或反面两种策略),企业的产量竞争(产量可在一定范围内连续取值)可能是无限博弈。
- 按收益情况分为零和博弈(一方的收益就是另一方的损失,总和为零,如赌博)、常和博弈(收益总和为常数)和非零和博弈(收益总和不为零,如企业合作共同开拓市场,双方都可能获利)。
第二章:完全信息静态博弈。
- 策略式表述(标准式表述)- 通常用一个矩阵来表示,行代表一个参与者的策略,列代表另一个参与者的策略,矩阵中的元素是对应的收益组合。
以“性别战”为例,丈夫和妻子选择看电影或看球赛,就可以构建一个2×2的收益矩阵。
- 占优策略均衡。
- 占优策略是指无论其他参与者选择什么策略,该策略都是某个参与者的最优策略。
如果每个参与者都有占优策略,那么由这些占优策略组成的策略组合就是占优策略均衡。
例如在“囚徒困境”中,每个囚徒的占优策略都是坦白,所以(坦白,坦白)是占优策略均衡。
- 纳什均衡。
- 纳什均衡是指在一个策略组合中,每个参与者的策略都是对其他参与者策略的最优反应。
即给定其他参与者的策略,没有参与者有动机单方面改变自己的策略。
与占优策略均衡不同,纳什均衡并不要求每个参与者都有占优策略。
例如在“性别战”中,(看电影,看电影)和(看球赛,看球赛)都是纳什均衡。
第三章:完全信息动态博弈。
- 扩展式表述。
- 包括博弈树的构建,节点表示参与者的决策点,树枝表示可选择的策略,终端节点表示博弈的结果并标有相应的收益。
博弈论是一门研究决策问题的学科,它主要关注如何在有限的资源和信息条件下进行决策,以及不同决策对于结果的影响。
在博弈论中,人们通常会将所有可能的决策结果,以及不同决策结果的概率、收益等因素进行抽象和计算,从而得到最优决策方案。
博弈论的基础数学包括以下几个方面:
1. 集合论和命题逻辑:
-博弈论中的集合是指由一组元素组成的对象,在集合论中,可以用各种符号和运算来描述和计算不同集合之间的关系。
-命题逻辑是一种处理命题(或陈述)之间关系的方法,其中包括真值表、命题符号、蕴含关系等概念。
2. 概率论与统计学:
-在博弈论中,概率论用于计算不同决策结果的概率和期望收益,从而帮助人们进行决策。
-统计学则用于对已有数据进行分析和推断,从中发现规律、总结经验以及预测未来的趋势。
3. 线性代数:
-线性代数是一门研究向量空间和线性变换的学科,它在博弈论中被广泛应用于处理矩阵、向量、线性方程组等问题。
4. 最优化理论:
-最优化理论是一种研究如何在限制条件下找到最优解的方法,它在博弈论中被用来寻找最优决策方案。
5. 数理逻辑:
-数理逻辑是研究符号语言和推理的学科,它在博弈论中主要用于形式化建模和证明博弈论中的结论。
综上所述,博弈论的基础数学包括集合论、命题逻辑、概率论与统计学、线性代数、最优化理论和数理逻辑等多个方面。
掌握这些数学知识对于理解和应用博弈论具有重要的意义。
博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支, 目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
把博弈论作为研究方法和分析工具应用于经济体制与制度问题的研究,目前主要有两种方法。
一种是“进化博弈论方法”。
它将人类的经济活动和竞争性经济行为同生物的进化相类比,研究人类经济行为中的策略和行为方式的均衡,以及向均衡状态调整、收敛的过程与性质。
另一种新方法是“重复博弈论方法”,它运用更精细的均衡概念,如“子博弈精炼均衡”来分析历史与现实中的制度选择与变迁过程。
基本概念中包括局中人、行动、信息、策略、收益、均衡和结果等。
其中局中人、策略和收益是最基本要素。
局中人、行动和结果被统称为博弈规则。
博弈主要可以分为合作博弈和非合作博弈。
合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈、从行为的时间序列性,博弈论进一步分为静态博弈、动态博弈两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。
通俗的理解:"囚徒困境"就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。
完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。
纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。
在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。
博弈论看法博弈论的基本假设:参与人追求利润最大化。
九大博弈论经典入门书籍推荐博弈论的目的在于巧妙的策略,而不是解法。
我们学习博弈论的目的,不是为了享受博弈分析的过程,而在于赢得更好的结局。
通读九大博弈论经典入门书籍,相信你再也不会认为博弈论是一门远离自已生活的玄学,而会把它当成分析和描述自已身边事情的有效方法。
1、《博弈的智慧》柏拉图说:“我们背对着山洞口静坐,对于在我们背后绵延展开的壮丽世界,我们充满想像,却一无所知。
”职场上的员工就如这些盲目的静坐者,而职场生涯则是他们背后深邃幽暗的隧道。
面对复杂的职场关系,人们应避免误入歧途,掉进职业发展中的陷阱。
博弈是双方“斗智斗勇”的过程,也是当事人谋求长期利益最大化的基本手段。
在一种较为完善的经济制度下,对博弈双方来说都是公平的,这时要看谁更技高一筹,正所谓优胜劣汰,败者出局。
这也是商界的生存法则。
不知道从什么时候开始,“协作”、“团队精神”这样的名词开始频频出现在我们的生活之中。
我们也越来越深刻地认识到了协作的效果。
事实证明,1+1>2。
针对于这种现象,博弈论为它起了一个有趣的名字——猎鹿博弈。
2、《每天学点博弈论全集》本书共分三篇,主要介绍了博弈的一些基本原理,以及博弈在生活、营销、投资、管理、谈判、处世、人际、职场、爱情、生存等方面给予人们的指导,通过一个个生动鲜活的事例向人们展示经验教训,从而使人们能够感悟到生存的智慧和方略。
3、《博弈一点通》由北京原创天下出版社出版,陆晓燕编著的《博弈一点通》一书:如果用一种最简单的现象来帮助人们理解零和博弈,其实就是赌博,在赌场里,赢家赢得钱与输家输掉的一样多。
同样的一群人,面对的是同样的处境,可他们的结果却是相差甚大。
事实上,由于人类所过的是一种群体生活,人只要生活在这个社会里,就离不了与其他人的交往,而这就形成了一种特定的关系。
4、《左手博弈论右手心理学大全集》博弈论原是数学运筹中的一个支系,是一门用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,它是对世事的一种有效的分析方法。
博弈论博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。
目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
博弈论主要研究公式化了的激励结构间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
生物学家使用博弈理论来理解和预测进化论的某些结果。
参见:行为生态学(behavioral ecology)。
约翰·冯·诺依曼博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。
博弈论思想古已有之,中国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的策墨洛(Zermelo)基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。