八年级数学代数与几何综合题PPT优秀课件
- 格式:ppt
- 大小:390.00 KB
- 文档页数:11
初中数学代数与几何综合题代数与几何综合题从内容上来说,是把代数中的数与式、方程与不等式、 函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、 图形的变换、相似等内容有机地结合在一起,同时也融入了开放性、探究性等 问题,如探究条件、探究结论、探究存在性等。
经常考察的题目类型主要有坐 标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式问 题等。
解决代数与几何综合题,第一,需要认真审题,分析、挖掘题目的隐含条 件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个 击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当地组合,进 一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程与函数的 思想、转化思想、数行结合思想、分类与整合思想等数学思想方法,能更有效 地解决问题。
第一类:与反比例函数相关1. (09北京)如图,点 C 为O O 直径AB 上一点,过点 C 的直线交O O 于点D 、E 两点,且/ ACD=45°,DF _AB 于点 F ,EG _ AB 于点G .当点C 在AB 上运动时,设 AF =x , DE = y ,下列-a -2、、ab b > 0, a b > 2、、ab ,只有当 a = b 时,等号成立.图象中,能表示 y 与x 的函数关系的图象大致是(经过正方形 ABOC 的三个顶点 A 、B 、C3. (09延庆)阅读理解:对于任意正实数 a ,2.如图,在平面直角坐标系中y结论:在a b > 2 ab ( a , b 均为正实数)中,若 ab 为定值p ,则a b > 2 p ,12(2)探索应用:已知A(-3,0) , B(0,_4),点P 为双曲线y (x ■ 0)上的任意一点,过点P 作PC _ x 轴于点C , PD _ y 轴于D . 求四边形ABCD 面积的最小值,并说明此时 四边形ABCD 的形状.1 、y x 相交4(m , n )(在A 点左侧)是双曲线y =上的动点.过点B 作xBD // y 轴交x 轴于点D.过N(0, - n)作NC // x 轴交双曲线y 二色于点E ,交BD 于点C .x(1) 若点D 坐标是(―坐标及k 的值. (2) 若B 是CD 的中点,为4,求直线CM(3) 设直线 AM 、BM 分别与y 轴相交于 P 、Q 两点,且 MA=pMP , MB=qMQ ,求p - q 的值.285. (09.5西城)已知:反比例函数y 和y在平面直角坐标系 xOy 第一象限中的图 xx82只有当a =b 时,a - b 有最小值2 p .根据上述内容,回答下列问题:(1)若m ,只有当m 工时,m •丄有最小值mk4. (08南通)已知双曲线 y 与直线x于A 、B 两点.第一象限上的点 Mk 8,0),求A 、B 两点 四边形OBCE 的面积 的解析式•象如图所示,点A在y 的图象上,AB // y轴,与y 的图象交于点B, AC、BDx x与x轴平行,分别与y=2、y=8的图象交于点C、D.x x(1) 若点A的横坐标为2,求梯形ACBD的对角线的交点F的坐标;(2) 若点A的横坐标为m,比较△ OBC与厶ABC的面积的大小;(3) 若厶ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.点F 的坐标为(2,17).5-S ABC . (3)点A 的坐标为(2,4)函数y = m ( x - 0 , m 是常数)的图象经过 A(1,4),xB(a ,b),其中a 1 .过点A 作x 轴垂线,垂足为C , 连结 AD ,DC ,CB .(1) 若△ ABD 的面积为4,求点B 的坐标; (2) 求证:DC // AB ;(3) 当AD =BC 时,求直线 AB 的函数解析式. 答案: (3)所求直线 AB 的函数解析式是 y = -2x • 6或y = -x 5二、与三角形相关7. (07北京)在平面直角坐标系 xOy 中,抛物线y = mx 2 + 2 .3 mx + n 经过P 「3, 5),A(0, 2)两点.(1)求此抛物线的解析式;(2) 设抛物线的顶点为 B,将直线AB 沿y 轴向下平移两个单位得到直线 I,直线I 与抛物 线的对称轴交于C 点,求直线l 的解析式;⑶ 在⑵的条件下,求到直线OB, OC, BC 距离相等的点的坐标.答案:(1)抛物线的解析式为:y = ^x 2- 3x+ 2 3 3(2) 直线I 的解析式为y =守x(3) 至煩线OB 、OC 、BC 距离相等的点的坐标分别为 :M 1(-"^, 0)、 M 2 (0, 2)、 M 3(0, -2)、M 4 (-2.3, 0).36.( 07上海)如图,在直角坐标平面内,(1)点B 的坐标为3,; .3⑺.DC // AB .过点2&(08北京)平面直角坐标系 xOy 中,抛物线y = x + bx + c 与x 轴交于A, B 两点(点A 在点B 的左侧),与y 轴交于点C,点B 的坐标为(3, 0),将直线y = kx 沿y 轴向上平移3个 单位长度后恰好经过 B, C 两点.(1) 求直线BC 及抛物线的解析式;(2) 设抛物线的顶点为 D,点P 在抛物线的对称轴上,且乙APD =WACB,求点P 的坐标; ⑶ 连结CD,求£OCA 与MOCD 两角和的度数.答案:(1)直线BC 的解析式为y = -x + 3.抛物线的解析式为y = x 2 - 4x + 3.(2) 点P 的坐标为(2, 2)或(2, -2). (3) . OCA 与.OCD 两角和的度数为 45 ... 2 29. (10.6密云) 已知:如图,抛物线 y = -X mx 2m (m 0)与x 轴交于A 、B 两点,点A 在点B 的左边,C 是抛物线 上一动点(点C 与点A 、B 不重合),D 是OC 中点,连结BD 并延长,交AC 于点E .(1) 求A 、B 两点的坐标(用含 m 的代数式表示);CE(2 )求的值;AE物线和直线BE 的解析式.且OB = OC 二3OA . (I )求抛物线的解析式;(II) 探究坐标轴上是否存在点 P ,使得以点P,代C 为 顶点的三角形为直角三角形?若存在, 求出P 点坐标,若 不存在,请说明理由;1(III) 直线y x 1交y 轴于D 点,E 为抛物线顶(3)当C 、A 两点到y 轴的距离相等,且SCED答案: (1) A (-m , 0), B ( 2m , 0).(2) CEAE(3) 抛物线的解析式为 y = -X 2• 2x • 8 .直线BE 的解析式为4丄16 y x3310.(崇文 09)如图,抛物线y =ax 2• bx - 3与x 轴交于A, B 两点,与y 轴交于点C ,求抛3点•若.DBC 二:…CBE = ■-,求爲「?的值. 答案: (I )y = x 2-2x-3(II )R(0,1)P 2(9,0) , P 3(0,0)3(IIIDBO EOBC =45 .11. (11.6东城)如图,已知在平面直角坐标系xOy 中,直角梯形 OABC 的边0A 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA = AB = 2, OC = 3,过点B 作BD 丄BC ,交OA于点D .将/ DBC 绕点B 按顺时针方向旋转,角的两边分别交 正半轴于点E 和F .(1) 求经过A 、B 、C 三点的抛物线的解析式; (2) 当BE 经过(1)中抛物线的顶点时,求 CF 的长;(3) 在抛物线的对称轴上取两点 P 、Q (点Q 在点P 的上方), 且PQ = 1,要使四边形 BCPQ 的周长最小,求出 P 、Q 两点的坐标.答案:(1) y - -2x 24x 2 .333一 2(3)点P 的坐标为(1,3、与面积有相关12. ( 11.6通县)已知如图, AABC 中,AC =BC , BC 与x 轴平行,点 A 在x 轴上,点 C 在y 轴上,抛物线y =ax 2 -5ax - 4经过:ABC 的三个顶点,(1) 求出该抛物线的解析式;(2) 若直线y 二kx 7将四边形 ACBD 面积平分,求此直线的解析式 .(3) 若直线y =kx b 将四边形ACBD 的周长和面积同时分成相等的两部分,请你确定y = kx • b 中k 的取值范围.2 2 4⑵由 y 「2x 3x 2 =- 2(x-1)2 8 3 3CF = FM + CM y 轴的正半轴、x 轴的。