最新最全华师大版八年级数学下册全册课件
- 格式:pptx
- 大小:18.97 MB
- 文档页数:560
第17章分式 (2)§17.1 分式及其基本性质 (2)1.分式的概念 (2)2.分式的基本性质 (3)§17.2分式的运算 (5)1.分式的乘除法 (5)2.分式的加减法 (6)阅读材料 (9)§17.3可化为一元一次方程的分式方程 (10)§17.4零指数幂与负整指数幂 (12)1.零指数幂与负整指数幂 (12)2.科学记数法 (13)小结 (14)复习题 (15)第17章 分 式现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
如果设原来每天能装配x 台机器,那么不难列出方程:326306=-+xx这个方程左边的式子已不再是整式,这就涉及到分式与分式方程的问题.§17.1 分式及其基本性质1.分式的概念做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米; (3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是______元;形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式(fraction ).其中 A 叫做分式的分子(numerator ),B 叫做分式的分母(denominator ).整式和分式统称有理式(rational expression ), 即有有理式 整式,分式.例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1;(2)2x ;(3)y x xy +2;(4)33yx -.解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ;(2)322+-x x .分析 要使分式有意义,必须且只须分母不等于零. 解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义.(2)分母23+x ≠0,即x ≠-23.所以,当x ≠-23时,分式322+-x x 有意义.2.分式的基本性质在进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质.类似地,分式有如下基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.与分数类似,根据分式的基本性,可以对分式进行约分和通分. 例3 约分(1)4322016xyy x -; (2)44422+--x x x 分析 分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.解(1)4322016xyy x -=-y xy x xy 544433⋅⋅=-y x 54. (2)44422+--x x x =2)2()2)(2(--+x x x =22-+x x .约分后,分子与分母不再有公因式. 分子与分母没有公因式称为最简分式.例4 通分(1)ba 21,21ab ; (2)y x -1,y x +1; (3)221y x -,xyx +21.分析 分式的通分,即要求把几个异分母的分式分别化为原来的分式相等的同分母的分式.通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式ba 21和21ab,它们的最简公分母是a 2b 2. 解 (1)ba 21与21ab 的最简公分母为a 2b 2,所以b a 21=b b a b ⋅⋅21=22b a b , 21ab =a ab a ⋅⋅21=22ba a. (2)y x -1与yx +1的最简公分母为(x -y )(x +y ),即x 2-y 2,所以 y x -1=))((1y x y x y x +-+⋅)(=22y x yx -+, y x +1=))(()(1y x y x y x -+-⋅=22yx yx --. (3)因为 x 2-y 2=________________,x 2+xy =________________, 所以221y x -与xy x +21的最简公分母为__________,因此221yx -=___________, xyx +21=___________.练 习 1. 约分:(1)2232axyyax ; (2))(3)(2b a b b a a ++-; (3)32)()(a x x a --; (4)y xy x 242+-.2. 通分: (1)231x ,xy 125; (2)x x +21,xx -21. 3. 军训期间,小华打靶的成绩是m 发9环和n 发7环,请问,小华的平均成绩是每发多少环? 习题17.11. 用分式填空:(1) 小明t 小时走了s 千米的路,则他走这段路的平均速度是____千米/时;(2) 一货车送货上山,上山速度为x 千米/时,下山速度为y 千米/时,则该货车的平均速度为____千米/时.2. 指出下列有理式中,哪些是分式?x 1, 21(x +y ), 3x , xm -2, 3-x x , 1394y x +3. 当x 取什么值时,下列分式有意义?(1)x 21; (2)22+-x x ; (3)142++x x ; (4)534-x x .4. 通分:(1)ab c 、bc a 、ac b ; (2)xx +21,1212++-x x .5. 某机械厂欲成批生产某种零件,第一道工序需要将一批长l 厘米、底面半径为2r 厘米的圆钢锻造成底面半径为r 厘米的圆钢.请问锻造后的圆钢长多少厘米?§17.2 分式的运算1.分式的乘除法试一试 计算:(1)a b b a 32232⋅; (2)b a b a 232÷.解 (1)a b b a 32232⋅=a b b a 32322⋅⋅=b a32.(2)b a b a 232÷=2232a b b a ⋅=22ba.概括分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 例1计算:(1)x b ay by x a 2222⋅; (2)222222x b yz a z b xy a ÷.解 (1)x b ay by x a 2222⋅=x b by ay x a 2222⋅⋅=33ba .(2)222222x b yz a z b xy a ÷=yz a x b z b xy a 222222⋅=33z x .例2计算:493222--⋅+-x x x x . 解 原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x .思 考怎样进行分式的乘方呢?试计算:(1)(m n )3 (2)(mn)k (k 是正整数)(1)(mn )3 =m n m n m n ⋅⋅=)()(m m m n n n ••••=________; (2)(m n )k =4434421Λ个k m n m nm n ⋅⋅⋅=)()(m m m n n n ••••••ΛΛ=___________. 仔细观察所得的结果,试总结出分式乘方的法则.练 习 1.计算:(1)c a a b ⋅; (2)y x xy xy y x 234322+⋅-; (3)2226103x y x y ÷; (4)2221x x x x x +⋅-. 2.计算:(1)(x y 2-)2 ; (2)(22ca-)33.上海到北京的航线全程s 千米,飞行时间需a 小时;铁路全长为航线长的m 倍,乘车时间需b 小时.飞机的速度是火车速度的多少倍?(用含a 、b 、s 、m 的分式表示)2.分式的加减法试一试计算:(1)aa b 2+; (2)ab a 322-.解(1)a a b 2+=a b 2+(2)ab a 322-=b a a b a b 2232-=b a a b 232- 概括同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.例3计算:xyy x xy y x 22)()(--+. 解xy y x 2)(+-xy y x 2)(-=xyy x y x 22)()(--+=xyy xy x y xy x )2()2(2222+--++=xyxy4=4.例4 计算:1624432---x x . 分析 这里两个加项的分母不同,要先通分.为此,先找出它们的最简公分母.注意到162-x =)4)(4(-+x x,所以最简公分母是)4)(4(-+x x .解 1624432---x x =)4)(4(2443-+--x x x =)4)(4(24)4)(4()4(3-+--++x x x x x=)4)(4(24)4(3-+-+x x x=)4)(4(123-+-x x x=)4)(4()4(3-+-x x x=43+x . 练 习 1. 计算:(1)a a 21+; (2)ab ab 610-; (3)b a b b a a +++; (4)ab b b a a -+-. 2. 计算:(1)v u 11+; (2)24a ba b -;(3)a a a +--22214; (4)224-++a a .习题17.2 1. 计算: (1)nxmymx ny ⋅; (2)y x y x 28712÷; (3)x x x x x x +-÷-+-2221112; (4)223⎪⎭⎫⎝⎛-a b . 2. 计算:(1)a c b a c b ++-; (2)bc a c -; (3)xx -++1111; (4)112---x x x . 3. 计算:(1)323111x x x x⋅⎪⎭⎫ ⎝⎛+-;(2)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121. 4. 林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能使到达学校的时间和往常一样? 5. 周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的多少倍?阅读材料历史上的分数运算法则(1)最早的分数运算法则 我们伟大的祖国,作为世界四大文明古国之一,在世界数学发展的历史长河中,曾作出过许多杰出的贡献,远远走在世界的前列.许多光辉的成就,在世界数学史上享有崇高的荣誉.分数运算法则的出现就是我们引以为荣的成就。