机械振动的测试讲解
- 格式:ppt
- 大小:2.49 MB
- 文档页数:41
机械振动的测量方法机械振动是指物体在其中一固定点或者固定坐标系中围绕其中一平衡位置作周期性的往复运动。
机械振动测量的目的是为了评估物体的振动特性,找到振动源,分析振动原因,以进一步改进设计和提供振动控制措施。
机械振动的测量方法有很多种,下面就几种常用的机械振动测量方法进行介绍。
1.声学振动测量方法:这种方法是通过采集并分析物体产生的声音来测量机械振动。
它可以通过一个或多个声音传感器将机械振动转化为声音信号,然后借助声学仪器进行分析和处理。
这种方法可以用来确定振动的频率、振幅、振动模式和振动源的位置等。
它适用于非接触式测量,测量范围广,且具有较高的灵敏度。
2.惯性振动测量方法:这种方法是通过安装加速度传感器或振动传感器,直接感知机械振动的加速度或位移,然后根据牛顿运动定律计算出振动的频率、幅值和相位等参数。
这种方法适用于测量低频振动,测量结果更加准确,但需要对传感器进行定期校准。
3.光学振动测量方法:这种方法是通过光学传感器来测量机械振动。
光学传感器可以分为接触式和非接触式两类。
接触式的光学传感器通常是基于拉普拉斯原理,测量物体表面的位移或变形。
非接触式的光学传感器则通常是采用激光干涉或干涉测量的原理,利用激光束来测量物体的位移或振动速度。
光学振动测量方法精度高,分辨率高,适用于测量微小振动。
4.功率谱测量方法:这种方法是通过对机械振动信号进行频谱分析,测量不同频率成分的能量或功率,以评估振动的特性。
功率谱测量方法可以使用FFT(快速傅里叶变换)等算法将时域信号转化为频域信号,进而获取功率谱图。
功率谱图可以提供振动的频率分布、主要振动频率和传递函数等信息。
这种方法适用于复杂的振动分析和频谱分析。
值得注意的是,以上所述的机械振动测量方法仅为常用方法之一,还有一些其他的测量方法,如微机械系统(MEMS)传感器、电容式传感器、压电传感器等,这些传感器可以通过物理效应来感知机械振动。
不同的测量方法有不同的适用范围和测量精度,需要根据具体的测量需求和实际情况选择合适的方法。
机械结构的振动测试与模态分析机械结构的振动是指在运动或工作过程中,由于受到外界激励或内部失稳因素的影响而出现的周期性或非周期性的振动现象。
振动不仅会影响机械结构的正常运行,还可能导致结构疲劳、损坏,甚至产生严重事故。
因此,了解机械结构的振动特性,进行振动测试和模态分析,对于结构设计、改进和维护具有重要意义。
1. 振动测试振动测试是通过实验手段对机械结构的振动特性进行测量和分析的过程。
常见的振动测试手段包括加速度传感器、速度传感器、位移传感器等。
通过这些传感器,可以测量到结构在不同频率范围内的振动加速度、振动速度和振动位移等参数。
振动测试不仅可以定量地描述结构的振动特性,还可以研究振动的传播路径、频谱特性和共振现象等。
2. 模态分析模态分析是对机械结构的振动特性进行分析和研究的过程。
模态分析的目的是确定结构的振动模态,即结构的固有频率、振型和阻尼等参数。
通过模态分析,可以了解机械结构在不同频率下的振动特性,并确定结构中可能存在的共振点和振动节点。
同时,模态分析还可以帮助设计师优化结构的设计,减小结构的振动幅值,提高结构的工作效率和可靠性。
3. 应用案例以汽车底盘为例,进行振动测试和模态分析的应用。
在汽车行驶过程中,底盘承受着来自路面的冲击和车辆运动的振动。
通过振动测试,可以测量到底盘在不同行驶速度下的振动加速度和振动速度等参数。
通过模态分析,可以确定底盘的固有频率和振型,判断底盘是否在某些特定频率下容易出现共振现象。
根据振动测试和模态分析的结果,可以对底盘的结构进行优化,提高底盘的刚度和减小噪声,提高驾驶的舒适性和汽车的安全性能。
4. 振动测试与模态分析的意义振动测试与模态分析对于机械结构的设计、改进和维护具有重要意义。
通过振动测试,可以了解机械结构在不同工况下的振动特性,及时发现结构的振动异常和故障等。
通过模态分析,可以确定结构的固有频率和振型,为结构的优化设计提供依据。
同时,振动测试与模态分析还可以帮助工程师评估结构的可靠性和耐久性,减小结构的振动幅值,提高结构的工作效率和可靠性。
振动测量仪检测机械设备振动频率试验方法引言本文档旨在介绍振动测量仪检测机械设备振动频率的试验方法。
振动频率的检测对于评估机械设备的性能和运行状态具有重要意义。
通过使用振动测量仪,我们可以获取准确的振动频率数据,进而判断设备是否正常工作,是否存在故障或其他问题。
检测前准备在进行振动频率的试验前,需要确保以下准备工作已完成:1. 确保振动测量仪已校准,并且其精度符合要求。
2. 选择合适的测点。
通常,振动测量应在设备的关键部位进行,如轴承、驱动装置、连接部件等等。
3. 清洁测点,确保其不受污物或腐蚀物的影响。
4. 确保测试环境稳定,避免外部干扰对测试结果的影响。
测试步骤以下是振动测量仪检测机械设备振动频率的试验步骤:1. 将振动测量仪的传感器安装在所选择的测点上。
确保传感器与设备紧密连接,并且位置正确。
2. 打开振动测量仪,并根据设备的工作状态进行合适的设置。
例如,选择合适的量程和采样频率。
3. 启动机械设备,并确保其处于正常工作状态下。
4. 等待足够的运行时间,以使设备达到稳定状态。
5. 开始记录振动频率数据。
根据测量要求,可以选择不同的记录方式,如实时记录或定时采样。
6. 持续记录一段时间,以确保获得足够的数据样本。
通常建议记录至少10个周期的数据。
7. 分析测得的振动频率数据。
可以使用专业软件进行频谱分析,以获取各个频率分量的幅值和相位信息。
8. 基于分析结果,评估机械设备的振动频率是否处于正常范围内。
根据设备的类型和要求,可以参考相关标准或经验值进行判断。
9. 如果发现振动频率异常或超过允许范围,进一步分析可能的原因,并采取相应的措施修复或调整设备。
结论通过使用振动测量仪进行振动频率的试验,我们可以准确评估机械设备的运行状态和性能。
本文档介绍了振动测量仪检测机械设备振动频率的试验方法,包括准备工作、测试步骤和数据分析。
遵循本文档的指导,可以提高振动频率试验的准确性和可靠性,从而更好地评估机械设备的振动性能。
机械实验之振动参数的测定引言振动是机械工程中一个非常重要的概念。
在机械系统中,振动会导致性能下降、损坏甚至故障。
因此,准确测定振动参数对于机械系统的设计和维护至关重要。
本文将介绍机械实验中测定振动参数的方法和步骤,并使用Markdown 文本格式进行说明。
振动参数的定义在进行振动参数测定之前,我们首先要了解振动参数的定义。
常见的振动参数有以下几种:1.振幅:振动的最大偏离量,常用单位为米(m)或毫米(mm)。
2.频率:振动的周期数每秒所发生的次数,常用单位为赫兹(Hz)。
3.相位:描述振动在某一时刻与参考点之间的位置关系,常用角度来表示。
4.加速度:物体在单位时间内的速度变化率,常用单位为米每平方秒(m/s²)。
实验步骤以下是测定振动参数的一般步骤:1.准备实验装置和仪器:选择一个适当的实验装置,例如一个振动台或一个振动传感器。
同时需要准备振动参数测量仪器,例如振动测试仪或加速度计。
2.安装振动传感器:将振动传感器安装在待测物体或系统上。
确保传感器位置稳定且能够准确地测量振动参数。
3.启动振动系统:通过适当的激励方式,启动振动系统。
可以使用电机、震动器或其他适当的装置来激励振动。
4.测量振动参数:使用振动参数测量仪器,对振动进行测量。
可以测量振幅、频率、相位和加速度等参数。
5.记录和分析结果:将测量得到的数据记录下来,并进行分析。
可以使用图表等方法来直观地展示振动参数的变化。
实验注意事项在进行振动参数的测定过程中,需要注意以下几点:1.实验装置和仪器的选择应当与待测物体或系统的特性相匹配。
2.安装振动传感器时,应当确保传感器的位置稳定。
同时还要注意传感器与待测物体或系统之间的连接方式。
3.激励振动系统时,要注意激励幅值的选择,不能过大或过小。
4.测量振动参数时,要遵循正确的测量方法和标准。
确保测量结果的准确性和可靠性。
5.在记录和分析结果时,要注意对数据进行合理的处理,避免错误的解读和分析。
机械系统的振动特性测试与分析引言机械系统的振动特性对于其性能和稳定性具有重要影响。
因此,准确测试和分析机械系统的振动特性变得至关重要。
本文将探讨机械系统振动测试与分析的方法和技术,旨在帮助读者更好地理解和应用振动特性测试与分析。
一、振动测试的基本原理与方法1.1 振动测试的基本原理振动测试的基本原理是通过测量机械系统在不同工况下的振动信号来获取其振动特性。
振动信号是由机械系统的运动引起的,可以表达为振动幅值、频率、相位等。
1.2 振动测试的方法振动测试的常用方法包括激励法和响应法。
激励法是通过在机械系统中施加外力或激励信号,例如敲击、震动台、电磁激振器等,来诱发系统的振动,并测量其响应;响应法是通过测量机械系统的振动响应信号,例如加速度、速度、位移等,来获得系统的振动特性。
二、振动测试与分析的仪器与设备2.1 振动测试与分析的仪器振动测试与分析的仪器包括振动传感器、数据采集设备和分析软件。
振动传感器常用的类型有加速度传感器、速度传感器和位移传感器,用于测量振动信号。
数据采集设备用于采集和记录振动信号数据,其中包括信号放大、模数转换等功能。
分析软件用于对采集的数据进行分析、处理和展示。
2.2 振动测试与分析的设备振动测试与分析的设备包括震动台、敲击设备和电磁激振器等。
震动台可以模拟机械系统在不同工况下的振动环境,用于进行振动特性测试。
敲击设备可以施加短暂、高频的冲击力,用于激励系统的振动。
电磁激振器则可以通过施加恒定频率和振幅的电磁力来激励系统的振动。
三、振动特性的测试与分析方法3.1 振动信号分析方法振动信号分析方法主要包括时域分析、频域分析和阶次分析。
时域分析通过对振动信号的幅值和相位进行时域展示,直观地反映系统的振动特性。
频域分析通过对振动信号进行傅里叶变换,将信号从时域转换为频域,得到频谱图谱等,用于分析系统的频率响应特性。
阶次分析是对振动信号进行周期性分析,用于分析系统在旋转工况下的振动特性。
振动测量方法和标准振动测量是一种用于评估机械设备运行状况和故障诊断的重要工具。
通过测量机械设备产生的振动信号,可以获得有关设备结构的信息以及潜在故障的迹象。
正确选择适当的振动测量方法和遵循相应的标准,对于准确评估设备状况和制定维护计划至关重要。
本文将探讨振动测量方法和标准的相关内容。
1、振动测量方法1.1 加速度传感器加速度传感器是一种广泛用于振动测量的传感器。
它可以测量垂直方向和水平方向的加速度。
该传感器将振动转化为电信号,进而分析并显示振动特性。
加速度传感器具有高频响应和较低的成本,适用于连续振动监测和机械故障诊断。
1.2 速度传感器速度传感器可以测量振动的速度。
它适用于低频振动测量和对振动的整体评估。
速度传感器可以直接测量振动,并提供振动速度的输出信号。
与加速度传感器相比,速度传感器具有较低的灵敏度和频率响应,但在某些应用中仍然具有一定的实用价值。
1.3 位移传感器位移传感器可以测量振动的位移。
它适用于低频振动测量和对机械设备结构变化的评估。
位移传感器可以直接测量振动的位移,并提供相应的输出信号。
位移传感器通常具有较低的频率响应和较高的灵敏度,适用于对振动幅值的精确测量。
2、振动测量标准2.1 ISO 10816系列标准ISO 10816系列标准是振动测量中最常用的国际标准之一。
该系列标准规定了振动测量的一般要求,以及根据不同类型的机械设备和应用的振动限值。
这些标准提供了一种测量和评估机械设备振动水平的一般方法,并提供了用于判断机械设备运行状况的准则。
2.2 ASME标准ASME标准适用于美国机械工程师学会制定的振动测量标准。
这些标准更加具体和详细,适用于各类机械设备和应用。
ASME标准提供了更为细致的振动测量方法和评估准则,有助于更准确地判断设备的运行状况,并制定相应的维护计划。
2.3 DIN标准DIN标准是德国国家标准组织制定的振动测量标准。
这些标准被广泛用于欧洲地区。
DIN 标准与ISO标准相似,提供了一种测量和评估机械设备振动的方法和准则。
实验三:简谐振动幅值测量一、实验目的1、了解振动位移、速度、加速度之间的关系。
2、学会用压电传感器测量简谐振动位移、速度、加速度幅值二、实验仪器安装示意图三、实验原理由简谐振动方程:f(t) Asin( t )简谐振动信号基本参数包括:频率、幅值、和初始相位,幅值的测试主要有三个物理量,位移、速度和加速度,可采取相应的传感器来测量,也可通过积分和微分来测量,它们之间的关系如下:根据简谐振动方程,设振动位移、速度、加速度分别为x、v、a,其幅值分别为X、V、A x X sin( t )v x X cos( t ) V cos( t )2a x X sin( t ) Asin( t )式中:——振动角频率——初相位所以可以看岀位移、速度和加速度幅值大小的关系是:V X, A V 2X。
振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器进行测量,还可采用具有微积分功能的放大器进行测量。
在进行振动测量时,传感器通过换能器把加速度、速度、位移信号转换成电信号,经过放大器放大,然后通过AD卡进行模数转换成数字信号,采集到的数字信号为电压变化量,通过软件在计算机上显示出来,这时读取的数值为电压值,通过标定值进行换算,就可计算出振动量的大小。
DAS软件参数设置中的标定通过示波调整好仪器的状态(如传感器档位、放大器增益、是否积分以及程控放大倍数等)后,要在DAS喙数设置表中输入各通道的工程单位和标定值。
工程单位随传感器类型而定,或加速度单位,或速度单位,或位移单位等等。
传感器灵敏度为K CH( PC/U)( PC/U表示每个工程单位输岀多少PC勺电荷,如是力,而且参数表中工程单位设为牛顿N,则此处为PC/N;如是加速度,而且参数表中工程单位设为m/s2,则2此处为PC/m/s );INV1601B型振动教学试验仪输岀增益为K E;积分增益为K J (INV1601型振动教学试验仪的一次积分和二次积分K J=1);INV1601B型振动教学试验仪的输岀增益:加速度:K E = 10(mV/PC)速度:K E = 1位移:K E = 0.5则DAS参数设置表中的标定值K为:K K CH K E K j(mV/U)四、实验步骤1、安装仪器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要露岀激振杆上的红线标识) ,用专用连接线连接激振器和INV1601B型振动教学试验放大仪的功放输出接口。
实验四机械振动测试一、实验目的1.学习利用共振法求机械结构(悬臂梁系统)的固有频率加和阻尼率的方法。
2.理解阻尼变化对振动状态(特别是共振状态)的影响。
二、实验内容1.利用敲击法求机械结构的低阶固有频率和阻尼率ζ2.利用稳态正弦激振实验所得的幅频特性曲线求机械结构的固有频率和阻尼率ζ。
3.利用相位共振法求机械结构的固有频率。
4.比较阻尼变化对振动参数——幅值的影响。
三、实验原理1.敲击法:用木槌(或铁槌)敲击悬臂梁端部如图1所示。
用压电晶体式加速度传感器感感受试件的输出,把它输入电荷放大器然后将被放大后的信号输入光线示波器,记录下输出曲线(如图2)。
此曲线为一振动衰减曲线。
根据振动理论和光线示波器参数设置,可求出低阶固有频率f n和阻尼率ζ。
1.阻尼率ζ根据振动衰减曲线,按下式计算ζ:式中:δ一对数衰减率,2.固有频率f n根据衰减曲线,按时标与波形对比计算出有阻尼情况的自由振动频率f n ′,再根据振动理论可算出系统的固有频率为:如果系统的阻尼很小(0.1,一般机械系统阻尼均较小),则,故有fn =fn ′阻尼率的计算可直接采用下列公式:2.共振法:=+ζδπδ422δ1ln=+jA A i i jfn fn ='-ζ12ζ<ζ-≈211≈2ζδπ有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)1)最大幅值法:用激振设备对被测系统进行恒力福正弦力慢速扫频激振。
逐点记录各频率下所对应的振幅值。
按幅值二频率对应关系作出幅频特性曲线,如图4所示。
利用幅频曲线上每一个最大幅值附近的一段曲线,可求得相对应的各阶固有频率f n 和阻尼率。
最大幅值法对帽频曲线的处理可参照图5,按下述公式计算出各阶当且阻尼率。
(有关理论参阅有关讲义)式中,力最大幅值对应的频率,在阻尼率很小的情况下,近似等于对应阶的固有频率。
若要精确求得固有频率,在采用加速度响应帽频曲线时,可按下式计算:ζnf fn n '∆=∆=22ωωζn f '2.利用相位共振法求系统固有频率:从相频特性曲线(图6)可知,强迫振动位移响应滞后于激振力。