高中物理一级结论汇总
- 格式:doc
- 大小:177.50 KB
- 文档页数:11
高中物理习题中的常见结论高中物理习题中有些结论是很常见的。
如能记住并灵活运用,对提高物理解题能力是大有好处的。
一、 质点运动学中的“结论”1、若质点做无初速的匀变速直线运动,则在时间第1T 内、第2T 内、第3T 内质点的位移之比是1:3:5 。
而位移在第1s 内、第2s 内、第3s 内所用时间之比是1:(2-1):(3-2)2、若质点做匀变速直线运动,则它在某一段时间内中间时刻的瞬时速度等于该段的平均速度,且v 中t =(v 0+v t )/2,而该段位移的中点的速度是v 中s =()2/220t v v +,且无论加速、减速都有v 中s ﹥v 中t 3、在加速为a 的匀变速直线运动中,任意两相邻的时间间隔T 内的位移差都相等,且△s=aT 24、在变速直线运动的速度图象中,图象上各点切线的斜率表示加速度;某一段图线下的“面积”数值上等于该段的位移。
5、在初速度为v 0的竖直上抛运动中,返回原地的时间T =2v 0/g ;物体上抛的最大高度为H =v 02/2g6、平抛物体运动中,两分运动之间分位移、分速度存在下列关系:v y :v x =2y :x 即由原点(0,0)经平抛由(x ,y )飞出的质点好象由(x/2,0)沿直线飞出一样。
7、船渡河时,船头总是直指对岸所用时间最短:当船在静水中的速度v 船 ﹥v 水时,船头斜指向上游,且与岸成θ角时位移最短。
(cos θ=v 水/v 船);当船在静水中速度v 船﹤v 水时,船头斜向下游,且与岸成θ角时位移最短。
(cos θ=v 船/v 水)8、匀加速运动的物体追匀速运动的物体,当两者速度相等时,距离最远;匀减速运动的物体追匀速运动的物体,当两者速度相等时,距离最近,若这时仍未追上,则不会追上。
9、质点做简谐运动时,靠近平衡位置过程中加速度减少而速度增大;离开平衡位置过程中加速度增大而速度减少。
二、 静力学中的“结论”10、若三个非平行力作用在物体上并使物体保持平衡,则这三个力必相交于一点。
物理高中实验归纳总结大全在高中物理实验教学中,实验是学生学习物理知识、培养实验技能、提高科学素养的重要环节。
通过实验,学生可以亲自动手、观察现象、感受物理规律,从而加深对物理知识的理解。
为了帮助同学们更好地掌握物理实验,我对我们进行过的实验进行了归纳总结,以便于日后的复习与参考。
一、力学实验1. 弹簧常数的测量实验实验目的:测量弹簧的弹簧系数。
实验原理:胡克定律实验装置:弹簧、质量砝码、托盘、测力计、尺子等。
实验步骤:根据给定的实验装置,先将弹簧挂在支架上,然后使用尺子测量弹簧的长度,再向托盘上加质量砝码,记录下测力计上的示数,然后逐渐增加质量砝码,重复测量示数,最后得到不同质量时示数的变化情况。
实验结论:根据实验数据,利用胡克定律的公式计算出弹簧的弹簧系数。
2. 弹簧振子实验实验目的:研究弹簧振子在不同质量下的振动规律。
实验原理:简谐振动实验装置:弹簧振子、计时器等。
实验步骤:将一端固定住,然后将质点拴在另一端,对振子进行微扰,记录下振动的周期和振幅,然后分析数据得出振子的频率和周期。
实验结论:振子的频率和周期与质点的质量和弹簧的劲度系数有关。
二、热学实验1. 比热容实验实验目的:测量物质的比热容。
实验原理:热量守恒定律、比热容的定义实验装置:加热器、容器、温度计等。
实验步骤:将一定质量的物质加热至较高温度,然后放入一容器中,记录下物质的质量和温度,再将物质与容器放入水中,使其温度达到热平衡,记录下此时水的质量和温度,最后根据热量守恒定律计算物质的比热容。
实验结论:物质的比热容与物质的种类有关。
2. 质量守恒实验实验目的:验证质量守恒定律。
实验原理:质量守恒定律实验装置:实验皿、天平等。
实验步骤:将一定质量的物质放入实验皿中,使用天平精确称量。
然后对物质进行燃烧、溶解等实验操作,再使用天平进行称量,记录下不同实验操作前后的质量变化。
实验结论:根据质量守恒定律,实验操作前后物质的质量应保持不变。
高一物理必修一知识点总结(重点)超详细很多同学在复习高一物理知识时,因为还没有对知识有一个深刻的理解,因此在复习中的效率不高。
下面是由编辑为大家整理的“高一物理必修一知识点总结(重点)超详细”,仅供参考,欢迎大家阅读本文。
高一物理必修一知识点总结(重点)超详细1、牛顿第一定律:(1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(2)理解:①它说明了一切物体都有惯性,惯性是物体的固有性质.质量是物体惯性大小的量度(惯性与物体的速度大小、受力大小、运动状态无关)。
②它揭示了力与运动的关系:力是改变物体运动状态(产生加速度)的原因,而不是维持运动的原因。
③它是通过理想实验得出的,它不能由实际的实验来验证。
2、牛顿第二定律:内容:物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同。
理解:①瞬时性:力和加速度同时产生、同时变化、同时消失。
②矢量性:加速度的方向与合外力的方向相同。
③同体性:合外力、质量和加速度是针对同一物体(同一研究对象)④同一性:合外力、质量和加速度的单位统一用SI制主单位⑤相对性:加速度是相对于惯性参照系的。
3、牛顿第三定律:(1)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。
(2)理解:①作用力和反作用力的同时性.它们是同时产生,同时变化,同时消失,不是先有作用力后有反作用力。
②作用力和反作用力的性质相同.即作用力和反作用力是属同种性质的力。
③作用力和反作用力的相互依赖性:它们是相互依存,互以对方作为自己存在的前提。
④作用力和反作用力的不可叠加性.作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消。
4、牛顿运动定律的适用范围:对于宏观物体低速的运动(运动速度远小于光速的运动),牛顿运动定律是成立的,但对于物体的高速运动(运动速度接近光速)和微观粒子的运动,牛顿运动定律就不适用了,要用相对论观点、量子力学理论处理。
高中物理高考物理须熟记的75个结论1. 加速度的方向与作用力方向相同,速度的方向与加速度方向相同,而加速度的大小与作用力大小成正比。
这是牛顿第二定律的基本结论。
2. 光速在真空中为常数,约为3.0×10^8m/s,不会因光源的运动状态而改变。
这是相对论的基本结论。
3. 能量守恒定律:能量可以在不同形式之间转化,但总能量守恒不变。
4. 动量守恒定律:系统内外力的合力为零时,系统的总动量守恒不变。
5. 焦耳定律:通过导线的电流所产生的热量与电流的大小、电阻的大小、时间的长短有关。
6. 温度与物体内能的平均动能成正比,低温表示物体内能的平均动能较低。
7. 电压等于单位正电荷在电场中所具有的电势能。
8. 电阻的大小和材料的导电性质、导线的长度、横截面积有关。
9. 静电力与电荷的大小和距离的平方成反比,与介质的相对介电常数有关。
10. 质心是物体所有微小质量元的叠加点,对于孤立系统,质心具有匀速直线运动的特点。
11. 引力是质点之间的相互作用力,与物体的质量和距离的平方成正比。
12. 由高温向低温传热的过程中,热量通过传导、对流和辐射三种方式传递。
13. 反射定律:入射角等于反射角。
14. 折射定律:入射光线所在的平面内,入射角的正弦与折射角的正弦成正比。
15. 电压(V)等于电能(E)与电荷(q)的比值。
16. 缓冲区中溶液的pH值趋近于缓冲溶液的pK值。
17. 光的干涉和衍射现象是光的波动性质的表现。
18. 电极电位差等于氧化电位减去还原电位。
19. 多晶半导体的电导率比单晶半导体的电导率高。
20. 同等电荷和距离条件下,电势能最大的是电容器两极板上的电荷。
21. 同质异能:同质核的差能级发生跃迁,发射出γ射线。
22. 柳暗花明又一村:光强较弱的地方会有衍射现象,形成亮斑。
23. 光的波长越长,频率越低,能量越小。
24. 两物体之间的万有引力按照万有引力公式计算。
25. 单色光通过凸透镜后,光线会聚于主焦点。
高一必修一物理知识点总结力的合成求几个共点力的合力,叫做力的合成。
(1)力是矢量,其合成与分解都遵循平行四边形定则。
(2)一条直线上两力合成,在规定正方向后,可利用代数运算。
(3)互成角度共点力互成的分析②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。
③同时作用在同一物体上的共点力才能合成(同时性和同体性)。
④合力可能比分力大,也可能比分力小,也可能等于某一个分力。
力的分解求一个已知力的分力叫做力的分解。
(1)力的分解是力的合成的逆运算,同样遵循平行四边形定则。
(2)已知两分力求合力有唯一解,而求一个力的两个分力,如不限制条件有无数组解。
要得到唯一确定的解应附加一些条件:①已知合力和两分力的方向,可求得两分力的大小。
②已知合力和一个分力的大小、方向,可求得另一分力的大小和方向。
③已知合力、一个分力F1的大小与另一分力F2的方向,求F1的方向和F2的大小:若F1=Fsinθ或F1≥F有一组解若F>F1>Fsinθ有两组解若F<fsinΘ无解<p="">(3)在实际问题中,一般根据力的作用效果或处理问题的方便需要进行分解。
(4)力分解的解题思路力分解问题的关键是根据力的作用效果画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题。
因此其解题思路可表示为:必须注意:把一个力分解成两个力,仅是一种等效替代关系,不能认为在这两个分力方向上有两个施力物体。
矢量与标量既要由大小,又要由方向来确定的物理量叫矢量;只有大小没有方向的物理量叫标量矢量由平行四边形定则运算;标量用代数方法运算。
一条直线上的矢量在规定了正方向后,可用正负号表示其方向。
高一必修一物理知识点总结(二)一、运动的描述1.机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。
2.运动的特性:普遍性,永恒性,多样性。
3.质点:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略时,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。
高中物理18个实验及实验结论
高中物理有许多实验,以下是其中 18 个实验及实验结论的列表:
1. 平方反比定律实验:证明电流与电压成正比,与电阻成反比。
2. 单摆实验:证明物体在弹性限度内,外力愈大,振动愈短促。
3. 振动实验:证明物体振动时,振动频率与振幅无关,与外力
有关。
4. 碰撞实验:证明动量守恒定律,能量守恒定律。
5. 牛顿第一定律实验:证明任何物体都保持静止或匀速直线运
动状态,直到有外力作用于它为止。
6. 牛顿第二定律实验:证明物体所受的合外力等于物体质量与
加速度的乘积,即 F=ma。
7. 牛顿第三定律实验:证明任何作用力都有一个相等反作用力,且作用与反作用力的大小相等、方向相反。
8. 静电场实验:证明电荷守恒定律,库仑定律。
9. 直流电路实验:证明欧姆定律。
10. 波动实验:证明波的发生和传播依赖于介质。
11. 光的本性实验:证明光具有波动性和粒子性,提出“波粒二象性”理论。
12. 棱镜色散实验:证明光的颜色是由光波的振幅和频率决定的。
13. 光合作用实验:证明光合作用是光能转化为化学能的过程。
14. 浮力实验:证明物体沉浮与重力和浮力的关系。
15. 杠杆原理实验:证明杠杆的平衡条件。
16. 功和能的实验:证明功等于能量转化的量。
17. 温度实验:证明热胀冷缩规律,解释物体热胀冷缩的现象。
18. 万有引力实验:证明万有引力定律。
这些实验是物理学中非常重要的实验,它们证明了物理学中的基本定律,为物理学的发展做出了巨大贡献。
高中物理实验总结大全一、引言高中物理实验是学生掌握物理理论知识、培养动手实践能力的重要环节。
通过实验,学生能够深刻理解物理规律,提高实验操作技能,锻炼逻辑思维和实验设计能力。
本文将总结一些高中物理实验,包括实验目的、实验装置、实验操作与观察现象、实验结果与分析以及实验结论等内容。
二、实验一:杨氏静力学实验实验目的:验证胡克定律,研究绳线对物体的力学性质。
实验装置:弹簧,质量盒子,刻度尺,细绳等。
实验操作与观察现象:将弹簧固定在一个支架上,质量盒子挂在弹簧下方,实验者测量质量盒子位置和拉力的变化,记录数据。
实验结果与分析:根据拉力和质量盒子位置的关系,绘制力与位移的图像。
根据胡克定律的公式,计算弹簧的劲度系数。
实验结论:在弹簧的弹性变形范围内,拉力与位移呈线性关系,并且力的大小与弹簧的劲度系数成正比。
三、实验二:简谐振动实验实验目的:研究弹簧振子的振动规律,探究简谐振动的特性。
实验装置:弹簧振子,计时器,测量尺等。
实验操作与观察现象:将弹簧振子悬挂在一个支架上,拉动振子释放后,实验者测量振子的振动时间和振幅,记录数据。
实验结果与分析:根据振动时间和振幅的关系,绘制振动周期与振幅的图像。
计算振动频率和角频率。
实验结论:在一定范围内,振动周期与振幅呈线性关系,而振动频率与振幅无关。
四、实验三:光的折射实验实验目的:验证光的折射定律,探究光的折射规律。
实验装置:光盒,三棱镜,刻度尺等。
实验操作与观察现象:打开光盒,通过狭缝射出单色光,实验者调整角度使光线经过三棱镜,并观察光线的折射现象。
实验结果与分析:根据入射角和折射角的关系,验证折射定律。
计算折射率。
实验结论:光从一种介质向另一种介质传播时,入射光线与法线的夹角和折射光线与法线的夹角之间满足折射定律。
五、实验四:电磁感应实验实验目的:通过实验验证法拉第电磁感应定律,研究电磁感应现象。
实验装置:导体线圈,磁铁,电流计等。
实验操作与观察现象:实验者将导体线圈放置在磁铁附近,快速改变磁场强度,观察电流计的指示。
物理必修一知识点总结1. 力学基础- 力的概念:力是物体间的相互作用,可以改变物体的运动状态。
- 力的分类:重力、弹力、摩擦力、电磁力等。
- 力的合成与分解:根据力的平行四边形法则进行力的合成与分解。
2. 运动的描述- 描述运动的物理量:位移、速度、加速度。
- 速度与加速度的关系:速度是位移对时间的导数,加速度是速度对时间的导数。
- 匀速直线运动:物体在直线路径上以恒定速度运动。
3. 牛顿运动定律- 牛顿第一定律:惯性定律,物体保持静止或匀速直线运动状态。
- 牛顿第二定律:力等于物体质量与加速度的乘积,F=ma。
- 牛顿第三定律:作用力与反作用力大小相等、方向相反。
4. 功与能量- 功的定义:力与物体在力的方向上移动距离的乘积。
- 能量守恒定律:在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
- 动能定理:物体的动能变化等于外力对物体做的功。
5. 动量与动量守恒- 动量的定义:物体的质量与速度的乘积。
- 动量守恒定律:在一个没有外力作用的封闭系统中,系统总动量保持不变。
6. 机械振动与波动- 简谐振动:物体在平衡位置附近进行的周期性往复运动。
- 波动:能量在介质中的传播方式,包括横波和纵波。
7. 光学基础- 光的反射:光线遇到不同介质的界面时,部分光线返回原介质的现象。
- 光的折射:光线从一种介质进入另一种介质时,传播方向发生改变的现象。
- 光的干涉与衍射:光波在相遇或通过障碍物时,波前发生叠加或弯曲的现象。
8. 电磁学基础- 电荷与电场:电荷是物质的基本属性,电场是电荷周围空间的物理场。
- 电流与电阻:电流是电荷的定向移动,电阻是阻碍电流流动的物理量。
- 电磁感应:变化的磁场在导体中产生电动势的现象。
9. 原子物理与核物理- 原子结构:原子由原子核和电子云组成,原子核由质子和中子组成。
- 放射性衰变:不稳定的原子核自发地放出辐射能,转变为更稳定状态的过程。
- 核反应:原子核通过吸收或放出粒子,转变为其他原子核的过程。
高中物理必修一知识点总结高中物理必修一总结(1000字)高中物理必修一主要涵盖了以下几个知识点:1. 运动和力学运动是研究物体位置、位移、速度、加速度等和时间的关系的学科。
力学是研究物体运动和力的关系的学科。
(1) 位移、速度和加速度:位移是物体从一个位置到另一个位置的变化;速度是位移随时间的变化率;加速度是速度随时间的变化率。
(2) 牛顿三定律:第一定律是惯性定律,一个物体如果没有外力作用则保持静止或匀速直线运动;第二定律是力的定义定律,物体的加速度与作用于物体上的力成正比,与物体的质量成反比;第三定律是作用反作用定律,任何作用力都有相等大小、方向相反的反作用力。
(3) 万有引力定律:两个物体之间的引力与它们的质量成正比,与它们的距离平方成反比。
2. 力和压力力是物体之间相互作用的原因,它可以改变物体的运动状态;压力是单位面积上的力的大小,即单位面积上受力的大小。
(1) 弹簧弹力:根据胡克定律,弹簧的弹力与弹簧的伸长量成正比。
(2) 重力和压强:重力是地球对物体的吸引力,重力大小与物体的质量成正比;压强是单位面积上受力的大小,压强大小与力的大小和作用面积成正比。
3. 动能和势能动能和势能是物体具有的两种不同形式的能量。
(1) 动能定理:根据动能定理,物体的运动状态的变化量与物体所受的净外力的作用有关。
(2) 重力势能:一个物体在高处具有的势能,与物体的质量、重力加速度和高度有关。
(3) 弹性势能:一个弹性体在变形时存储的能量。
4. 动量和冲量动量是物体运动的量度,冲量是力的作用时间。
(1) 动量定理:根据动量定理,物体的动量变化量与物体所受的净外力的作用时间有关。
(2) 冲量-动量定理:根据冲量-动量定理,物体受到的冲量与物体动量的变化量成正比。
(3) 守恒定律:根据动量守恒定律,当物体之间没有外力作用时,系统的总动量保持不变。
5. 牛顿运动定律在平面内的应用牛顿运动定律在平面内的应用主要包括斜面上的物体运动、绳子拉扯问题和弹簧振子的运动。
高中物理求极值方法与常用结论总结高中物理中,求极值是一个重要的数学应用问题。
很多物理问题都需要通过求极值来进行分析和解决,因此掌握求极值方法和常用结论是十分重要的。
下面将为你总结高中物理求极值的方法和常用结论。
一、求极值的方法1.寻找最值法:通过寻找物理问题的最大值或最小值来求出极值。
2.解析法:通过建立数学模型,对其求导或使用其他数学方法得出极值。
3.几何方法:通过几何图形的性质和分析来求出极值。
二、常用结论1.极大值与极小值:对于一元函数f(x),若在x=a处,f'(a)=0,并且在a点左侧由正变负,在a点右侧由负变正,则a称为f(x)的极大值点;若在x=b处,f'(b)=0,并且在b点左侧由负变正,在b点右侧由正变负,则b称为f(x)的极小值点。
2.拐点与拐点性质:对于函数f(x),若在x=c处f''(c)=0,并且在c点左侧由负变正,在c点右侧由正变负,则c称为f(x)的拐点。
拐点的性质为:由凹变凸的拐点称为极小值点,由凸变凹的拐点称为极大值点。
3.一元二次函数的最值结论:一元二次函数y=ax^2+bx+c(其中a≠0)的最值点可以通过如下结论求得:当a>0时,最小值为:y_min=c-b^2/(4a)当a<0时,最大值为:y_max=c-b^2/(4a)4.相对速度最小值结论:当两个运动着的物体相对于一些静止参考系运动时,它们的相对速度最小值出现在它们的运动方向夹角为0°或者180°时。
5.成千上万法:在解决物理问题中,当数据较多时,可以通过逐个数值代入进行计算。
6.速度为零但加速度不为零时的移动物体:当一个物体在其中一时刻速度为零(静止),但加速度不为零时,可以通过如下结论求出物体在这一时刻的位置:位移s = (1/2)at^2,其中a为加速度,t为时间。
7.物体自由落体的最高点:自由落体的物体在竖直上抛运动中,最高点时速度为零,也就是物体停止上升,准备掉下来。
高中物理一级结论汇总一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=S/t (定义式)2.有用推论V t2 -V o2=2as3.中间时刻速度 V t/2=V平=(V t+V o)/24.末速度V t=V o+at5.中间位置速度V s/2=[(V o2 +V t2)/2]1/26.位移S= V平t=V o t + at2/2=V t/2t7.加速度a=(V t-V o)/t 以V o为正方向,a与V o同向(加速)a>0;反向则a<08.实验用推论ΔS=aT2ΔS为相邻连续相等时间(T)内位移之差9.主要物理量及单位:初速(V o):m/s 加速度(a):m/s2末速度(V t):m/s时间(t):秒(s) 位移(S):米(m)路程:米速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。
(2)物体速度大,加速度不一定大。
(3)a=(V t-V o)/t只是量度式,不是决定式。
(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/2) 自由落体1.初速度V o=02.末速度V t=gt3.下落高度h=gt2/2(从V o位置向下计算)4.推论V t2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛1.位移S=V o t- gt2/22.末速度V t= V o- gt (g=≈10m/s2 )3.有用推论V t2 -V o2=-2gS4.上升最大高度H m=V o2/2g (抛出点算起)5.往返时间t=2V o/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。
(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动万有引力1)平抛运动1.水平方向速度V x= V o2.竖直方向速度V y=gt3.水平方向位移S x= V o t4.竖直方向位移(S y)=gt2/25.运动时间t=(2S y/g)1/2 (通常又表示为(2h/g)1/2)6.合速度V t=(V x2+V y2)1/2=[V o2+(gt)2]1/2合速度方向与水平夹角β: tgβ=V y/V x=gt/Vo7.合位移S=(S x2+ S y2)1/2 ,位移方向与水平夹角α: tgα=S y/S x=gt/2V o注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。
(2)运动时间由下落高度h(S y)决定与水平抛出速度无关。
(3)θ与β的关系为tgβ=2tgα。
(4)在平抛运动中时间t是解题关键。
(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动1.线速度V=s/t=2πR/T2.角速度ω=Φ/t=2π/T=2πf3.向心加速度a=V2/R=ω2R=(2π/T)2R4.向心力F心=mV2/R=mω2R=m(2π/T)2R5.周期与频率T=1/f6.角速度与线速度的关系V=ωR7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长(S):米(m) 角度(Φ):弧度(rad)频率(f):赫(Hz)周期(T):秒(s)转速(n):r/s 半径(R):米(m)线速度(V):m/s角速度(ω):rad/s 向心加速度:m/s2注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。
(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力1.开普勒第三定律T2/R3=K(=4π2/GM) R:轨道半径 T:周期 K:常量(与行星质量无关)2.万有引力定律F=Gm1m2/r2 G=×10-11N·m2/kg2方向在它们的连线上3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)4.卫星绕行速度、角速度、周期 V=(GM/R)1/2ω=(GM/R3)1/2 T=2π(R3/GM)1/25.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s6.地球同步卫星GMm/(R+h)2=m4π2(R+h)/T2 h≈36000 km h:距地球表面的高度注:(1)天体运动所需的向心力由万有引力提供,F心=F万。
(2)应用万有引力定律可估算天体的质量密度等。
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。
(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
三、力(常见的力、力矩、力的合成与分解)1)常见的力1.重力G=mg方向竖直向下g=9.8m/s2≈10 m/s2 作用点在重心适用于地球表面附近2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)3.滑动摩擦力f=μN 与物体相对运动方向相反μ:摩擦因数 N:正压力(N)4.静摩擦力0≤f静≤f m与物体相对运动趋势方向相反 f m为最大静摩擦力5.万有引力F=Gm1m2/r2 G=×10-11N·m2/kg2 方向在它们的连线上6.静电力F=KQ1Q2/r2 K=×109N·m2/C2 方向在它们的连线上7.电场力F=Eq E:场强N/C q:电量C 正电荷受的电场力与场强方向相同8.安培力F=BILsinθθ为B与L的夹角当 L⊥B时: F=BIL , B仑兹力f=qVBsin θθ为B与V的夹角当V⊥B时: f=qVB , V矩M=FL L为对应的力的力臂,指力的作用线到转动轴(点)的垂直距离2.转动平衡条件 M顺时针= M逆时针 M的单位为N·m 此处N·m≠J3)力的合成与分解1.同一直线上力的合成 同向: F=F 1+F 2 反向:F=F 1-F 2 (F 1>F 2)2.互成角度力的合成F=(F 12+F 22+2F 1F 2cosα)1/2 F 1⊥F 2时: F=(F 12+F 22)1/23.合力大小范围 |F 1-F 2|≤F≤|F 1+F 24.力的正交分解F x =Fcos β F y =Fsin β β为合力与x 轴之间的夹角tg β=F y /F x注:(1)力(矢量)的合成与分解遵循平行四边形定则。
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立。
(3)除公式法外,也可用作图法求解,此时要选择标度严格作图。
(4)F 1与F 2的值一定时,F 1与F 2的夹角(α角)越大合力越小。
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化成代数运算。
四、动力学(运动和力)1.第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
2.第二运动定律:F 合=ma 或a=F 合/m a 由合外力决定,与合外力方向一致。
3.第三运动定律F= -F′ 负号表示方向相反,F 、F ′各自作用在对方,实际应用:反冲运动4.共点力的平衡F 合=0 二力平衡5.超重:N>G 失重:N<G注:平衡状态是指物体处于静上或匀速度直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)1. 简谐振动F=-KX F:回复力 K:比例系数 X:位移 负号表示F 与X 始终反向。
2.单摆周期T=2π(L/g)1/2 L:摆长(m) g:当地重力加速度值 成立条件:摆角θ<50 3.受迫振动频率特点:f=f 驱动力 4.发生共振条件:f 驱动力=f 固 共振的防止和应用A1405.波速公式V=S/t=λf=λ/T 波传播过程中,一个周期向前传播一个波长。
6.声波的波速(在空气中) 0℃:332m/s 20℃:344m/s 30℃:349m/s (声波是纵波)7.波发生明显衍射条件: 障碍物或孔的尺寸比波长小,或者相差不大。
8.波的干涉条件: 两列波频率相同 *(相差恒定、振幅相近、振动方向相同) 注:(1)物体的固有频率与振幅、驱动力频率无关。
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处。
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式。
(4)干涉与衍射是波特有。
(5)振动图象与波动图象。
六、冲量与动量(物体的受力与动量的变化)1.动量P=mV P:动量(Kg/S) m:质量(Kg) V:速度(m/S) 方向与速度方向相同3.冲量I=Ft I:冲量(N·S) F:恒力(N) t:力的作用时间(S) 方向由F 决定 O F F 2 F 14.动量定理I =ΔP 或 Ft= mVt - mVo ΔP: 动量变化ΔP=mVt - mVo 是矢量式5.动量守恒定律P前总=P后总P=P′ m1V1+m2V2= m1V1′+ m2V2′6.弹性碰撞ΔP=0;ΔEK=0 (即系统的动量和动能均守恒)7.非弹性碰撞ΔP=0;0<ΔE K<ΔE KmΔE K:损失的动能 E Km:损失的最大动能8.完全非弹性碰撞ΔP=0;ΔE K=ΔE Km (碰后连在一起成一整体)9.物体m1以V1初速度与静止的物体m2发生弹性正碰(见教材C158):V1′=(m1-m2)V1/(m1+m2) V2′=2m1V1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度V o射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损 E损=mV o2/2-(M+m)Vt2/2=fL相对 V t:共同速度 f:阻力注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上。
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算(3)系统动量守恒的条件:合外力为零或内力远远大于外力,系统在某方向受的合外力为零,则在该方向系统动量守恒(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒。
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加。