高等数学第七章自测题解答
- 格式:doc
- 大小:119.00 KB
- 文档页数:4
习题7-2 可分离变量的微分方程1求下列微分方程的通解: (1)2211y y x -='-; 解==两端积分得 arcsin arcsin y x C =+,(C 为任意常数) 即为原方程的通解。
(2)0tan sec tan sec 22=+xdy y ydx x ;解 将原方程分离变量,得 22sec sec tan tan y xdy dx y x=-两端积分得ln tan ln tan ln y x C =-+ 或ln tan tan ln x y C = 故原方程的通解为tan tan x y C =(C 为任意常数)。
2、求下列微分方程满足所给初始条件的特解: (1)e yy y x y x =='=2,ln sin π; 解 将原方程分离变量,得ln sin dy dxy y x= 两端积分得()tan ln 2ln tan 2x d d y x y ⎛⎫ ⎪⎝⎭=⎰⎰, 即ln ln ln tan ln 2x y C =+故原方程的通解为ln tan2x y C =,代入初始条件,2x y e π==,得1C =.于是,所求之特解为tan2xy e=.(2).1,022==+=x y ydx xdy解 将原方程分离变量,得2dy dx y x=-两端积分得2dy dx y x =-⎰⎰, 即ln 2ln ln y x C =-+故原方程的通解为2x y C =,代入初始条件2,1x y ==,得4C =.于是,所求之特解为24x y =.3、一曲线通过点(2,3),它在两坐标轴间的任一切线线段均被切点所平分,求这曲线方程.解 设曲线方程为,切点为.由条件,切线在x 轴与y 轴上的截距分别为2x 与2y,于是切线的斜率2002y yy x x-'==--,分离变量得dy dx y x =-,积分得ln ln ln y x C =-+,即xy C =. 代入初始条件23x y ==,得6C =,故曲线方程为6xy =.习 题 7-3 齐次方程1、求下列齐次方程的通解 (1)022=---'x y y y x解 (a) 当0x >时,可将方程改写成y y x '=+.令y u x =,即y xu =,所以有y u xu ''=+.则原方程成为u xu u '+=+分离变量,dxx=.两边积分得ln ln ln u x C =+,即u Cx =.将y u x=代入上式整理,得通解为2y Cx +=;(b) 当0x <时,方程两边同除以x -,则原方程可改写成0yy x'-+=,即0y y y y xx ''--=--=(因为0x <时,x x -==),也就是y y x '=+与x >0的情况一样)所以,对任意的0x ≠,方程的通解为2y Cx =(C 为任意常数).(注:如果C =0,则由原方程知,0xy '=,即0x =或y A =,若0x =,则原方程变为0y +=,只有当0y <时成立;若y A =(A 为常数),则原方程变成0A =,当A <0时方程有解.)(2)0cos 3)cos 3sin2(=-+dy x yx dx x y y x y x 解 原方程可改写成2tan 03y y dy x x dx +-=.令yu x =,即y xu =,所以有y u xu ''=+.则原方程成为2tan 3du u x u u dx +=+.分离变量,得32tan du dxu x =.两边积分得3ln sin ln ln 2u x C =+,即32sin u Cx =.将y u x =代入上式,得通解为32sin y Cx x=(C 为任意常数). 2. 求齐次方程1|,02)3(022==+-=x y xydx dy x y 满足所给初始条件的特解解 原方程可写成21320x x dxy y dy ⎛⎫-+= ⎪⎝⎭.令x u y =,即x yu =,有dx du u y dy dy =+,所以原方程成为21320du u u u ydy ⎛⎫-++= ⎪⎝⎭. 分离变量,得221u dy du u y=-,积分得2ln 1ln ln u y C -=+,即21u Cy -= 代入x u y=并整理,得通解为223x y Cy -=. 由初始条件0,1x y ==,得1C =-.于是所求特解为322y y x =-.习 题 7-4 一阶线性微分方程1、求下列微分方程的通解 (1)x e y dxdy-=+ (2)0cos 2)1(2=-+'-x xy y x (3)0)ln (ln =-+dy y x ydx y . 解 (1) 由通解公式得,原一阶线性微分方程的通解为()().dx dx x xxx x y e e e dx C e ee dx C e x C -----⎡⎤⎰⎰=⋅+=⋅+=+⎢⎥⎣⎦⎰⎰(2) 将原方程改写成222cos 11x xy y x x '+=--.由通解公式得,原一阶线性微分方程的通解为()22222112222cos 1cos sin 11111x xdx dx x x x x x Cy e e dx C x dx C x x x x ---⎡⎤+⎰⎰⎡⎤=+=-+=⎢⎥⎢⎥----⎣⎦⎢⎥⎣⎦⎰⎰.(C 为任意常数)(3) 将原方程改写成11ln dx x dy y y y+=,由一阶线性微分方程的通解公式得,通解为 ln ln ln ln ln ln 1111dy dyy yy y y y x e e dy C e e dy C y y --⎡⎤⎛⎫⎰⎰=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎰⎰2111ln 11ln ln ln 2y dy C y C y y y ⎛⎫⎛⎫=+=+ ⎪⎪⎝⎭⎝⎭⎰. 即 ()212ln ln 2x y y C C C =+=.(C 为任意常数)(注: ln ln 1ln yey-=,当ln 0y >时,去掉绝对值即得上述解答过程.而当ln 0y <时,则 ln ln ln ln 1111ln 1ln 1ln ln ln ln yy yy y ee dy C dy C dy C dy C y y y y y y y -⎛⎫⎛⎫⎛⎫⎛⎫-+=+=-=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎰⎰⎰⎰与上述结果一样) 2、求微分方程0|,sec tan 0==-=x y x x y dxdy满足所给初始条件的特解。
高等数学练习题第七章及答案1. 判别下列级数是否收敛,若收敛写出级数的和.(1)234133333(1)55555nn -⎛⎫⎛⎫⎛⎫⎛⎫-+-++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ;(2)3452ln πln πln πln πn ++++++解 (1)此级数为等比级数,其公比35q =-,级数收敛,且和33531815a s q ===-+.(2)此级数为等比级数,其公比ln 1q π=>,级数发散.2.利用级数收敛的性质,判断级数的敛散性,若收敛,则求其和. 32537411111111()()()()34343434++++++++ 解 原式=3523111111()()333444+++++++因为351111331333819+++==-,收敛.231111141444314+++=-, 收敛, 由性质知,级数32537411111111()()()()34343434++++++++收敛,且和1724.1.求幂级数112nnn x ∞=∑的收敛区间与和函数. 解 因为幂级数112n n n x ∞=∑=2323()2222n x x x x+++++是等比级数,且公比2x q =, 当12x<时,等比级数收敛,即得收敛区间(-2,2),其和函数 2()112x x s x x x==--.2.求下列幂级数的收敛半径和收敛区间.(1)0!n n x n ∞=∑; (2)203nn n x ∞=∑.解 (1)因为1!n a n =;111(1)!(1)!n a n n n +==++,于是 1!limlim 0(1)!n n n n a n a n n ρ+→∞→∞===+. 所以,收敛半径R =+∞;收敛区间(,)-∞+∞.(2)设2t x =,原幂级数改写为03nn n t ∞=∑.于是,1131lim lim 33n n n n n na a ρ++→∞→∞===所以,3R =.由于3t <得,x <故幂级数的收敛半径收敛3R =,收敛区间(.3. 利用matlab 软件,将函数3()2f x x =-展开为幂级数. 解 利用matlab 软件,函数3()2f x x =-展开的幂级数式为233()[1()()]2222x x x f x =++++1.设()f x 是周期为2π的函数,它在[),ππ-上的表示式为 00,(),0,x f x A x ππ-<⎧=⎨<⎩≤≤其中A 为不等于零的常数,将()f x 展开为傅立叶级数.解 因为周期函数()f x 的傅立叶系数0011()a f x dx Adx A ππππ===⎰⎰,[]π0011()cos d cos sin 0n πn A a f x nx x A nxdx nx ππππ====⎰⎰ , (1,2,3,)n = []00011()sin d sin cos n πn A b f x nx x A nxdx nx πππππ-===⎰⎰, (1cos )A n n ππ=-0,,2,,πn An n ⎧⎪=⎨⎪⎩当为偶数当为奇数(1,2,3,)n = 所以()f x 的傅立叶级数为 A 211()sin sin 3sin(21)2π3(21)A f x x x n x n ⎛⎫=++++-+⎪-⎝⎭(,,)x x k k Z π-∞<<+∞≠∈2.设()f x 是周期为2π的函数,它在[),ππ-上的表示式为 ,0,(),0,x x f x x x ππππ+-<⎧=⎨-<⎩≤≤将()f x 展开为傅立叶级数.解 因为周期函数()f x 是偶函数,其傅立叶系数为 0n b = (1,2,3,)n =,002()a f x dx ππ==⎰02()x dx πππ-=⎰2021[]2x x ππππ-=,02[sin ]nx n π=-02sin xd nx n ππ⎰=0020[sin sin ]x nx nxdx n πππ--⎰ 0222022[cos ][1cos ]4n nx n n n n n πππππ⎧⎪=-=-=⎨⎪⎩为偶数为奇数所以,()f x 展开为傅立叶级数2224111()[cos cos3cos5cos(21)]235(21)f x x xx x n x n ππ=+++++-+-.()x -∞<<+∞1.设()f x 是周期为2的函数,它在[)1,1-上的表示式为 1,10,()0,01,x f x x -<⎧=⎨<⎩≤≤ 将()f x 展开为傅立叶级数.解 因为周期函数()f x 的傅立叶系数00011()1a f x dx dx --===⎰⎰,[]01111()cos d cos sin 0n πn a f x n x x n xdx n x πππ---====⎰⎰ , (1,2,3,)n = []0001111()sin d sin cos n πn b f x n x x n xdx n x πππ----===⎰⎰,1(1cos )n n ππ=--0,,2,,πn n n ⎧⎪=⎨-⎪⎩当为偶数当为奇数(1,2,3,)n = 所以()f x 的傅立叶级数为1211()sin sin 3sin(21)2π3(21)f x x x n x n πππ⎛⎫=-+++-+⎪-⎝⎭(,,)x x k k Z -∞<<+∞≠∈ππ00022()cos d ()cos ππ22cos cos n a f x nx x x nxdxnxdx x nxdxππππππ==-=-⎰⎰⎰⎰2.将周期为4的函数()f x x =[)2,2-展开为傅立叶级数. 解 因为()f x 为奇函数,傅立叶系数为 00a =,0n a = (1,2,3,)n =,124(2cos )(1)n n n n πππ--==-. 所以,()f x 展开为傅立叶级数41131()[sinsin sin sin 2]22324x x f x x x πππππ=-+-+(,42,)x x k k Z -∞<<+∞≠-∈利用拉氏变换表求下列函数拉氏变换(1)2()f t t =; (2)()cos2f t t =; (3) ()e t f t -=; (4) ()3e sin 3t f t t =;(5) ()22e t f t t =; (6)()2e e t t f t -=-. 解 查表得,(1)232[]L t s =;(2)2[cos2]4s L t s =+;(3) 1[]1tL e s -=+; (4)()223[sin 3]39t L e t s =-+;(5)()2232[]2t L t e s =-;(6)()()23[]12t t L e e s s --=-+.求下列各函数的拉氏变换.(1)()253f t t t =+-; (2)()3sin 25cos 2f t t t =-; (3)()1e t f t t =+;(4)()(1)f t u t =-;(5)()22sin 3f t t =.解 (1) ()2[][53]L f t L t t =+-=32253ss s +-; (2) ()[][3sin 25cos2]3[sin 2]5[cos2]L f t L t t L t L t =-=-226544s s s =-++=2654ss -+; (3) ()211[][1e ][1][](1)ttL f t L t L L te s s =+=+=+-=()2211s s s s -+-; (4) ()[][(1)]L f t L u t =-=1e s s-⋅;(5) ()221[][2sin 3][1cos6]36sL f t L t L t s s ==-=-+=()23636s s +.2200222000()sind sin 22222cos [cos ]cos222n n x n x b f x x x dxn x n x n xxd x dx n n n ππππππππ==--==+⎰⎰⎰⎰求下列函数的拉氏逆变换(1) ()33F s s =+; (2) ()2636sF s s =+;(3) ()22836s F s s -=+;(4) ()2325s F s s s +=++; (5) ()2956s F s s s +=++.解 由拉氏变换逆性质,得(1) ()11131[][]3[]3(3)L F s L L s s ---==+--=33e t -.(2) ()1112226[][]6[]366s s L F s L L s s ---==++=6cos6t . (3) ()1111222222846[][]2[][]36636s s L F s L L L s s s -----==-+++=42cos6sin 63t t -.(4)()1111122222223(1)212[][][][][]25(1)2(1)2(1)2s s s L F s L L L L s s s s s -----++++===+++++++++=()e cos 2sin 2t t t -+. (5) ()1111129976[][][][][]56(2)(3)23s s L F s L L L L s s s s s s -----++===-++++++=237e 6e t t ---.。
自测题(1-7章附参考答案)-高等数学上册第一章函数与极限一、选择题:8、设a0,b00,则当()时有某11.函数y1某arcco的定义域是()2(A)某1;(B)3某1;(C)(3,1);(D)某某1某3某1.a0某ma1某m1........ama0lim.某b某nb某n1.........bb001n(A)mn;(B)mn;(C)mn;(D)m,n任意取.9、设某3,4某02.函数2的定义域是()某1,0某3(A)4某0;(B)3;(C)(4,3);(D)某4某0某0某3.3、函数y某co某in某是()(A)偶函数;(B)奇函数;(C)非奇非偶函数;(D)奇偶函数.4、函数f(某)1co某1,1某0,则limf(某)()某0某,0某1某()某(A)-1;(B)1;(C)0;(D)不存在.10、lim某0(A)1;(B)-1;(C)0;(D)不存在.二、求下列函数的定义域:1、yin(2某1)arctan某;29某某2)2、(某)lg(1.2三、设g(某1)2某3某1(1)试确定a,b,c的值使g(某1)a(某1)b(某1)c;22某的最小正周期是()1.2(A)2;(B);(C)4;(D)5、函数某在定义域为()1某2(2)求g(某1)的表达式.四、求f(某)(1某)gn某的反函数f五、求极限:21(A)有上界无下界;(B)有下界无上界;(C)有界,且12f(某)12(某).;某2.(D)有界,且21某26、与f(某)1某22n2n11、lim;2、;lim 某3n(1n)2某33、lim(1某);4、lim某(e1);某0某2某1某某2等价的函数是()(A)某;(B)(某)2;(C)(3某)3;(D)某.7、当某0时,下列函数哪一个是其它三个的高阶无穷小()(A)某;(B)1co某;(C)某tan某;(D)ln(1某).25、当某0时,limcon某某某co........con;242某2in6、lim某1某.2某21第1页共11页ina某,某1六、设有函数f(某)试确定aa(某1)1,某1的值使f(某)在某1连续.(D)arctan某arccot某.ea某,某05、如果f(某)处处可导,那末()2b(1某),某0(A)ab1;(B)a2,b1;(C)a1,b0;(D)a0,b1.6、已知函数f(某)具有任意阶导数,且f(某)f(某),则当n为大于2的正整数时,f(某)的n阶导数f(n)(某)是()(A)n![f(某)]n121某arctan某1的连续性,并判七、讨论函数f(某)in某2断其间断点的类型.八、证明奇次多项式:P(某)a0某2n1a1某2na2n1(a00)至少存在一个实根.第二章导数与微分一、选择题:1、函数f(某)在点某0的导数f(某0)定义为();(B)n[f(某)]2nn1;(C)[f(某)];(D)n![f(某)].7、若函数某某(t),yy(t)对t可导且某(t)0,又2nf(某0某)f(某0)(A);某(B)lim某某0f(某0某)f(某0);某f(某)f(某0);某某某(t)的反函数存在且可导,则dy=()d某(A)(C)limy(t)y(t);(B);某(t)某(t)y(t)y(t);(D).某(t)某(t)某某0(D)lim某某0f(某)f(某0);某某0(C)8、若函数f(某)为可微函数,则dy()(A)与某无关;(B)为某的线性函数;(C)当某0时为某的高阶无穷小;(D)与某为等价无穷小.9、设函数yf(某)在点某0处可导,当自变量某由某0增加到某0某时,记y为f(某)的增量,dy为f(某)的微分,lim2、若函数yf(某)在点某0处的导数f(某0)0,则曲线yf(某)在点(某0,f(某0))处的法线()(A)与某轴相平行;(B)与某轴垂直;(C)与y轴相垂直;(D)与某轴即不平行也不垂直:3、若函数f(某)在点某0不连续,则f(某)在某0()(A)必不可导;(B)必定可导;(C)不一定可导;(D)必无定义.4、如果f(某)=(),那么f(某)0.(A)arcin2某arcco某;(B)ec某tan某;(C)in某co(1某);2222ydy等于()某0某(A)-1;(B)0;(C)1;(D).10、设函数yf(某)在点某0处可导,且f(某0)0,第2页共11页ydy则lim等于().某0某(A)0;(B)-1;(C)1;(D).二、求下列函数的导数:1、yin某ln某2;2、yacoh某(a0);3、y(1某2)ec某;4、yln[co(103某2)];5、设y为某的函数是由方程ln确定的;(C)它们都先肯定了点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值.(D)它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法.2、若f(某)在(a,b)可导且f(a)f(b),则((A)至少存在一点(a,b),使f()0;(B)一定不存在点(a,b),使f()0;(C)恰存在一点(a,b),使f()0;(D)对任意的(a,b),不一定能使f()0.3.已知f(某)在[a,b]可导,且方程f(某)=0在(a,b)有)某2y2arctany某dy6、设某yy,u(某某),求.du2232t三、证明某eint,yecot满足方程t两个不同的根与,那么在(a,b)()d2ydy2(某y).(某y)2d某d某2f(某)0.g(某)co某,某0四、已知f(某)其中g(某)有二阶某a,某0连续导数,且g(0)1,1、确定a的值,使f(某)在某0点连续;(A)必有;(B)可能有;(C)没有;(D)无法确定.4、如果f(某)在[a,b]连续,在(a,b)可导,c为介于a,b之间的任一点,那么在(a,b)()找到两点2、求f(某)某2,某1,使f(某2)f(某1)(某2某1)f(c)成立.(n)五、设y某ln某,求f(1).六、计算39.02的近似值.七、一人走过一桥之速率为4公里/小时,同时一船在此人底下以8公里/小时之速率划过,此桥比船高200米,问3分钟后人与船相离之速率为多少?(A)必能;(B)可能;(C)不能;(D)无法确定能.5、若f(某)在[a,b]上连续,在(a,b)内可导,且某(a,b)时,f(某)0,又f(a)0,则().(A)f(某)在[a,b]上单调增加,且f(b)0;(B)f(某)在[a,b]上单调增加,且f(b)0;(C)f(某)在[a,b]上单调减少,且f(b)0;(D)f(某)在[a,b]上单调增加,但f(b)的第三章微分中值定理一、选择题:1、一元函数微分学的三个中值定理的结论都有一个共同点,即()(A)它们都给出了ξ点的求法.(B)它们都肯定了ξ点一定存在,且给出了求ξ的方法。
第七章 空间解析几何与向量代数§7.1 向量及其线性运算必作题:P300---301:1,3,4,5,6,7,8,9,12,13,15,18,19.必交题:1、 求点(,,)a b c 分别关于⑴各坐标面;⑵各坐标轴;⑶坐标原点的对称点的坐标.解:〔1 xoy 面〔a,b,-c,yoz 面〔-a,b,c, xoz 面〔a,-b,c;<2ox 轴〔a,-b,-c, oy 轴〔-a,b,-c, oz 轴〔-a,-b,c;<2关于原点〔-a,-b,-c 。
2、 坐标面上的点与坐标轴上的点的坐标各有什么特征, 指出下列各点的位置解:xoy 面:z=0, yoz 面:x=0, xoz 面:y=0.ox 轴:y=0,z=0, oy 轴:x=0,z=0, oz 轴:x=0,y=0,A 在xoy 面上,B 在yoz 面上,C 在x 轴上,D 在y 轴上。
3、 在z 轴上求与点(4,1,7)A -和点(3,5,2)B -等距离的点的坐标.解:设C 〔0,0,z,有|AC|=|BC|,解得:z=149,所求点为<0,0,149>. 4、 设2,3,u a b c v a b c =-+=-+-试用,,a b c 表示23.u v -解:235117u v a b c -=-+.5、已知两点1M 和2(3,0,2),M 求向量12M M 的模,方向余弦和方向角.解:{}121,M M =-,122M M =,方向余弦为1cos 2α=-,cos 2β=-,1cos 2γ=,方向角23πα=,34πβ=,3πγ=.6、设向量a 的模2,a =方向余弦1cos 0,cos ,cos 22αβγ===求.a解:设{},,a x y z =,则02x =,122y =,22y =,所以0x =,1y =,z ={0,1,3a =7、设有向量12,PP 122,PP=它与x 轴、y 轴的夹角分别为34ππ和,如果已知1(1,0,3),P 求2P 的坐标.解:设2P 的坐标为(,,)x y z ,{}121,,3PP x y z =--,11cos 232x π-==,所以2x =;cos 242y π==,所以y =又122,PP =,所以2=,解得2z =或4z =,所以2P 的坐标为2)或者4).8、求平行于向量}{6,7,6a =-的单位向量. 解:364911a =+=,与a 平行的单位向量为}{16,7,611±-,即为}676,,111111⎧-⎨⎩,或者}676,,111111⎧--⎨⎩. §7.2数量积 向量积 混合积必作题: P309--310:1,2,3,4,6,7,8,9.必交题:1、已知向量}{1,2,2a =-与{}2,3,b λ=垂直,向量}{1,1,2c =-与}{2,2,d μ=平行,求λμ和的值.解:a b ⊥,2620a b λ⋅=-+=,2λ=a b ,11222u-==,4u =-. 2、已知向量23,3,2a i j k b i j k c i j =-+=-+=-,分别计算以下各式.⑴((a bc a c b -));⑵()()a b b c +⨯+;⑶()a b c ⨯. 解:⑴((88824a bc a c b c b j k -=-=--)) ⑵()()(344)(233)a b b c i j k i j k j k +⨯+=-+⨯-+=-- ⑶231()1132120a b c -⨯=-=-.3、已知3,3OA i k OB j k =+=+,求ABO ∆的面积.解:33OA OB i j k ⨯=--+ ABO ∆的面积11922S OA OB =⨯=. §7.3曲面及其方程必作题:P318--319:1、2、5、6、7、8、9、10.必交题:1、一动点与两定点()()2,3,14,5,6A B 和等距离,求该动点的轨迹方程. 解:设动点(,,)P x y z ,因为PA PB =,所以222222(2)(3)(1)(4)(5)(6)x y z x y z -+-+-=-+-+-,解得动点的轨迹方程为632252x y z ++=. 2、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形. ⑴1y x =+;⑵224x y +=;⑶221x y -=;⑷22x y =;⑸220x y +=.解:⑴直线;平面 ⑵ 圆;援助面 ⑶ 双曲线;双曲柱面 ⑷抛物线;抛物柱面 ⑸原点;Oz 坐标轴3、说明下列旋转曲面是怎样形成的.⑴2221499x y z ++=;⑵222()z a x y -=+. 解:⑴xOy 坐标面上椭圆22149x y +=绕Ox 轴旋转形成,或者xOz 坐标面上椭圆22149x z +=绕Ox 轴旋转形成。
第七章习题答案习题7.01.下列各种情形中,P 为E 的什么点?(1)如果存在点P 的某一邻域()U P ,使得()⊂c U P E (c E 为E 的余集); (2)如果对点P 的任意邻域()U P ,都有, ()(),C U P E U P E φφ≠≠; (3)如果对点P 的任意邻域()U P ,都有. 解 (1)P 为E 的外点;(2)P 为E 的边界点;(3)P 为E 的聚点。
2.判定下列平面点集的特征(说明是开集、闭集、区域、还是有界集、无界集等?)并分别求出它们的导集和边界.(1) (){},0≠x y y ;(2) (){}22,620≤+≤x y x y ; (3) (){}2,≤x y y x ;(4) ()(){}()(){}2222,11,24+-≥⋂+-≤x y x y x y x y .解 (1) 是开集,是半开半闭区域,是无界集,导集为2R ,边界集为(){},0=x y y ;(2)既不是开集也不是闭集,是半开半闭区域,是有界集,导集为(){}22,620≤+≤x y x y ,边界集为(){}2222,=6=20++,x y x y x y ;(3) 是闭集,是半开半闭区域,是无界集,导集为集合本身,边界集为(){}2,=x y y x ;是闭集,是闭区域,是有界集,导集为集合本身,边界集为()()(){}2222,11,24+-=+-=x y x y x y习题7.11. 设求1. 解 令,=-=yu x y v x,解得,11==--u uv x y v v,故()22,11⎛⎫⎛⎫=- ⎪ ⎪--⎝⎭⎝⎭u uv f u v v v ,即()()21+,1=-u v f u v v ,所以,()()21+y ,1=-x f x y y φ≠-}){()(P E P U 22,,y f x y x y x ⎛⎫-=- ⎪⎝⎭(,).f x y2.已知函数()22,cot =+-x f x y x y xy y,试求(),f tx ty .2. 解 因为()22,cot =+-y f x y x y xy x,所以,()2222,cot ,=+-t y f tx ty tx ty txty t x即()()222,cot =+-y f tx ty t x y t xy x.3.求下列各函数的定义域 (1) 25)1(=-+z ln y xy ;(2) =z ;(3) =z(4) )0;=>>u R r(5) =u3. 解 (1)(){}2,510-+>x y yxy ;(2)(){},0->x y x y ;(3)(){}2,≥x y x y ;(4)(){}22222,<++≤x y r x y z R ;(5)(){}222,≤+x y z x y4. 求下列各极限:(1) ()()233,0,31lim →-+x y x yx y ;(2)()(,1,1ln lim→+x x y y e(3)()(,0,0lim→x y(4)()(,0,0lim→x y ;(5)()()(),0,2sin lim→x y xy x ;(6)()()()()222222,0,01cos lim→-++x y x y x y xy e.4. 解 (1)()()2333,0,31101lim 0327→--==++x y x y x y ;(2)()(()1,1,1ln ln 11lim2→+++===x x y y e e e (3)()()()(,0,0,0,0limlim→→=x y x y ()(,0,01lim4→==x y (4)()(()()),0,0,0,01limlim→→=x y x y xy xy()()),0,0=lim1=2→+x y(5)()()()()()(),0,2,0,2sin sin limlim 122→→=⋅=⋅=x y x y xy xy y x xy(6)()()()()()()()()()222222222222222,0,0,0,01cos 1cos limlim→→-+-++=⋅++x y x y x y x y x y x y xy xy eex y()()()()()()()2222222022,0,0,0,01cos 10limlim=02→→-++=⋅⋅=+x y x y x y x y xy e exy5.证明下列极限不存在: (1)()(),0,0lim→-+x y x yx y ;(2)()(),0,0lim→+-x y xyxy x y .5. (1) 解 令=y kx ,有()(),0,001limlim 1→→---==+++x y x x y x kx kx y x kx k ,k 取不同值,极限不同,故()(),0,0lim→-+x y x yx y 不存在.(2) 解令=x y()()22,0,00lim lim 1→→==+-x y x xy x xy x yx ;令2=x y()()()()22,0,02,0,0022lim lim lim 0221→→→===+-++x y y y y xy y y xy x y y y y ;01≠,故()(),0,0lim→+-x y xyxy x y不存在.6.函数=y z a 为常数)在何处间断?6. 解 因为=y z 是二元初等函数,且函数只在点集(){,x y y 上无定义,故函数在点集(){,x y y 上间断.7.用 εδ- 语言证明()(,0,0lim0→=x y .7. 证明 对0∀>ε,要使220-=≤=<ε2<ε,取=2δε<δ0-<ε,所以()(,0,0lim 0→=x y习题7.21. 设()(),sin 1arctan ,π==+-xy xz f x y e y x y 试求()1,1x f 及()1,1y f1. 解()221,sin arctan 1=+++xy x x yf x y ye y xx yyπ22=sin arctan+++xy x xy ye y y x y π.()()222,sin cos 11-=++-+xy xyy x y f x y xe y e y x x yπππ 222sin cos -=+++xyxyx x xe y e y x y πππ()()1,1,1,1∴=-=-x y f e f e2.设(),ln 2⎛⎫=+ ⎪⎝⎭y f x y x x ,求()1,0'x f ,()1,0'y f .2. 解()()222122,22--==++x yx y x f x y y x x y x x()2112,22==++y x f x y yx y x x()()11,011,02∴==,x y f f . 3.求下列函数的偏导数(1) 332=++z x y xy ,(2) ()1=+xz xy , (3) ()222ln =+z y x y ,(4) ln tan=y z x, (5) ()222ln =+z x x y ;(6)=z (7) ()sec =z xy ;(8) ()1=+yz xy ;(9) ()arctan =-zy x y ;(10) .⎛⎫=⎪⎝⎭zx u y 3. 解 (1)2232,32z z x y y x x y ∂∂=+=+∂∂(2)因为 ()ln 1,x xy z e+=所以()()()()ln 1ln 11ln 111x x xy z xy xy e xy xy xy x xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭()()22ln 1111x x xy z x x e xy y xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭(3)()2322222222,2ln z xy z y y x y x x y y x y ∂∂==++∂+∂+(4)222222sec sec 111sec ,sec tan tan tantan y yy z y y z y x x y y y y x x x y x x x x x x x x∂∂⎛⎫⎛⎫=-=-== ⎪ ⎪∂∂⎝⎭⎝⎭ (5)()32222222222ln ,z x z x y x x y x x y y x y ∂∂=++=∂+∂+(6)z z x y ∂∂====∂∂(7)()()()()sec tan ,sec tan z z y xy xy x xy xy x y ∂∂==∂∂(8)()()22ln 1111y y xy z y y e xy x xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭()()()()ln 1ln 11ln 111y y xy z xy xy e xy xy xy y xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭ (9)()()()()()()()11222ln ,,111z z zz z z z x y z x y x y x y u u u x y z x y x y x y ------∂∂∂==-=∂∂∂+-+-+-(10)因为 ln,x z yu e=所以ln ln ln 21,,ln zzx x x z z z y y y u z x z u z x x z u x e e e x x xy y x y y y y z y y y⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂=⋅==⋅-=-= ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭4.设ln=z ,求证: 12∂∂+=∂∂z z xy x y . 4.证明 因为ln,z =所以z zx y∂∂====∂∂从而有12 z zx yx y∂∂+=+=+=∂∂5.求下列函数的二阶偏函数:(1)已知33sin sin=+z x y y x,求2∂∂∂zx y;(2)已知ln=xz y,求2∂∂∂zx y;(3)已知(ln=z x,求22∂∂z x和2∂∂∂z x y;(4)arctan=yzx求22222,,∂∂∂∂∂∂∂z z zx y x y和2∂∂∂zy x.5. 解(1)3323sin sin,3sin coszz x y y x x y y xx∂=+∴=+∂从而有223cos3coszx y y xx y∂=+∂∂(2)ln ln1,lnx xzz y y yx x∂⎛⎫=∴= ⎪∂⎝⎭从而有()()()ln1ln1ln11ln ln ln ln1xx xz yxy y y x yx y x y x--⎛⎫∂=+⋅=+⎪∂∂⎝⎭(3)(()1222 ln,zz x x yx-∂=∴===+∂从而有()()3322222222122zx y x x x yx--∂=-+=-+∂()()332222222122z x y y y x y x y --∂=-+=-+∂∂ (4)22221arctan,1y z y y z x xx x y y x ∂⎛⎫=∴=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭ 222111z x yx x y y x ∂⎛⎫=⋅= ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭从而有()()()()2222222222222222222,x y y z xy z y x x x y x y x y x y -++∂∂-===∂∂∂+++ ()()2222222222222222,z xy z x y xy x y y y x x y x y x y ⎛⎫∂-∂+--=== ⎪∂∂∂+⎝⎭++ 6. 设()ln =z y xy ,求2∂∂∂z x y 及22∂∂zy .6. 解 因为()ln ,z y xy =所以()(),ln ln 1z y y z x y xy y xy x xy x y xy∂∂===+=+∂∂从而有22211,.z z x y x y y∂∂==∂∂∂ 习题7.31. 求下列函数的全微分.(1) 2222+=-s t u s t ;(2) ()2222+=+x y xyz x y e;(3) ()arcsin0=>xz y y;(4) ⎛⎫-+ ⎪⎝⎭=y x x y z e ;1.解 (1)()()222232322222222()()22222∂--+⋅---==∂--u s s t s t s s st s t s s s t s t()()222223232222222()()22222u t s t s t t ts t ts s t s t s t ∂--+---==∂-- ()()2322222244u u st t dz ds dt ds dt s t s t s t ∂∂-∴=+=-∂∂--(2)()()()222222222222++++∂=++⋅∂x y x y xyxyx y x y yzxe x y exxy()2222222244222222+++⎛⎫--=++⋅=+ ⎪⎝⎭x y x y x y xyxyxyx y x y xe x y e x e x y x y()()()22222222222-2+++∂=++⋅∂x y x y xy xyy x x y xzye x y eyxy()()2222222222442222+++-+⎛⎫-=+⋅=+ ⎪⎝⎭x y x y x y xyxyxyy x x y y x yeey e xy xy2244442222x y xyz z x y y x dz dx dy x edx y dy x y x y xy +⎛⎫⎛⎫∂∂--∴=+=+++ ⎪ ⎪∂∂⎝⎭⎝⎭ (3)2222211∂=⋅==∂--⎛⎫yzxyyy x y x x22⎛⎫⎛⎫∂=-=-= ⎪ ⎪∂⎝⎭⎝⎭z x x yy y z zdz dx dy x y∂∂∴=+=∂∂(4)22221y x y x x y x y z y y x e e x x y x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-= ⎪∂⎝⎭ 22221y x y x x y x y z x x y e e y x y xy ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-+= ⎪∂⎝⎭222222y x y x x y x y z z z y x x y dz dx dy e dx e dy x y y x y xy⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭∂∂∂--∴=+==+∂∂∂ 2. 求函数2arctan1=+xz y 在1,1==x y 处的全微分.2.解()()()()()()()22222222222222222211111111111++∂++=⋅=⋅=∂++++++++y y z y y x xy y x y y xy()()()()()()22222222222222211222111111+∂-⋅--=⋅=⋅=∂++++++++y z x y xy xyx yy y x y y xy()()21,11125111z x ∂+∴==∂++ , ()()21,12125111∂-⋅==-∂++z y ()1,12255dz dx dy ∴=- 3. 求函数22=-xyz x y 当2,1,0.02,0.01==∆=∆=x y x y 时的全微分和全增量,并求两者之差.3.解 ()()()(),, 2.02,1.011,1z z x x y y z x y z z ∆=+∆+∆-=-()()22222.02 1.0121 2.0420.6670.667021 4.08 1.0232.02 1.01⨯⨯=-=-=-=--- ()()()2223222222222--⋅∂--===-∂---y x y xy x z x y y y x x y x y x y ()()()()22322222222--⋅-∂+==∂--x x y xy y z x xy y x y x y ()2,111413z x ∂∴=-=-∂- ,()()22,182110941z y ∂+⨯==∂- ()2,11100.020.010.070.0110.00439dz ∴=-⨯+⨯=-+=00.0040.004z dz ∴∆-=-=-.*4讨论函数()()()()(),0,0,0,,0,0⎧≠⎪=⎨⎪=⎩xy x y f x y x y 在()0,0点的连续性、可导性、可微性以及其偏导函数在()0,0的连续性.4.解()()()()()(),0,0,0,0lim,lim 00,0x y x y f x y xy f →→===(),f x y ∴在()0,0点连续 又()()()00,00,0000,0limlim 0x x x f x f f x x∆→∆→∆--===∆∆ ()()()000,0,0000,0limlim 0y y y f y f f y y∆→∆→∆--===∆∆ ()()0,00,0,00x y f f ∴==.()(()(,0,0,0,0,0,00limlim limx y x y f x yf z dzρρ→∆∆→∆∆→∆∆--∆-==()()()0,0,0x y<∆∆→∆lim0z dzρρ→∆-∴=故函数(),f x y 在()0,0点可微. 由()(),0,0x y ≠时(),=-x f x yy xy()23222sinx yy xy=-+(),=-y f x y x xy ()23222xy x xy=-+()(),0,0lim 0x y y →= ,()()()()23,0,0222lim→=+x y x yy kx xy()()()33323222=lim11→==+⋅+x kx ky kx k xk ,k 不同值不同()()()23,0,0222lim→∴+x y xy xy 不存在,故()()(),0,0lim ,xx y f x y →不存在.(),x f x y ∴在()0,0点不连续,同理可证(),y f x y 在点()0,0不连续.*5.计算()2.050.99的近似值.5.解 令00,1,2,0.01,0.05yz x x y x y ===∆=∆= 则1,ln y y z z yx x x x y-∂∂==∂∂ ()()1,21,22,0z zx y ∂∂∴==∂∂ ()()()2.0521,21,20.991120.0100.0510.02 1.02∂∂∴≈+∆+∆=+⨯+⨯=+=∂∂z zx y x y*6.设有厚度为,内高为,内半径为的无盖圆柱形容器,求容器外壳体积的近似值(设容器的壁和底的厚度相同).6.解 设容器底面积半径为r ,高为h则容器体积2V r h π=22,V Vrh r r hππ∂∂==∂∂ 22∴=+dV rhdr r dh ππ002,10,0.1,0.1r cm h cm r cm h cm ==∆=∆=()()22,102,1020.10.1400.140.1 4.4∴∆≈=⋅+⋅=⨯+⨯=V dV rh r πππππ*7. 测得直角三角形两直角边的长分别为7±0.1cm 和24±0.1cm ,试求利用上述二值来计算斜边长度时的绝对误差和相对误差.0.1cm 10cm 2cm7.解 设直角三角形的直角边长分别为,x y ,则斜边z =,zz xy∂∂==∂∂由题意007,24,0.1,0.1x y x y δδ====z ∴的绝对误差为()()7,247,247240.10.10.242525∂∂=+=⨯+⨯=∂∂z x y z z x y δδδz 的相对误差()7,240.240.009625=≈zz δ 习题7.41.设,,,求. 1.解 ()3222sin 22cos 23cos 6---∂∂=⋅+⋅=⋅-⋅=-∂∂x y x y t t du z dx z dy e t e t e t t dt x dt y dt2.设,而,,求. 2.解2123∂∂=⋅+⋅=+∂∂dz z dy z dV x dx u dx V dx2341-=x3.设,,,求,. 3.解 ()()222cos 2sin ∂∂∂∂∂=⋅+⋅=-+-∂∂∂∂∂z z u z v uv v y u uv y x u x v x()()2222222cos sin sin cos cos 2cos sin sin x y y x y y x y x y y y =-+-()23sin cos cos sin x y y y y =-()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=+=--+-∂∂∂∂∂ ()()()2222222cos sin sin sin cos 2cos sin cos x y y x y x y x y x y y x y =--+-()()3333cos sin 2cos sin sin cos x y y x y y y y =+-+2e x y u -=sin x t =3y t =d d u tarccos()z u v =-34u x =3v x =d d zx22z u v uv =-cos u x y =sin v x y =zx ∂∂z y∂∂4.设,而,,求,. 4.解 222ln 3∂∂∂∂∂⎛⎫=⋅+⋅=⋅+- ⎪∂∂∂∂∂⎝⎭z z u z v u y u v x u x v x v x()()()2322632ln 326ln 3x y y y y x y x y x x x x +⎛⎫=+-=+-- ⎪⎝⎭5.设求5.解 ()()1wf x xy xyz y yz x ∂'=++++∂()()()()1wf x xy xyz x xz x z f x xy xyz y∂''=+++=+++∂ ()()wf x xy xyz xy xyf x xy xyz z ∂''=++=++∂6.求下列函数的一阶偏导数(其中具有一阶连续偏导数):(1);(2);(3);(4).6.解 (1)()()222222∂''=-⋅=-∂z f x y x xf x y x()()()222222∂''=-⋅-=--∂zf x y y yf x y y(2)121110∂'''=+⋅=∂u f f f x y y12122211u x x f f f f y y z y z ⎛⎫∂⎛⎫''''=-+=-+ ⎪ ⎪∂⎝⎭⎝⎭122220∂⎛⎫'''=⋅+-=- ⎪∂⎝⎭u y y f f f z z z (3)1231231∂''''''=⋅+⋅+⋅=++∂uf f y f yz f yf yzf x123230∂'''''=⋅+⋅+⋅=+∂uf f x f xz xf xzf y2ln z u v =32u x y =+y v x =zx ∂∂z y∂∂(),w f x xy xyz =++,,.w w wx y z∂∂∂∂∂∂f 22()z f x y =-,x y u f y z ⎛⎫= ⎪⎝⎭(,,)u f x xy xyz =22(,e ,ln )xy u f x y x =-123300∂''''=⋅+⋅+⋅=∂uf f f xy xyf z (4)1231231122∂''''''=⋅+⋅⋅+⋅=++∂xy xyu f x f e y f xf ye f f x x x()12312202∂'''''=⋅-+⋅+⋅=-+∂xy xy uf y f e x f yf xe f y7.求下列函数的二阶偏导数,,(其中具有二阶连续偏导数):(1),(2). 7.解(1)22121222∂''''=⋅+⋅=+∂zf xy f y xyf y f x22121222∂''''=⋅+⋅=+∂zf x f xy x f xyf y()()222211112212222222∂'''''''''∴=+⋅+⋅+⋅+⋅∂zyf xy f xy f y y f xy f y x233341111221222422yf x y f xy f xy f y f '''''''''=++++ 23341111222244yf x y f xy f y f '''''''=+++()()2222111122212222222∂''''''''''=+⋅+⋅++⋅+⋅∂∂zxf xy f x f xy yf y f x f xy x y322223111122212222422xf x yf x y f yf x y f xy f ''''''''''=+++++ 32231111222222522xf x yf x y f yf xy f ''''''''=++++()2222211122212222222∂'''''''''=+++⋅+⋅∂zx f x x f xy xf xy f x f xy y43221112222424x f x yf xf x y f '''''''=+++(2)()()222222∂''=+⋅=+∂zf x y x xf x y x()()222222∂''=+⋅=+∂zf x y y yf x y y22zx∂∂2z x y ∂∂∂22z y ∂∂f 22(,)z f x y xy =22()z f x y =+()()()()2222222222222224∂''''''∴=+++⋅=+++∂zf x y xf x y x f x y x f x y x()()22222224∂'''=+⋅=+∂∂z xf x y y xyf x y x y()()()()2222222222222224∂''''''=+++⋅=+++∂zf x y yf x y y f x y y f x y y8.设其中F 是可微函数,证明8.解()()()cos sin sin cos cos cos sin sin ux F y x x x xF y x x∂''=+--=--∂ ()sin sin cos uF y x y y∂'=-∂ ()()cos cos cos cos sin sin cos cos sin sin cos u uy x x xF y x y yF y x x x y∂∂''∴+=--+-⎡⎤⎣⎦∂∂ ()()cos cos cos cos sin sin cos cos sin sin cos cos x y x yF y x x yF y x x y ''=--+-=.习题7.51.设,φ⎛⎫= ⎪⎝⎭x y z z 其中为可微函数,求∂∂+∂∂z z x y x y . 1.解 z是,x y函数由方程xx z y φ⎛⎫= ⎪⎝⎭确定。
第七章习题课1.求函数z =.(总习题七A ,2) 解答 要使函数式有意义,只要⎪⎩⎪⎨⎧≠--≥---+020)2)((222222y x x y x x x y x 成立即可,从而只要⎪⎩⎪⎨⎧+≠≤-+-+22222220)2)((yx x x y x x y x 成立 当0≥x 时,由0)2)((2222≤-+-+x y x x y x 解得x y x x 222≤+≤,从而定义域为22{(,)|2}D x y x x y x =≤+<当0<x 时,由0)2)((2222≤-+-+x y x x y x 解得x y x x ≤+≤222,此时x y x ≤+≤220,矛盾.因此函数定义域就是22{(,)|2}D x y x x y x =≤+< 2. 求极限(,)(0,0)limx y xy e→+A ,4(1))解答1 令cos ,sin x y ρθρθ==,则22cos sin 01cos 1lim2x y x y e e ρθθρρρ→→→-==+; 解答2 当0,0→→y x 时,022→y x ,从而122→y x e又因为022→+y x 为无穷小,由无穷小替换定理,)(21~cos12222y x y x ++- 从而2121lim )()(21lim )(cos 1lim 2222220022*******200==++=++-→→→→→→y x y x y x y x y x y x e e y x y x e y x y x 3.讨论函数()22222(,)x y f x y x y x y =+-当(,)(0,0)x y →时的极限存在性.(总习题七A ,5)解答 取y x =和y x =-两条路径,有10lim )(lim 4402222200=+=-+→=→→x x y x y x y x x xy y x 04lim 4lim )(lim 22024********0=+=+=-+→→-=→→x x x x x y x y x y x x x xy y x 因此()22222(,)(0,0)limx y x y x y x y →+-不存在.4.讨论函数的连续性:(总习题七A ,6)⎪⎩⎪⎨⎧=≠=00)tan(),(22y x y yy x y x f解答 当0≠y 时,yy x y x f )tan(),(2=为初等函数,因此连续;当0=y 时,考虑)0,(0x 处的连续性.由于)0,(1)t an (lim )tan(lim ),(lim 020202220200000x f x x x y x y x y y x y x f y x x y x x y x x ==⋅=⎥⎦⎤⎢⎣⎡⋅==→→→→→→,因此函数在)0,(0x 处也连续,故函数处处连续.5.设x y u yf xg y x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中函数,f g 具有二阶连续导数,求222u u x y x x y ∂∂+∂∂∂.(总习题七A ,11) 解答21u y y yf g xg f g g x y x x ∂-⎛⎫''''=⋅++⋅=+- ⎪∂⎝⎭, 2222223311u y y y y f g g g f g x y x xx y x ∂⎛⎫''''''''''=+⋅-++=+ ⎪∂⎝⎭, 2222211u x y x y f g g g f g x y y x x x y x ⎛⎫∂⎛⎫''''''''''''=-+⋅--=-- ⎪ ⎪∂∂⎝⎭⎝⎭, 故2220.u ux y x x y∂∂+=∂∂∂6.设函数()y y x =由(cos )(sin )1y xx y +=确定,求d d yx.(总习题七A ,12) 解答 由ln(cos )ln(sin )1y x x y ee +=,两边关于x 求导,得ln(cos )ln(sin )(sin )cos ln cos lnsin 0cos sin y x x y x y e y x y e y x y x y ⎛⎫-⎛⎫''+++= ⎪ ⎪⎝⎭⎝⎭. 即 ()()(cos )lncos tan (sin )lnsin cot 0y x x y x y x y y x y y ''-++⋅=.故 (cos )tan (sin )ln sin (cos )ln cos (sin )cot y x y x x y x y yy x x y x y-'=+.7.在已知的圆锥内嵌入一个长方体,如何选择其长、宽、高,使它的体积最大.(总习题七A ,15)解答 设圆锥的底半径为R ,高为h ,以底面圆心为坐标原点,底面圆心到顶点射线方向为z 轴正方向,建立坐标系,则圆锥的表面方程为z h -=, 在圆锥面上取点),,(z y x ,以之为顶点的长方体的体积则为 224.V x y z xyz =⨯⨯=设(,,,)[()F x y z xyz R z h λλ=+-+,令0,0,0,()0.x y z F yz F xz F xy R R z h λ⎧'=+=⎪⎪⎪⎪'=+=⎨⎪⎪'=+=⎪⎪-+=⎩解得3x y R ==,13z h =,此时当长宽高分别为3,322,322hR R 时,长方体体积最大,最大体积为2max 827V R h =. 8.求极限222(,)(,)limx x y xy x y →+∞+∞⎛⎫ ⎪+⎝⎭.(总习题七B ,1) 解答 由于2212xy x y ≤+,有2221022x x y x xy ⎪⎭⎫ ⎝⎛≤+≤,而021lim 2=⎪⎭⎫⎝⎛+∞→x x由夹逼准则知222(,)(,)lim0x x y xy x y →+∞+∞⎛⎫= ⎪+⎝⎭. 9.设函数(,)f x y 在点(0,0)的某邻域内有定义,且(0,0)3x f =,(0,0)1y f =-,则有 .(总习题七B ,4) A.(0,0)d 3d d z x y =-.B.曲面(,)z f x y =在点(0,0,(0,0))f 的一个法向量为(3,1,1)-.C.曲线(,),0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(1,0,3).D .曲线(,),z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(3,0,1).解答 选C函数(,)f x y 在点(0,0)处的两个偏导数存在,但不一定可微分,故(A )不对;曲面(,)z f x y =可化为0),(=-z y x f ,其法向量为)1,,(-y x f f ,故在点(0,0,(0,0))f 处的一个法向量是(3,1,1)--,而不是(3,1,1)-,故(B )不对;以x 为参数,则曲线x x =,0y =,(,0)z f x =的切向量为),,1(x f y ',故在点(0,0,(0,0))f 处的一个切向量为(1,0,3),故(C )对,(D )不对.10.设(,)f xy 具有连续偏导数,且当0x ≠时有2(,)1f x x =,2(,)x f x x x '=,求2(,)y f xx '.(总习题七B ,5)解答 方程2(,)1f x x =左右两边对x 求导,得02),(),(22=⋅'+'x x x f x x f y x即 22(,)0y x xf x x '+=,求得21(,)2y f x x '=-. 11.设,sin ,sin u v x y u x v y +=+⎧⎪⎨=⎪⎩确定函数(,)u u x y =,(,)v v x y =,求d u ,d v .(总习题七B ,7)解答 将方程组改写成,sin sin ,u v x y y u x v +=+⎧⎨=⎩两式两边微分得,sin cos sin cos .du dv dx dy udy y udu vdx x vdv +=+⎧⎨+=+⎩消去dv ,得 ()sin cos (sin cos )cos cos v x v dx u x v dy du x v y u+--=+,消去du ,得 ()cos sin (sin cos )cos cos y u v dx u y u dy dv x v y u-++=+.12.=(0a >,为常数)上任何点处的切平面在各坐标轴上截距之和为a .(总习题七B ,8)证设(,,)F x y z =(,,)x y z 的法向量为⎛⎫=n , 该点的切平面方程为)))0X x Y y Z z ---=,即X Z =这样,切平面在三个坐标轴上截距之和为a ==.13.在椭球面2222221x y z ++=上求一点,使得函数222(,,)f x y z x y z =++沿着点(1,1,1)A 到点(2,0,1)B 的方向导数具有最大值.(总习题七B ,9)解答 由)0,1,1(-=知0cos ,21cos ,21cos =-==γβα,而(2,2,2)f x y z =grad因此2220)f z x y l ∂=-+⋅=-∂ 作222(,,))(2221)L x y z x y x y z λ=-+++-,令22240,40,40,222 1.x y z L x L y L z x y z λλλ⎧==⎪==⎪⎨==⎪⎪++=⎩解得11,,022⎛⎫- ⎪⎝⎭,11,,022⎛⎫- ⎪⎝⎭.比较得知方向导数在点11,,022⎛⎫- ⎪⎝⎭14.证明:函数(1)cos yyz e x ye =+-有无穷多个极大值,但无极小值.(总习题七B ,10)证明 由(1)sin 0,(cos 1)0,yy z e x xz e x y y∂⎧=-+=⎪∂⎪⎨∂⎪=--=∂⎪⎩解得⎩⎨⎧==02y k x π或⎩⎨⎧-=+=2)12(y k x π.22(1)cos y z e x x ∂=-+∂,2sin y z e x x y ∂=-∂∂,22(cos 2)y z e x y y∂=--∂. 当0,2==y k x π时,1,0,2-==-=C B A ,由于0,022<>=-A B AC ,所以此时z 取得无穷多个极大值;当2,)12(-=+=y k x π时22,0,1---==+=e C B e A ,由0)1(222<+-=---e e B AC 知,此时z 没有极值.从而结论成立。
第七章高等数学试题及答案第七章空间解析几何与向量代数1. 一边长为a 的立方体放置在xoy 面上,底面中心在坐标原点,底面的顶点在x 轴和y 轴上,求它的各顶点的坐标。
解因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为 )0 ,0 ,22(a -, )0 ,0 ,22(a , )0 ,22 ,0(a -, )0 ,22 ,0(a ,) ,0 ,22(a a -, ) ,0 ,22(a a , ) ,22 ,0(a a -, ) ,22 ,0(a a .2. 求点()5,3,4-M 到各坐标轴的距离。
解点M 到x 轴的距离就是点(4, -3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+-=x d .点M 到y 轴的距离就是点(4, -3, 5)与点(0, -3, 0)之间的距离, 即415422=+=y d .点M 到z 轴的距离就是点(4, -3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=-+=z d .3. 设, 3 , 2c b a v c b a u -+-=+-= 试用c b a 、、表示v u 32-。
解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c =5a -11b +7c .4.若4=r,它与轴u 的夹角为3π,求r 在轴u 上的投影。
解22143c o s ||j Pr =?=?=πr r u .5. 一向量的终点在)7,1,2(-B ,它在x 轴,y 轴和z 轴上的投影依次为4、4-和7,求此向量起点A 的坐标。
解设点A 的坐标为(x , y , z ). 由已知得=--=--=-774142z y x ,解得x =-2, y =3, z =0. 点A 的坐标为A (-2, 3, 0).6. 设已知两点)1,2,4(1M 和)2,0,3(2M ,计算21M M 的模、方向余弦、方向角以及和21M M 方向一致的单位向量。
第七章 多元函数微积分简介 自测题一.选择题1.二元函数z=f(x,y)在点(00,x y )处可微的充分条件是 ( ) A f(x,y)在点(00,x y )处连续;B 00(,),(,),x y f x y f x y x y ''在()的某邻域存在;C0000(,)(,),0x y f x y x f x y y ''∆∆-∆→z-时,是无穷小量; D(,)(,)0f x y x f x y y''∆∆-∆→z-时,是无穷小量。
2.22221()sin ,(,)0,x y x y f x y ⎧+⎪+=⎨⎪⎩222200x y x y +≠+=,。
则在原点(0,0)处f(x,y) ( )A 偏导数不存在;B 不可微C 偏导数存在且连续D 可微3.设x ϕ()为任意一个x 的可微函数,ψ(y )为任意一个y 的可微函数,若已知 22F f,(,)F x y x y x y∂∂≠∂∂∂∂则是 ( ) A f(x,y)+ x ϕ() B f(x,y)+ ψ(y ) C f(x,y)+ x ϕ()+ψ(y ) D f(x,y)+ x ϕ()ψ(y ) 4.已知3222(axy -y cosx )dx+(1+bysinx+3x y )dy 为某一函数f(x,y)的全微分,则a 和b 的值分别是 ( )A -2和2,B 2和-2,C -3和3D 3和-3. 5.设函数,则(,)f x y ( ) (A) 处处连续;(B) 处处有极限,但不连续; (C) 仅在(0,0)点连续;(D) 除(0,0)点外处处连续6.函数在点处具有偏导数是它在该点存在全微分的 ( )(A)必要而非充分条件; (B)充分而非必要条件; (C)充分必要条件;(D)既非充分又非必要条件7.设函数,则点 是函数 的 ( )(A )极大值点但非最大值点; (B )极大值点且是最大值点; (C )极小值点但非最小值点; (D )极小值点且是最小值点。
高等数学教材第七章答案第七章:多元函数微分学1. 习题一答案:1.1 题目:求函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数$\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$。
解答:首先计算 $\frac{\partial z}{\partial x}$。
根据偏导数的定义,我们将 $y$ 视为常数,对 $z$ 对 $x$ 进行求偏导数:$$\frac{\partial z}{\partial x} = 6x^2 - 6y$$接下来计算 $\frac{\partial z}{\partial y}$。
同样,我们将 $x$ 视为常数,对 $z$ 对 $y$ 进行求偏导数:$$\frac{\partial z}{\partial y} = 6y - 6x$$所以,函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数为$\frac{\partial z}{\partial x} = 6x^2 - 6y$ 和 $\frac{\partial z}{\partial y} = 6y - 6x$。
1.2 题目:计算函数 $f(x, y) = x^3 + y^3$ 在点 $(1, 1)$ 处的全微分。
解答:根据全微分的定义,我们有:$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$首先计算 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$。
对 $f(x, y) = x^3 + y^3$ 分别对 $x$ 和 $y$ 求偏导数:$$\frac{\partial f}{\partial x} = 3x^2, \quad \frac{\partial f}{\partial y} =3y^2$$代入点 $(1, 1)$,得到 $\frac{\partial f}{\partial x} = 3$ 和$\frac{\partial f}{\partial y} = 3$。
高数第七章习题7.11.求点)3,2,4(- M 与原点及各坐标面间的距离. 解 M 与原点的距离,29)03()02()04(222=--+-+-=OMM 与x 轴的距离,4))3(3()22()04(222=---+-+-=x dM 与y 轴的距离,2))3(3()02()44(222=---+-+-=y dM 与z 轴的距离.3)03()22()44(222=--+-+-=z d2. 求yz 面上与已知三点)2,1,3( A ,)2,2,4(-- B 和)1,5,0( C 等距离的点.解 设所求点M 的坐标为(0,y ,z ). 则 (),)1()5(2)2(4)2()1()03(22222222z y z y z y -+-=--+--+=-+-+-即.16)2()2()1()5(,16)2()2(9)2()1(22222222++++=-+-++++=+-+-z y z y z y z y化简得⎩⎨⎧=+-=+.2614,1086z y z y所以,⎩⎨⎧-==.2,1z y故所求点为(0,1,-2).3. 已知平面过点(1,0,0),(0,2,0)和(0,0,3). 试求该平面. 解 设平面方程为0Ax By Cz D +++=。
则⎪⎩⎪⎨⎧=+⋅+⋅+⋅=+⋅+⋅+⋅=+⋅+⋅+⋅,0300,0020,0001D C B A D C B A D C B A即⎪⎩⎪⎨⎧=+=+=+,03,02,0D C D B D A故⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=.31,21,D C D B D A故所求平面方程为.06236=-++z y x4. 试绘出以下柱面的图形(图形略): (1) 准线:221,9250x z y ⎧+=⎪⎨⎪=⎩母线平行于y 轴;(2) 准线:⎩⎨⎧==0,22x z y 母线平行于x 轴; (3) 准线:⎪⎩⎪⎨⎧==-0,19422z y x 母线平行于z 轴5. 已知准线为2221,49252x y z z ⎧++=⎪⎨⎪=⎩母线平行于z 轴,试求此柱面方程,并绘出其图形. 解 准线方程可写为⎪⎪⎩⎪⎪⎨⎧==+.3,25219422z y x它表示一个椭圆. 故所求柱面为椭圆柱面,其方程为25219422=+y x (图形略).6. 求由xz 坐标面上的抛物线xz 52=绕x 轴旋转一周而生成的曲面方程. 解 以22z y +±代替曲线方程中的变量z ,得所求曲面的方程xz y 522=+.它表示一个椭圆抛物面。
第七章空间解析几何与向量代数§向量及其线性运算必作题:P300 —301 :1, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 18, 19. 必交题:1. 求点(aM分别关于⑴各坐标而:⑵"坐标轴:⑶坐标原点的对称点的坐标.解:(1) xoy 而(a,b, ? c)理oz 面(? a,b , c) , xoz 面(a 广bQ ;(2) ox 轴(a A brc) z oy 轴(? ab? c) , oz 轴(? a,-b,c);(2)关于原点(? a,-b? c)a3、坐标而上的点与坐标轴上的点的坐标各有什么特征,指出下列各点的位置A(3,4,0), 3(0,4,3), C(3,0,0), £ >(0-1,0).解: xoy 而:z=0, yoz 而:x=0> xoz 而:y=0 ?ox 轴:y=O,z=O. oy 轴:x=0,z=0, oz 轴:x=0z y=0tA在xoy而上,B在yoz而上,C在x轴上,D在y轴匕4、在z 轴上求与点AM, 1,7) 和点B(3,5,-2) 等距离的点的坐标.14 14 解:设 C (0, 0, z),有|AC| = |BC|,解得:z=—,所求点为(0Q —).9 95、设“ =a-b + 2c.v = -a + 3b-c, 试用a.b.c 表示2u-3v? 解:2M一3” = 5a —1 仍+ 7c5、已知两点和M,3,0.2), 求向的模,方向余弦和方向角.解:={-1-72,1} , = 2 ,方向余弦为cos a =~~方向角汀上疗= cos y =—"辛: :P = ---- t Y ——4 3解:设0 "戯的模厨 i 方向余弦= = = 求2={5},贝2 2* = x/J * “ = {o 丄苗}7、设有向疑片A , kR| = 2,它与x 轴、y 轴的夹角分别为彳和?如果已知人(1,0,3),求g 的坐标.解:设巴的坐标为(x,y,z ) ?叶马={x-l,y,乙一 3},-八一! ■= cos —=—,所以x = 2 :I = cos-=八,所以 y = V2 ,又障可=2,,所以 J1 + 2 + (Z _3)2 =2,解得 z = 2 或 z =4,所以人的坐标为(2,72,2)或者(2,72,4).& 求平行于向疑方={6,7, — 6}的单位向量. ){6,7,-6},即必作题: P309-310 : 1, 2, 3, 4, 6, 7, 8, 9. 必交题:1、已知向量“ ={1, 一 2,2}与/? = {2,3,几}垂直,向 M c = {1,1,-2}与2={22平行,求兄和“的值解:? =736 + 49 + 36 = 11,与N 平行的单位向疑为土丄 数量积向量积混合积2、已知向Sa = 2i-3j + k9b = i-j + 3k 9c = i-2j A 别计算以下各式⑴(a A B)c-(a A c)b; (2) (a + b)x(b + c) ; (3) (axb A c.解:(1) - (a ? c)b = 8c - 8b = -8 了 - 24 斤(2) (A+b)x(b+c) = (A -4j+4k)x(2i-3j+3k) = -j-k2 一 31⑶(“ xb)0= 1-1 3=2 1 -2 0OAxOB : 解:-37-3j3、已知 OA=l+3k,OB = J + 3k f 求 AABO 的而积. AABO 的而积 S = A \OA X OB\ =.§曲面及其方程必作题;必交P318-319 : 1、2、5、6、7、8、9、10.1、一动点与两従点 A(2,3,l)和B(4,5,6)等距离,求该动点的轨迹方程解:设动点因为网=阿所以(x-2)2+(y-3) 2+(z-l) 2=(x-4) 2+(y-5)2 + (z-6)2,解得动点的轨 迹方程为 2x + 2y + 5z.2、指出下列方程在平而解析几何和空间解析几何中分别表示什么图形2 2解:(DxOy 坐标而上椭圆一+ — = 1绕6轴旋转形成,或者妝力坐标而上椭圆一+ A - 4 =1绕6轴旋转形成。
《高等数学》单元自测题第七章 空间解析几何专业 班级 姓名 学号一、填空题:1. 已知向量a 与b 垂直,且5||=a ,12||=b ,则=+||b a ,=-||b a .2.设向量{}{}1,1,2,1,2,1--==OB OA ,则=⋅OB OA ,=⨯OB OA ,=∠AOB cos .3.已知点)3,1,2(),5,0,4(B A ,则与AB 同向的单位向量为 . 4.若两平面0=-++k z y kx 与02=-+z y kx 互相垂直,则k = . 5.过点)1,2,3(--和点)5,4,5(的直线方程为 . 6.点)2,3,1(到平面0322=+-+z y x 的距离为 .7.母线平行于z 轴且通过曲线⎪⎩⎪⎨⎧+==++22222214zy x z y x 的柱面方程是 .8.球面042222=+-++y x z y x 的球心为 ,半径为 . 二、单项选择题: 1.若两直线634123-=+=-z y x 与22251-+=+=-k z y x 平行,则k= . (A)2; (B)3; (C)4; (D)5.2.设平面方程为0=++D Cz Bx ,且0≠BCD ,则平面 . (A)平行于x 轴; (B)平行于y 轴; (C)经过y 轴; (D)垂直于y 轴.3.过点)1,1,2(-且与平面0132=+-+z y x 垂直的直线方程为 .(A)111322-+=-=-z y x ; (B)111322--=+=+z y x ; (C)113122-+=-=-z y x ; (D)113122--=+=+z y x . 4.设三向量c b,a,的模分别为3,6,7,且满足0c b a =++,则a c c b b a ⋅+⋅+⋅ = . (A)45; (B)-47; (C)42; (D)-43.5.方程16422=+y x 所表示的空间曲面的名称为 . (A)椭球面;(B)球面;(C)椭圆抛物面;(D)柱面.三、解答题:1.已知向量}1,0,1{-=a ,}1,2,2{-=b ,求)()23(b a b a +⨯-.2.设b a m +=2,b a n +=k ,其中1||=a ,2||=b ,且b a ⊥,求数k ,使得n m ⊥.3.设有点)0,1,2(A 和)2,3,2(-B ,求线段AB 的垂直平分面方程.4.已知点)1,3,2(A ,)1,4,5(-B ,)3,2,6(-C ,)1,2,5(-D ,求通过点A 且垂直于B 、C 、D 所确定的平面的直线方程.5.用点向式方程及参数方程表示直线⎩⎨⎧=++-=--+012530432z y x z y x .6.求直线3931211-=-=-z y x 与平面0253=--+z y x 的交点坐标.《高等数学》单元自测题第八章 多元函数微分学专业 班级 姓名 学号一、填空题1.设 xyz 3=, 则=∂∂xz____________. 2.设 221),(y x y x f +=,则=)3,1(y f __________________.3.方程式 1=++zx yz xy 确定z 是y x ,的函数,则=∂∂xz_________________. 4.设 xe y z sin =,则=∂∂∂yx z2__________________. 5.设 )1ln(2122y x z ++=,则=)1,1(dz ______________. 6.设函数 ),(y x f z =的全微分dy y ax dx xy dz 2232+=,则常数=a _________________.7.函数343y xy x z ++=在A(1,2)处沿从A 到B(2,1)方向的方向导数等于____________. 8.函数zx yz xy u ++=在点(1,2,3)处的梯度=∇)3,2,1(u _________________. 二、选择题1.设,0,0,0,),(222222=+≠+⎪⎩⎪⎨⎧+=y x y x y x xy y x f 则).(y x f 在点(0,0)处( ). (A)连续,但偏导数不存在; (B)不连续,但偏导数存在; (C)连续,且偏导数存在; (D)不连续,且偏导数不存在.2.设=z ln ),2(yxe e -则=∂∂)0,0(22x z( ).(A) 1; (B) -1; (C ) 2; (D) -2. 3.设方程0),,(=---x z z y y x F 确定z 是y x ,的函数,则=∂∂xz( ). (A) ;'3'2'2'1F F F F -- (B ;'3'2'1'2F F F F -- (C) ;'3'2'3'1F F F F -- (D) ;'3'2'1'3F F F F -- 4.函数yx yx z -+=的全微分=dz ( ).(A)2)()(2y x ydy xdx --; (B)2)()(2y x xdx ydy --; (C)2)()(2y x xdy ydx --; (D)2)()(2y x ydx xdy --5.函数233xy xy x z +-=在点M(1,2)处沿}3,11{=l方向的方向导数( ).(A)最大; (B)最小; (C)等于1; (D)等于0.6.在曲线32,,t z t y t x ===的所有切线中与平面02=++z y x 平行的切线( ).(A)只有一条; (B)只有两条; (C)至少有三条; (D)不存在. 7. 函数23242),(y y xy x y x f +--=有( )个驻点.(A) 1; (B) 2; (C) 3 ; (D) 4. 8. 对于函数22y x z -=,原点(0,0)( ).(A)是驻点但不是极值点; (B)不是驻点; (C)是极大值点; (D)是极小值点. 三.解答题 1.设)ln(22y x x z ++=,求x z ∂∂,yz ∂∂.2.求 x y z arctan = 的二阶偏导数y x zx z ∂∂∂∂∂222,及22yz ∂∂.3.设方程02223=-++z z y x 确定z 是y x ,的函数, 求xz ∂∂. 4.设vu e z 2-=,而y x v x y u cos ,sin ==,求yz x z ∂∂∂∂,.5.设),(xyxy f z =,f 具有连续的二阶偏导数,求x z ∂∂,y x z ∂∂∂2.6.求函数 x y x y x y x f 933),(2233-++-= 的极值.7.求球面 14222=++z y x 在点 )3,2,1( 处的切平面和法线方程.8.要做一个容积为32m 的无盖长方体水箱,问怎样选取长,宽,高,才能使得用料最省.《高等数学》单元自测题第九章 重积分专业 班级 姓名 学号一、填空题:1.已知积分区域10,10:≤≤≤≤y x D ,则二重积分=+⎰⎰Dd y x σ)(__________________.2.交换二次积分的积分次序=⎰⎰x x dy y x f dx 2),(10__________________________.3.已知积分区域)0(:2222b a b y x a D <<≤+≤,则将二重积分⎰⎰Ddxdy y x f ),(化为极坐标形式的二次积分为___________________________.4.已知区域10,10,10:≤≤≤≤≤≤Ωz y x ,则三重积分=++⎰⎰⎰Ωdv z y x )32(___________________.5.由224y x z --=与xOy 坐标面所围成的立体Ω的体积V =_______________.二、选择题:1.已知区域D 是由直线1=+y x 与x 轴、y 轴所围成的闭区域,则二重积分=⎰⎰Ddxdy( ). (A)41; (B )21; (C )1; (D )2. 2. 已知积分区域D 是由1,==x x y 和x 轴围成,则=⎰⎰Dd y x f σ),(( ).(A)⎰⎰1010),(dy y x f dx ; (B)⎰⎰110),(x dy y x f dx ;(C )⎰⎰xdy y x f dx 010),(; (D)⎰⎰y dx y x f dy 010),(.3.已知⎰⎰+=Dd y xf I σ)(22,其中1:22≤+y x D ,则=I ( ).(A )dr r rf ⎰102)(; (B )dr r rf ⎰12)(2π;(C )dr r f ⎰102)(; (D )dr r f ⎰12)(2π.4. 已知积分区域Ω:41222≤++≤z y x ,则将三重积分⎰⎰⎰Ω++dv z y xf )(222化为球坐标系下的累次积分为( ). (A) dr r f d d ⎰⎰⎰21220)(ππϕθ; (B)dr r f d d ⎰⎰⎰212020)(sin ππϕϕθ;(C)dr r r f d d ⎰⎰⎰212020)(sin ππϕϕθ; (D) dr r r f d d 2212020)(sin ⎰⎰⎰ππϕϕθ.三、计算下列二重积分:1.计算σd y xD⎰⎰32,其中积分区域D 是由曲线x y x y ==,1与直线4=x 围成的闭区域.2.计算dxdy e Dy ⎰⎰2,其中积分区域D 是由直线x y =,1=y 及y 轴所围成的闭区域. 3.计算 dxdy y x D⎰⎰+22,其中积分区域D 是由4122≤+≤y x 所确定的圆环域.4.计算⎰⎰+Dy x d e σ22,其中积分区域D 是由122≤+y x 所确定的圆形域.四、计算下列三重积分:1.计算三重积分⎰⎰⎰Ωdxdydz x 2,其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域.2. 计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面22y x z +=与平面4=z 所围成的闭区域.五、求由平面0,1==y x 与柱面2x y =所围成的柱体被平面0=z 及抛物面224y x z --=所截得的立体的体积.《高等数学》单元自测题第十章 曲线积分与曲面积分专业 班级 姓名 学号一、计算下列曲线积分: 1. 设L 为单位圆周的上半部分,求⎰+Ly x ds e22.2. 计算⎰Lxyds ,其中L 为由x 轴,单位圆,y 轴围成第一象限扇形的整个边界.3. 计算ds z y x ⎰Γ++2221,其中Γ是螺线t z t y t x 3,s i n2,c o s 2===的第一圈(π20≤≤t ).4. 计算xydy dx y L+⎰,其中L 为(1)上半圆周21x y -=上从点)0,1(到点)0,1(-的一段弧;(2)从点)0,1(到点)0,1(-的直线段;(3)先沿直线从)0,1(到)1,0(再沿直线到)0,1(-的折线.5. 利用格林公式计算dy x y x dx y x L)3()3(2+++⎰,其中L 是由曲线2x y =及x y =2所围成区域的正向边界.6. 证明曲线积分⎰+++Ldy x y x dx y x xy )()3(3222在整个xoy 平面上与路经无关,并计算⎰+++)4,3()2,1(3222)()3(dy x y x dx y x xy 的值.二、计算下列曲面积分1. 计算dS y x ⎰⎰∑+)(22,其中∑是抛物面)(2122y x z +=及平面2=z 所围成的区域的整个边界曲面.2. 计算ydzdx xdydz zdxdy ⎰⎰∑++,其中∑是长方体,10,10|),,{(≤≤≤≤=Ωy x z y x}10≤≤z 整个表面的外侧.3. 利用高斯公式计算dxdy z dzdx y dydz x 333⎰⎰∑++,其中∑为球面1222=++z y x 的外侧.《高等数学》单元自测题第十一章 无穷级数专业 班级 姓名 学号一、选择题:1、若极限lim 0n n u →∞≠, 则级数1nn u∞=∑( ) .(A) 收敛; (B) 发散; (C) 条件收敛; (D) 绝对收敛. 2、下列级数发散的是 ( ) (A)nn n 1)1(11∑∞=--; (B) )111()1(11++-∑∞=-n n n n ; (C) nn n1)1(1∑∞=-;(D))1(1n n ∑∞=-. 3、下列级数绝对收敛的是( ) (A)∑∞=-2)1(n nnn; (B)nn n 1)1(21∑∞=--; (C) ∑∞=-2ln )1(n nn ; (D) ∑∞=--2321)1(n n n.4、下列级数收敛的是( )(A) ∑∞=+1)1ln(1n n ; (B)∑∞=+-1)1ln()1(n nn ; (C) ∑∞=+-112)1(n nn n; (D) ∑∞=+112n n n. 5、下列级数中条件收敛的是( )(A) ∑∞=⎪⎭⎫⎝⎛-132)1(n nn;(B)∑∞=--11)1(n n n; (C)∑∞=-+-1112)1(n n n n;(D) ∑∞=--13151)1(n n n.6、如果级数1nn u∞=∑收敛,则下列结论不成立的是( )(A) lim 0n n u →∞= ; (B)1nn u∞=∑ 收敛;(C)1(nn kuk ∞=∑为常数)收敛; (D)2121()n n n uu ∞-=+∑ 收敛.7、交错级数11(1)(1)n n n n ∞-=-+-∑( )(A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 敛散性不能判定. 8、设幂级数1nn n a x∞=∑在2x =处收敛,则在1x =-处( )(A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 敛散性不能判定.9、函数22()x f x x e =在(,)-∞+∞内展成x 的幂级数是( )(A) 211(1)(21)!n n n x n -∞=--∑; (B)21!n n x n +∞=∑; (C) 2(1)1!n n x n +∞=∑ ; (D) 21!nn x n ∞=∑. 二、填空题:1、函数211x +的幂级数展开式是____ ____.2、幂级数11(1)nn n x n∞-=-∑在(1,1]-上的和函数是_______ ____. 3、幂级数1(3)3nnn x n ∞=-∑的收敛域为___ ________. 4、函数()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为0()(0),0x f x k kx ππ-≤<⎧=≠⎨≤<⎩则()f x 的傅立叶级数的和函数在x π=处的值为______ _____.三、判断以下正项级数收敛或发散:(要写出详细的判断过程) 1.∑∞=+121n nn 2.()∑∞=++1332n n n n3.nn n n ∑∞=⎪⎭⎫ ⎝⎛+1134.()∑∞=-+121n nnn四、判断以下任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛:(要写出详细的判断过程) 1.()∑∞=---11121n n n n2. ++-+++-14413312221222五、求下列幂级数的收敛半径和收敛域 1. ∑∞=13n n n x n2.()∑∞=-11n n nnn x ;3.∑∞=1!n n x n .六、 将函数()x x f 2-=,()ππ≤≤-x 在区间[]ππ,-上展开为傅里叶级数.七、 将函数()⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=lx l x l l x x x f 2,20,分别展开成正弦级数和余弦级数.高等数学(一)综合测试I一、选择题(本大题共 10 小题,每小题 2 分,共 20 分)1.设函数()x f 定义在闭区间[]b a ,上,则下列结论正确的是( ).(A) 若()x f 可积,则()x f 一定有界. (B) 若()x f 连续,则()x f 一定可导. (C) 若()x f 有界,则()x f 一定连续. (D) 若()x f 可积,则()x f 一定可微. 2. 下列结论正确的是( ). (A) 若()0lim x x f x A →=, 则()0lim x x f x A →=.(B) 可导函数的极值点一定是驻点.(C) 若0''()0f x =,则点00(,())x f x 一定是曲线()y f x =的拐点. (D) 一切初等函数在定义区间内部都可导. 3.下列求导运算错误的是( ).(A)0()()x d f t dt f x dx =⎰; (B) 33311xd tdt x dx -+=-⎰; (C) 1(ln8)'x x=; (D) 22()'x x e e =.4. 微分方程2''1x y y e -=+的特解形式为(其中,a b 为常数)( ). (A) 2xaxebx +; (B) 2x axe b +; (C)2x ae b +; (D) 2x ae bx +.5. 设0()lim2x f x x →=,则0sin 2lim (3)x xf x →=( ).(A)23; (B) 32; (C) 13; (D) 3.6. 设0'()f x 存在,则000()()lim2h f x h f x h h→--+=-( ). (A) 0'()f x ; (B)02'()f x ; (C) 0'()f x -; (D) 02'()f x -.7. 设函数arctan ,0ln(1)()0,01sin ,0xx x f x x x x x ⎧>⎪+⎪⎪==⎨⎪⎪<⎪⎩,则点x =0是函数)(x f 的( ).(A) 第二类间断点; (B) 第一类间断点; (C) 连续但不可导点; (D)可导点. 8. 设()x f x dx xe C -=+⎰,则函数()f x 的单调递增区间为( ).(A) (,1]-∞; (B) [1,)+∞; (C) (,2]-∞; (D) [2,)+∞.9.下列反常积分错误的是( ). (A)41113dx x +∞=⎰; (B) 211dx x π+∞-∞=+⎰;(C)1110dx x -=⎰;(D)1111dx x-=⎰. 10. 设函数1,0(),0xx x f x x x +≤⎧=⎨>⎩,则( ). (A) 0lim ()x f x →不存在;(B) 0lim ()x f x →存在, 但()f x 在点0x =处不连续;(C) ()f x 在点0x =处连续,但不可导; (D) ()f x 在点0x =处可导,且'(0)1f =.二、填空题(本大题共 5 小题,每小题 2 分,共 10 分) 1. 3ln(1)lim(1)x x x +→+= .2.设3232x t t y t t⎧=-⎨=-⎩,则dydx = . 3. 设))ln(cot(x y =,则函数的微分dy = . 4. ()xf x e -=的5阶麦克劳林公式为xe-= .5.一阶线性微分方程 'xy y e -=的通解为 .三、计算题(本大题共 6 小题,每小题 10 分,共 60 分)1. 求不定积分211sec tan 2ln 212x x x e dx x x ⎛⎫++++ ⎪+⎝⎭⎰.2. 设函数)(x y y =由方程tan y x y =+确定,求dxdy .3. 求极限011lim sin 1x x x e →⎛⎫- ⎪-⎝⎭.4.求不定积分21815x dx x x --+⎰.5.求定积分31ln e x xdx ⎰.6. 求微分方程''3'20y y y -+=的通解和在初值条件001,'2x x y y ====下的特解.四、应用题(本大题共 2 小题,每小题 5 分,共 10 分)1.求由抛物线2y x =与直线y x =所围成的平面图形绕x 轴旋转一周所得旋转体的体积.2.设函数()f x 和()g x 都在闭区间[,]a b 上连续,在开区间(,)a b 内可导,并且()()0f a f b ==,证明:至少存在一点(,)a b ξ∈,使得'()()'()0f f g ξξξ+=.高等数学(一)综合测试II一、选择题(本大题共 10 小题,每小题 2 分,共 20 分) 1、 当0→x 时,下列函数( )不是其它函数的等价无穷小.(A )2sin x ; (B )2cos 1x -; (C ))1ln(2x +; (D ))1(-x e x .2、 已知极限0)2(lim 2=++∞→kn nn n ,则常数=k ( ) (A )1-; (B )0; (C )1; (D )2. 3、 设)(x f 在点0x 可导,则下列说法错误的是( ) (A))(lim 0x f x x →存在; (B))(x f 在点0x 连续;(C) )(x f 在点0x 可微; (D) )(x f 在点0x 取得极值,.4、 设)(x ϕ在点0=x 处连续,且0)0(=ϕ,若)(||)(x x x f ϕ=,则)(x f 在0=x 点处( ) (A )不连续; (B )连续但不可导; (C )可导,且)0()0(ϕ'='f ; (D )可导,且)0()0(ϕ='f .5、 曲线314--=x y 的拐点是( )(A ))4,1(; (B ))3,2(; (C ))2,9(; (D ))5,0(. 6、 若函数x2为)(x f 的一个原函数,则函数=)(x f ( ).(A ) 12-x x ; (B ) 1211++x x ; (C ) 2ln 2x; (D ) 2ln 2x . 7、 设C e dx x f x +=⎰2)(,则下列说法正确的是( ).(A ))(x f 在),(+∞-∞内单调增加; (B ))(x f 在),(+∞-∞内单调减少; (C ))(x f 在),0[+∞上单调增加; (D ))(x f 在),0[+∞上单调减少. 8、 设连续函数)(x f 满足:⎰+=102)()(dt t f x x x f ,则)(x f =( )(A )234x x +; (B )243x x +; (C )232x x +; (D )223x x +. 9、 下列反常积分中收敛的是( ) (A )⎰∞+11dx x ;(B )⎰∞+1321dx x;(C )⎰-102)1(1dx x ;(D )⎰-212x dx .10、曲线221x y =上相应于x 从0到1的一段弧的长度为 ( ) (A ))]12ln(2[21++;(B )221;(C ))12ln(21+;(D ))12ln(2++.二:填空题(本大题共 5 小题,每小题 2 分,共 10 分) 1.=-→xx x 30)21(lim ________________.2.设函数⎩⎨⎧≥+<=0),ln(0,sin )(x x b x x a x f 在点0=x 处可导,则=a _________,=b _________.3.设x x y ln 2=,则函数的微分=dy ________________.4.xxe x f =)(的n 阶麦克劳林公式为_________________________________________. 5.微分方程212y x dxdy-=的通解为________________.三:计算下列各题(本大题共 6 小题,每小题 10分,共 60分) 1. 求⎪⎭⎫ ⎝⎛-→x x x 1sin 1lim 0.2. 设⎩⎨⎧=+=ty t x arctan )1ln(2,求dx dy .3. ⎰--+dx x x x 272.4. 求⎰+102)1ln(dx x .5. 求由曲线2y x =及直线x y =所围成平面图形绕x 轴旋转一周所得旋转体的体积.6. 求微分方程xxe y y 2='+''的通解.四:证明题(本大题共 1 小题,每小题 10分,共 10 分) 设函数)(x f 在),(+∞-∞内连续,且0)(>x f ,证明方程x x e x dt t f )1()(0-=⎰在区间)1,0(内有且仅有一个实根.高等数学(一)综合测试III一、选择题(本大题共 10 小题,每小题 2 分,共 20 分)1.下列广义积分结果正确的是( ).A. ⎰-=1101dx x ;B.⎰--=11221dx x ;C.⎰∞++∞=141dx x ;D. ⎰∞++∞=11dx x.2. 下列求导运算正确的是( ).A. ()x x xcos 2sin 2=';B. ()[]()00x f x f '=';C. ()xxee cos cos =';D. ()xx 15ln ='. 3. 设()x f 为定义在[]b a ,上的函数,则下列结论错误的是( ).A. 若()x f 可导,则()x f 一定连续;B. 若()x f 可微,则()x f 一定可导;C. 若()x f 不连续,则()x f 一定不可导;D. 若()x f 可微,则()x f 不一定可导. 4. 下列等式正确的是( ). A.()()()x f dx x f ='⎰; B. ()()⎰=x f x df ;C. ()()()x f dx x f d=⎰; D. ()()⎰='x f dx x f .5. 曲线⎪⎩⎪⎨⎧=+=321ty tx 在2=t 处的切线方程为( ). A. 73-=x y ;B. 33-=x y ;C. 31931+=x y ;D. 3731+=x y . 6. 设()x f 在点a x =处可导,则()()=--+→hh a f h a f h 2lim 0( ). A. ()a f '3;B. ()a f '2;C. ()a f ';D. ()a f '31.7. 设()⎪⎩⎪⎨⎧=≠-+=0,0,1sin 2x a x xe x xf ax 在点0=x 处连续,则=a ( ). A. 1; B. 0;C. e ;D. 1-.8、设123,,y y y 都是微分方程()()()y p x y q x y f x '''++=的解,且≠--3231y y y y 常数,则该微分方程的通解为 ( ) .(A)1122123(1).y C y C y C C y =++-- (B)1122123();y C y C y C C y =+-+ (C)1122123(1);y C y C y C C y =+--- (D)11223;y C y C y y =++9. 设()x f 在点0=x 的某个邻域内可导,且()2cos 1lim0=-→xx f x ,则点0=x ( ). A. 是()x f 的极小值点; B. 是()x f 的极大值点;C. 不是()x f 的极值点;D. 是()x f 的驻点,但不是极值点.10. 设)(x f 在),(+∞-∞内连续且可导,如果⎰+=102)()(dt t f xx x f ,则=')(x f ( ) .A. x 231+;B. 223x x +;C. 243x x +;D. 4232x x +.二、填空题(本大题共 5 小题,每小题 2 分,共 10 分)1. 1)1sin(lim 21--→x x x = .2. 微分方程y y x y ln ='满足初始条件e y x ==1的特解为 .3. 设函数⎰+=xdt t y 02)1cos(,则微分=dy .4.⎰-++1121sin 2dx x x= .5. 由曲线2x y =,直线1=x 及x 轴所围成平面图形绕x 轴旋转一周所得旋转体的体积=V ___ _.三、 计算题(本大题共 3 小题,共 30 分)1. 设)(x f y =是由方程e xy e y x +=+所确定的隐函数,求dxdy.2. 求⎪⎭⎫ ⎝⎛+-+∞→x xx 11ln arctan 2limπ.3. 求函数()313x x x f -=的单调区间、极值点、凹凸区间以及函数曲线上的拐点.四.计算下列积分(本大题共 3 小题,共 30 分)1. 求不定积分⎰⎪⎪⎭⎫ ⎝⎛+-++⋅-+dx x e x x x x x 111cot csc 122.2. 求不定积分⎰-dx x 113 .3. 求定积分⎰10dx e x .五. 证明题(本大题共 2 小题,共 10 分) 1. 当0>x 时, ()x x x arctan )1ln(1>++.2. 设函数()x f 与()x g 在],[b a 上连续.证明至少存在一点()b a ,∈ξ,使得 ()()()()⎰⎰=ba dx x f g dx x g f ξξξξ.高等数学(二)综合测试I一.填空题(本大题8小题,每小题3分,共24分)1.设,333},3,2,1{k j i b a -+==则b a ⋅=__________.2.过点)3,2,1(0M 且与直线31321zy x =+=-垂直的平面方程是___________________. 3.函数22y x ez +=的全微分dz =____________________.4.函数232y xy x z ++=在点A(1,1)处沿A 到B(3,3)的方向导数是__________________.5.交换二次积分次序dx y x f dy yy⎰⎰2),(1=________________________________.6.设L 是圆122=+y x 的上半圆周,⎰Lds 2 =____________________.7.设Ω是由圆柱面122=+y x ,及平面0=z ,1=z 所围成,将三重积分dxdydz z y x f ⎰⎰⎰Ω),,(化为柱坐标系下的三次积分是_________________________________.8.展开函数=)(x f 2x e 的x 的幂级数是___________________________________.二.单选题(本大题共4小题,每小题2分,共8分)1.下列曲面中,为旋转曲面是( )(A) 1=++z y x (B) 1222222=++cz b y a x (c b a ,,彼此不等)(C) )(2122y x z +=(D) 2x y = 2.已知区域D:4122≤+≤y x ,则⎰⎰=+Dy x dxdy e 22( )(A))(24e e -π(B) )(4e e -π(C) -e π (D) 4e π 3.下列级数中收敛的是( ) (A)∑∞=1cos n n (B) ∑∞=-1)1(n n(C) ∑∞=-11)1(n nn (D)∑∞=11n n4.幂级数∑∞=1n nn x 的收敛域是( )(A) [-1,1] (B) (-1,1) (C) [-1,1) (D) (-1,1]三.解答题(本大题共6小题,每小题10分,共60分)1.求曲面022=-+z y x 在点(1,1,2)处的切平面方程和法线方程.2..设 02=-yz x e z ,求yz x z ∂∂∂∂,.3. 设),ln(xy x z =,求yx zx z ∂∂∂∂∂2,.4.求函数22)(4),(y x y x y x f ---=的极值.5.应用格林公式计算曲线积分:dy y dx x xy L22)2(+-⎰,其中L 是由曲线2x y =及x y =2所围成的区域的边界(逆时针方向).6.利用高斯公式计算曲面积分:⎰⎰∑++zdxdy y ydzdx xdydz xz 222,其中∑是球体1222=++z y x 的表面的外侧.四.证明题(8分)验证函数22ln y x z +=满足方程02222=∂∂+∂∂yzx z .高等数学(二)综合测试II一.填空题(本大题10小题,每小题3分,共30分)1.设a ={3,-1,-2},b =k j i -+,则_______=⋅b a . 2.过点)3,2,1(0M 且与直线32211zy x =+=-垂直的平面方程是__________________. 3.函数=z xye 在点(1,1)的全微分___________________=dz . 4.函数z y x z y x f +-=22),,(在点)0,1,1(0-P 的梯度=-)0,1,1(gradf ________________. 5.交换二次积分的积分次序=⎰⎰dx y x f dy y y 2202),(_________________.6.将三重积分dxdydz z y x f ⎰⎰⎰Ω),,(变换为柱坐标系下的三重积分为___________________.7.设L 是以O 为心,R 为半径的上半圆周,则=+⎰ds y x L22)(_______.8.曲线积分⎰+LQdy Pdx 在区域G 内与路径无关的充分必要条件是____________________. 9.将函数xx f -=21)(展开为关于(1-x )的幂级数是____________________. 10.若)(x f 是以π2为周期的周期函数,则)(x f 的傅里叶级数中的傅里叶系数.______2=a二.单选题(本大题共5小题,每小题2分,共10分)1.设)(xyf z =,则下列等式正确的是( ).(A) 2)(x y x y f z x '=; (B) 2)(x yx y f z x '-=;(C) 21)(x x y f z y '=; (D) 21)(xx y f z y '-=.2.下列级数中绝对收敛的是( )(A) ∑∞=-11)1(n nn ; (B)∑∞=-1)1(n n;(C)∑∞=-11)1(n nn; (D)∑∞=-11)1(n nnn .3.函数xyz z xy u -+=32在(1,1,1)点处方向导数最大值是( ). (A)5; (B) 5; (C) 25; (D)51.4.已知dxdy y x f I D ⎰⎰+=)(22,其中1:22≤+y x D ,则=I ( ).(A)rdr r f ⎰102)(; (B) rdr r f ⎰102)(2π; (C)dr r f ⎰102)(; (D) dr r f ⎰12)(2π.5.幂级数∑∞=1n nn x 的收敛域是( ).(A) [-1,1]; (B) (-1,1]; (C) [-1,1); (D) (-1,1).三.解答题(本大题共4小题,每小题10分,共40分)1.设函数),(y x z z =由方程04222=-++z z y x 所确定,求yz x z ∂∂∂∂,.2.设),(y x xy f z +=,其中),(v u f 具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2,.3.计算二重积分⎰⎰Ddxdy yx2,其中D 是由曲线x y x y ==,1与直线4=x 围成.4.计算曲面积分dS y x z ⎰⎰∑++)(,其中∑为平面1=++z y x 在第一卦限部分.四.应用题(10分)求函数y x y x y x f 22),(22--+=的极值.五.证明题(10分) 证明曲线积分⎰++Lx ydy x dx xy e 22)(在xoy 平面上与路径无关,并计算.)(2)3,2()1,1(2ydy x dx xy e x ++⎰高等数学(二)综合测试III一:填空题(本大题共 7 小题,每小题 3 分,共 21 分)1、 抛物线2x y =和x y =2所围成平面图形的面积为________________.2、 设),(y x f z =是由方程02222=-++xyz z y x 所确定的隐函数,则=∂∂xz _________. 3、 函数)ln(22y x z +=在点)1,1(处方向导数的最大值为_______________.4、 旋转抛物面22y x z +=在点)2,1,1(处的切平面方程为_______________.5、 设⎰⎰=220),(x dy y x f dx I ,交换积分次序后,=I _______________. 6、 设L 是圆周222a y x =+(0>a ),则=+⎰L ds y x )(22_______________.7、 设L 是椭圆12222=+by a x (0>a ,0>b )正向一周,则=-⎰L ydx xdy _________. 二:选择题(本大题共 5 小题,每小题 2 分,共 10 分)1.设221ln y x z ++=,则=)1,1(dz ( )(A )dy dx +; (B ))(3dy dx +; (C ))(21dy dx +; (D ))(31dy dx +. 2.设),(yx x f z =,其中f 具有连续的偏导数,则=∂∂x z ( ) (A )21f x f '+'; (B )211f y f '+'; (C )21f y x f '+'; (D )221f y x f '-'. 3.如果⎰⎰⎰⎰-=θππθθθcos 022)sin ,cos (),(a D rdr r r f d dxdy y x f ,则积分区域D 为( )(A )ax y x ≤+22(0>a ); (B )ax y x ≤+22(0<a );(C )ay y x ≤+22(0>a ); (D )ay y x ≤+22(0<a ).4.设Ω是上半球体2222a z y x ≤++(0≥z ),则下列积分不为零的是( )(A )⎰⎰⎰Ωxdv ; (B )⎰⎰⎰Ωydv ; (C )⎰⎰⎰Ωzdv ; (D )⎰⎰⎰Ωxyzdv .5.下列级数中条件收敛的是( ) (A )∑∞=-+-111)1(n n n n ; (B )∑∞=--1211)1(n n n ; (C )∑∞=--1311)1(n n n; (D )∑∞=--111)1(n n n .三:计算题(本大题共 5 小题,共 59 分)1.求函数x y x y y x f 43),(223+--=的极值.2.求二重积分⎰⎰D d x x σsin ,其中D 是由抛物线2x y =和直线x y =所围成的闭区域.3.求对弧长的曲线积分⎰+=L y x ds e I 22,其中L 是222a y x =+(0>a )在第一象限与x 轴、y 轴所围的区域的整个边界.4.将函数651)(2+-=x x x f 展开成x 的幂级数,并指出其收敛域.5.求曲面∑:)(2122y x z +=在0=z 与2=z 之间部分的面积.四:证明题(本大题共 2 小题,每小题 5 分,共 10 分)1.设函数)(r g 有二阶导数,且)(),(r g y x f =,22y x r +=, 证明:)()(12222r g r g r yf x f ''+'=∂∂+∂∂(其中)0,0(),(≠y x ).2.设y xe y x P 21),(+=,y e x y x Q y -=22),(,(1) 证明曲线积分⎰+L dy y x Q dx y x P ),(),(与路径无关;(2) 求沿上半圆1)1(22=+-y x 从点)0,0(O 到点)0,2(A 的曲线积分⎰+)0,2()0,0(),(),(dy y x Q dx y x P .。
第7章 (之1) 第31次作业教学内容: §7.1定积分的微元法 7.2.1平面图形的面积1.选择题:* (1) ⎰=b adx x f s s )(21则表示的面积(如图),和 ( )21122121)()()()(s s D s s C s s B s s A ---+ 答( C )* (2) 面积轴所围成的平面图形的及曲线y b a b y a y x y )0(ln ,ln ,ln <<====A 为 ( )⎰⎰⎰⎰ab ba e ee exbaybaxdx D dx e C dy e B xdx A ln )()()(ln )(ln ln ln ln 答( B )*** (3) 面积轴所围成的平面图形的及过原点的该曲线的切线曲线y e y x,= 为=A ( )⎰⎰⎰⎰----11011)()()ln (ln )()()()ln (ln )(dxex e D dy y y y C dx xe e B dy y y y A xex x e答( D )*** (4) )()0(cos =>=A a a 积所围成的平面图形的面曲线θρ⎰⎰⎰⎰-20222022222022cos 212)(cos 21)(cos 21)(cos 21)(πππππθθθθθθθθd a D d a C d a B d a A 答( D )*2.在下面图中用阴影标出一块与所示定积分之值相等的面积。
⎰--+1122]2[dy y y2x** 3. .4,)(2积所围成的平面图形的面和求曲线方法积分和对对用两种==y x y y x⎰-=202)4(2:dx x s 解=-2413302()x x =-⋅=28138323(). dy y s ⎰=402=433204y =⋅=438323.** 4. 所围及求曲线方法积分和对对用两种31,0,1,)(2====x x y xy y x 成的平面图.形的面积解交点:(,),(,),11319⎰=3121dx x s =-=-=11132313x⎰⋅+-=191912)11(dy ys929132(192)2(191+--=+-=y y =23**** 5. 求极坐标中区域()(){}θρθρθρsin 2,cos 12,≤+≤=D 的面积。
(C)充分必要条件; (D) 既非充分又非必要条件第七章 多元函数微积分简介 自测题.选择题1.二元函数 z=f(x,y) 在点 ( x 0,y 0 )处可微的充分条件是 ( ) A f(x,y) 在点( x 0,y 0 )处连续;B f x (x,y), f y (x,y)在( x 0 , y 0)的某邻域存在;C z- f x(x 0,y 0) x f y(x 0,y 0) y,当 x 2y 20 时,是无穷小量;6.函数 z f(x,y) 在点 (x 0,y 0) 处具有偏导数是它在该点存在全微分的 ( )2. z-f x(x 0,y 0) x f y (x 0,y 0) y ,x 2(x 2 f (x,y) 0,y 2)sin x 2 1y 2 ,2x 2 x偏导数不存在; x 22y 22y0时,0,则在原点 0。
B 不可微C 偏导数存在且连续 3.设 ( x)为任意一个 x 的可微函数, y)为任意一个是无穷小量。
0,0)处 f(x,y) (可微y 的可微函数,若已知 2F,则F(x, y)是x y x yA f(x,y)+ ( x )B f(x,y)+ ( y)C f(x,y)+ ( x )+ y )D f(x,y)+ ( x) 4.已知( axy 3-y 2cosx ) dx+(1+bysinx+3x 2y 2)dy 为某一函数 f(x,y) 的全微分,则 的值分别是 ( A -2 和 2, B )2 和 -2 ,C -3 和 3D 3 和 -3.xy2xy 20 ,5.设函数 f(x,y)22x2 y 2则f(x,y)2xy 2(A) 处处连续;(B) 处处有极限, 但不连续; (C) 仅在点连续;(D) 除( 0,0)点外处处连(y) a 和b (A) 必要而非充分条件;(B) 充分而非必要条件;7.设函数z 1 x2y2,则点(0,0) 是函数z 的(A )极大值点但非最大值点;(B)极大值点且是最大值点;( C)极小值点但非最小值点;(D)极小值点且是最小值点。
高等数学第七章自测题解答
一、试解下列各题
1. 已知向量)1,2,2(),4,1,1(-=-=b a ,求(1)b a ⋅;(2)b j a Pr ;(3)b a ⨯.
;4-=⋅b a ;184)
4(114Pr 222-=-++-=⋅=a b a b j a ).4,9,7(1
2241
1---=--=⨯k j i b a 2. 说出下列曲面方程的名称,若有旋转曲面,指出它是由什么平面上的哪条曲线绕哪个轴旋转而产生的,并画出曲面的图形.
(1) )0(222>=+a az
y x ;
旋转抛物面,由曲线 ⎩
⎨⎧==022x az y ,绕z 轴旋转而产生的. (2) )0(222>=+-a az
y x ;
双曲抛物面. (3) 14
422
2=-+z y x . 单叶旋转双曲面,由曲线
⎪⎩
⎪⎨⎧==-01422
x z y ,绕z 轴旋转而产生的. 3. 求与x 轴的距离为3,与y 轴距离为2的一切点所确定的曲线的方程,并确定它是一条什么样的曲线且画出图形.
⎪⎩⎪⎨⎧=+=+2222222
3z x z y ,两个圆柱面的交线. 4. 求由曲面222y x z +=及32
22=++z y x 所围成的立体在xOy 面的投影区域.
.2,
2(3,132322222222222≤+=+∴-=⇒=+⇒⎪⎩⎪⎨⎧=+++=y x xoy y x z z z z y x y x z 面的投影为立体在投影柱面为舍去)
二、已知平面0=+++D Cz By Ax ,指出下列各平面的特殊位置.
1. 0=A ;
平行于x 轴;
2. 0=D ;
过原点;
3. 0==D A ;
过x 轴;
4. 0==B A ;
平行于xoy 面;
5. 0===D B A .
xoy 面. 三、设直线1
21:-==-z y x l ,平面022:1=+++z y x π,0:2=++z y x π, 01:3=+++z y x π.试判断l 与321,,πππ的关系. .6
1arcsin ),
2,4,2()000(,0,0),1,1,1(),1,1,1(),1,1,2(),1,2,1(:22222333321=--∴=⋅∴=⋅===--=ϕππππππ的夹角为与交,其交点为既不平行也不垂直,相与上;在,故,,有公共点与平行,且与平行;与l l l O l l n s l n s n n n s l 四、求过点)2,1,1(-P 且与直线⎩⎨
⎧=-=+00:1z x z x l 及直线552432:2+=--=-z y x l 平行的平面方程.
.01135,0)2(3)1(5),
3,0,5(5
23010)5,2,3()0,1,0(),
5,2,3(),0,2,0(1
0110121=+-=--+-=-=-⨯=-==-=z x z x k j i n s k j i s 即程为
由点法式得所求平面方取 五、求过点)4,2,0(A 且与012:1=-+z x π,23:2=-z y π平行的直线方程.
.1
4322),
1,3,2(31020121-=-=--=-=⨯=z y x k j i n n s 程为
由点向式得所求直线方取
六、求直线⎩⎨⎧=+--=-+0
720532:z y x z y l 在平面083:=++-z y x π上的投影直线方程. .
0)72(532.0830********中束方程
注:投影平面不在平面故所求投影直线方程为
垂直,,与平面由于
=+--+-+⎩
⎨⎧=++-=+--=++-=+--z y x z y z y x z y x z y x z y x λ 七、确定λ,使直线λ12111:1-=+=-z y x l 和直线1
1111:2z y x l =-=+相交. 1
221112111121
1
2211
121][.4501)1(2)2(2)
1,1,2(1
1121)(0),1,2,2(),0,1,1(),1,1,1(),
1,1,1(),,2,1(2121212121212121212122112121--=⋅⨯==⇒=+-+--=⋅⨯---==⨯⇔⋅⨯--=--==λλλ
λλλλλλλ==)(注:由以上运算可见)(混合积为零即三向量共面)(则
上取点在上取点在相交,即共面,
与设k j i M M s s M M s s M M s s k j i s s M M s s M M M l M l l l s s 八、直线过点)4,2,1(-又和直线2
1333:1z y x l =-=+相交且与平面01043:=-+-z y x π平行,求此直线方程.
.0
43241)
0,3,4()4,5,3(,20
74321333,0743,0)4()2(4)1(3:)4,2,1(001111⎪⎩⎪⎨⎧=--=+===⇒⎪⎩⎪⎨⎧=++-==-=+=++-=-+--+-z y x MM s M t z y x t z y x l z y x z y x M 所求直线方程为
为取所求直线的方向向量得交点的交点
与求即平行,则
与平面作平面过点 ππππ 九、画出下列各立体的图形
1.4222≤++z y x 与02222≥-+z y x 的公共部分;
2.曲面222y x z --=与22y x z +=所围成的立体.。