最新高考数学选做题培训讲学
- 格式:doc
- 大小:1.81 MB
- 文档页数:26
第1课时集合的概念及运算【考点导读】1.了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2.理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3.理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4.集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合用列举法表示.2.设集合,,则.3.已知集合,,则集合_______.4.设全集,集合,,则实数a 的值为____.【范例解析】例.已知为实数集,集合.若,或,求集合B.【反馈演练】1.设集合,,,则=_________.2.设P,Q为两个非空实数集合,定义集合P+Q=,则P+Q中元素的个数是____个.3.设集合,.(1)若,求实数a的取值范围;(2)若,求实数a的取值范围;(3)若,求实数a的值.第3 课时充分条件和必要条件【考点导读】1.理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2.从集合的观点理解充要条件,有以下一些结论:若集合,则是的充分条件;若集合,则是的必要条件;若集合,则是的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力.【基础练习】1.若则是的充分条件.若,则是的必要条件.若,则是的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)已知,,那么是的____ ___条件.(2)已知两直线平行,内错角相等,那么是的__ _____条件.(3)已知四边形的四条边相等,四边形是正方形,那么是的___ __条件.3.若,则的一个必要不充分条件是.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)是的___________________条件;(2)是的___________________条件;(3)是的___________________条件;(4)是或的___________________条件.分析:从集合观点“小范围大范围”进行理解判断,注意特殊值的使用. 【反馈演练】1.设集合,,则“”是“”的 _ 条件.2.已知p:1<x<2,q:x(x-3)<0,则p是q的条件.3.已知条件,条件.若是的充分不必要条件,求实数a 的取值范围.高中数学复习讲义第二章函数A【知识导读】【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
第1讲:选择题解法探讨选择题的题型构思精巧,形式灵活,知识容量大,覆盖面广,一般不拘泥于具体的知识点,而是将数学知识、方法等原理融于一体,突出对数学思想方法的考查,可以比较全面地考察学生的基础知识和基本技能,还能考查学生的思维敏捷性,是高考数学中的一种重要题型。
近年来,高考数学试题推出了一些思路开阔、情景新颖脱俗的选择题,解决这类问题主要注意三个方面:一是提高总体能力;二是要跳出传统思维定式,学会数学的合情推理;三是要熟练地进行数学图形、符号、文字三种语言的转换。
在全国各地高考数学试卷中,选择题约占总分的30%~40%,因此掌握选择题的解法,快速、准确地解答好选择题是夺取高分的关键之一。
选择题由题干和选项两部分组成,题干可以是由一个问句或一个半陈述句构成,选项中有四个答案,至少有一个正确的答案,这个正确的答案可叫优支,而不正确的答案可叫干扰支或惑支。
目前在高考数学试卷中,如果没有特别说明,都是“四选一”的选择题,即单项选择题。
选择题要求解题者从若干个选项中选出正确答案,并按题目的要求,把正确答案的字母代号填入指定位置。
笔者将选择题的解法归纳为应用概念法、由因导果法、执果索因法、代入检验法、特殊元素法、筛选排除法、图象解析法、待定系数法、分类讨论法、探索规律法十种,下面通过2012年全国各地高考的实例探讨这十种方法。
一、应用概念法:应用概念法是解选择题的一种常用方法,也是一种基本方法。
根据选择题的题设条件,通过应用定义、公理、定理等概念直接得出正确的结论。
使用应用概念法解题,要求学生熟记相关定义、公理、定理等基本概念,准确应用。
典型例题:例1:(2012年全国课标卷理5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为【】C12()()A6()B9()D18【答案】B。
【考点】由三视图判断几何体。
【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3。
因此此几何体的体积为:11633932V =⨯⨯⨯⨯=。
第三节 不等式选讲不等式选讲是一个选考内容,纵观近年关于课程标准的高考试题,含绝对值不等式的试题常以选做题的形式出现,属于中档偏易题.最值与恒成立问题是高考的常考点,不等式的证明常与数列相结合,考查数学归纳法、放缩法等技能方法,属于中高档题,甚至是压轴题,难度一般控制在0.3~0.75之间. 考试要求:⑴理解绝对值||||||||||a b a b a b -≤±≤+及其几何意义. ①绝对值不等式的变式:||||||a b a c c b -≤-+-.②利用绝对值的几何意义求解几类不等式:①||ax b c +≤;②||ax b c +≥;③||||x a x b c -+-≥.⑵了解不等式证明的方法:如比较法、综合法、分析法、反证法、放缩法. 题型一 含绝对值不等式例1(2011全国课标卷理科第24题)设函数()3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集 (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值。
点拨:⑴解含绝对值不等式的关键是去掉绝对值符号. ⑵可考虑采用零点分段法. 解:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥, 由此可得 3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-. ( Ⅱ) 由()0f x ≤的 30x a x -+≤ 此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩ 即 4x a a x ≥⎧⎪⎨≤⎪⎩ 或2x a a x ≤⎧⎪⎨≤-⎪⎩ 因为0a >,所以不等式组的解集为{}|2ax x ≤-由题设可得2a-= 1-,故2a =. 易错点:⑴含绝对值的不等式的转化易出错;⑵不会运用分类讨论的数学思想,去掉绝对值符号.变式与引申1:若2(),||1f x x x c x a =-+-<,求证: |()()|2(||1)f x f a a -<+. 题型二 不等式的性质 例2.⑴设0a b >>,则211()aba ab a -++的最小值是( ).A.1B.2C.3D.4 ⑵设+∈R x 且1222=+y x ,求21y x +的最大值.点拨:⑴观察分母能发现其和为2a ,则添加ab ab -+可配凑成21111()()()aba ab aba ab a ab a a b --++=++-+,再利用基本不等式求解;⑵观察已知条件,,再利用基本不等式求解.(1)【答案】D 解:22111111()()()()224aba ab aba ab aba ab a a ab ab ab a a b ---++=-+++=++-+≥+=,当且仅当1ab =,()1a a b -=时等号成立.如取a =2b =满足条件.选D.(2)∵0>x ,∴221()]222y x ++=.又2222113()()22222y y x x ++=++=,∴13)224⋅=,即max (4=易错点:忽视基本不等式求最值时的“一正、二定、三相等”条件.变式与引申2:已知,,x y z R +∈,且1x y z ++=,求证:14936x y z ++≥.题型三 不等式的证明例3 已知,a b R +∈,且1a b +=,求证:221125()()2a b a b+++≥. 点拨:由1a b +=,得14ab ≤,221122a b ab +=-≥,221128a b ab+≥≥.可使问题得证.解:∵2a b +≥∴14ab ≤,2211121242a b ab +=-≥-⋅=,221128a b ab+≥≥,∴2222221111()()4a b a b a b a b+++=++++1258422≥++=.易错点:⑴易出现2222211111()()42()48a b a b ab a ba b ab+++=++++≥++≥的错误;⑵忽视基本不等式中等号成立的条件.变式与引申3:是1a -和1a +的等比中项,则3a b +的最大值为( ).A.1B.2C.3D.4题型四 不等式与函数的综合应用例4已知函数2()(,,)f x ax bx c a b c R =++∈.当[1,1]x ∈-时|()|1f x ≤.求证:||1b ≤. 点拨:本题中所给条件并不足以确定参数b a ,,c 的值,但应该注意到:所要求的结论不是b 的确定值,而是与条件相对应的“取值范围”,因此,我们可以用(1)f - 、(1)f 来表示b a ,,c ,因为由已知条件有|(1)|1f -≤,|(1)|1f ≤,可使问题获证.证明:由1(1),(1)[(1)(1)]2f a b c f a b c b f f =++-=-+⇒=--,从而有11||[(1)(1)](|(1)||(1)|)22b f f f f =--≤+-,∵|(1)|1,|(1)|1f f ≤-≤,∴1||(|(1)||(1)|)12b f f ≤+-≤.易错点:⑴不会用(1)f -、(1)f 来表示a 、b 、c 及其它们的和差关系式,从而解题思路受阻;⑵不能灵活运用绝对值||||||a b a b +≤+,||||||a b a b -≤+对问题进行转化.变式与引申4:设二次函数()f x =2ax bx c ++,函数()()F x f x x =-的两个零点为,()m n m n <.(1)若1,2,m n =-=求不等式()0F x >的解集;(2)若0,a >且10x m n a<<<<,比较()f x 与m 的大小.本节主要考查:⑴不等式的性质(基本不等式与柯西不等式)应用;⑵含绝对值不等式的解法; ⑶逆求参数取值范围;⑷函数方程思想、分类讨论思想、转化化归思想以及比较法、分析法、综合法等数学思想方法.点评:⑴运用不等式性质解有关问题时,要随时对性质成立的条件保持高度警惕,避免错误发生;⑵应用绝对值不等式解题时,要注意绝对值不等式中等号成立的条件;解含绝对值不等式的关键是去掉绝对值符号,主要思路有:①利用绝对值的几何意义;②零点分段讨论;③平方转化;④借助图象直观获解.⑶利用基本不等式和柯西不等式求最值是不等式选讲的重点考查内容之一,解题中常用技巧是注意创设应用基本不等式的条件,合理地拆分项或配凑因式,即把已知式子转化成基本不等式和柯西不等式的模型.在应用20,0)a b a b +>>求最值时,“一正、二定、三相等”三个条件不可缺一.⑷证明不等式的常用方法:①比较法,即作差比较法与作商比较法;②综合法—-由因导果;③分析法---执果索因;④放缩法,常出现在与数列和式有关的不等式证明中,运用时应注意观察“放与缩”的方向和“放与缩”的量的大小,把握好放缩的“度”,熟记一些常用放缩技巧和放缩的结构形式.⑸不等式作为工具,常与函数、导数、数列、解析几何结合在一起,有着广泛的应用,应给予关注.习题3-3 1.(2011陕西文科第3题)设0a b <<,则下列不等式中正确的是 ( )(A ) 2a b a b ab +<<<(B )2a ba ab b +<<< (c )2a b a ab b +<<< (D) 2a bab a b +<<<2.不等式22||x x xx-->的解集是( ).A.(0,2)B.(,0)-∞C. (2,)+∞D.(,0)(0,)-∞+∞3.不等式2|3||1|3x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为( ). A.(,1][4,)-∞-+∞ B.(,2][5,)-∞-+∞ C.[1,2] D.(,1][2,)-∞+∞ 4.(2011年山东卷文科第16题).已知()log (0,1)a f x x x b a a =+->≠当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .5.设20t π<<,a 是大于0的常数,若1cos 1cos ()a ttf t -=+的最小值是16,则a 的值等于______.【答案】当且仅当1112,3,,,632y x z x x y z =====即时,等号成立. 变式与引申3:选B解:由条件可知2231b a +=,用三角代换设cos a α=,sin 3b α=, 则3cos 3sin 2sin()a b αααϕ+=+=+ ∴选B.变式与引申4:(1)由题意知,()()F x f x x =-()()a x m x n =--当1,2m n =-=时,不等式()0F x > 即为(1)(2)0a x x +->. 当0a >时,不等式()0F x >的解集为{1,x x <-或2}x >; 当0a <时,不等式()0F x >的解集为{12}x x -<<. (2)()f x m -=()()()(1)a x m x n x m x m ax an --+-=--+0,a >且10x m n a<<<<,∴0,10x m an ax -<-+> ∴()0f x m -<, 即()f x m <.习题3-32|3||1|3x x a a +--≤-对任意实数x 恒成立,则234a a -≥,解得1a ≤-或4a ≥.故(,1][4,)a ∈-∞-+∞.4.【答案】2【解析】因为函数()log (23)a f x x x b a =+-<<在(0,)+∞上是增函数,(2)log 22log 230,a a f b a b b =+-<+-=-<(3)log 33log 340a a f b a b b =+->+-=->,0(2,3)x ∴∈即2n =.5.【答案】9a = 解:21cos 1cos ()(cos 1cos )11)16a ttt t a -++-≥++=.∴9a =.。