统计学原理:第8章 假设检验
- 格式:ppt
- 大小:4.75 MB
- 文档页数:61
概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。
由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。
统计假设检验的原理和步骤是什么
假设检验是一种统计推断方法,用于判断样本数据是否支持某个假设,并进行统计显著性推断。
原理:
假设检验的原理基于概率统计学,它通过比较观察到的样本数据与一个假设模型之间的差异,来做出关于总体参数的推断。
假设检验从概率的角度出发,将观察到的样本结果与被试验的假设进行比较,进而得出是否拒绝原假设的结论。
步骤:
1. 建立原假设(H0)和备择假设(H1):
原假设通常是关于总体参数的断言,备择假设是对原假设的否定或补充。
2. 选择显著性水平(α):
显著性水平表示对原假设不正确的容忍度,通常选取0.05或0.01作为显著性水平。
3. 计算检验统计量:
根据样本数据计算出特定的检验统计量,如Z值、t值等。
检验统计量的选择取决于样本量和总体分布的已知信息。
4. 确定拒绝域:
拒绝域是一组可能的观测结果,如果样本数据的检验统计量落在拒绝域内,则在给定显著性水平下拒绝原假设。
5. 计算p值:
p值是指当原假设为真时,观察到的统计量比原假设更"极端"的概率。
p值可以用来判断是否拒绝原假设,一般小于显著性水平α时拒绝原假设。
6. 得出统计结论:
根据检验统计量和p值,结合显著性水平,对原假设进行推断,判断是否拒绝原假设,得到统计结论。
总结:
假设检验是一种用于进行统计推断的方法,它通过假设与观察到的样本数据的比较,进行显著性推断。
假设检验的步骤包括建立原假设和备择假设、选择显著性水平、计算检验统计量、确定拒绝域、计算p值、得出统计结论。
第八章假设检验作为统计推断的重要组成部分,假设检验也称为显著性检验,就是对所估计的总体先提出一个假设,然后再根据样本信息来检验对总体所做的假设是否成立。
假设检验可分为参数检验和非参数检验,对总体分布中未知参数的假设检验称为参数检验,而对未知分布函数的类型或其某些特征提出的假设称为非参数检验。
第一节假设检验概述在实际生活中,许多事例都可以归结为假设检验问题。
为了便于理解,下面我们结合具体实例来说明假设检验的思想方法。
例8.1 某厂生产中药地黄丸,药丸的重量服从正态分布N( , 2),按规定每丸的标准重量为10克。
根据以往经验得知,生产药丸的标准差为 3.2克。
现从一批药丸中随机抽取100个,其平均重量为9.6克,试问这批药丸重量是否符合标准?从直观上来看,这批药丸重量不符合标准,两者差异显著。
但能否仅凭100个药丸的平均重量比标准重量小0.4克,而立即得出这批药丸不符合标准的结论呢?从统计学上来看,这样得出的结论是不可靠的。
这是因为,差异可能是这批药丸品质所造成的,也可能是由于抽样的随机性所造成的。
如果我们再随机抽取100个药丸进行检测重量,又可得到一个样本资料。
由于抽样误差的随机性,样本平均数(100个药丸的平均重量)就不一定是9.6克。
那么,我们对样本进行分析时,必须判断样本的差异是抽样误差造成的,还是因本质不同而引起的。
如何区分两类性质的差异?怎样通过样本来推断总体?这正是假设检验要解决的问题。
在假设检验中,先要根据问题的需要建立检验假设,假设有两种,一种是原假设或零假设,用H0表示,通常就是将要进行检验的假设;另一种是备择假设- 1 -或对立假设,用H1表示,是原假设H0相对立的假设。
例8.1中,如果将该批药丸的重量记作总体X,该问题就是检验总体X的均值 的变化情况。
那么,可以设原假设H0: 10( 0),即认为这批药丸重量是符合标准的;而备择假设,即认为这批药丸重量是符合标准的 10( 0),即认为这批药丸重量不H1:10( 0)符合标准的。
假设检验的原理是什么
假设检验的原理是基于统计学原理和概率论的一种做法。
它用于判断一个样本所代表的总体是否满足某个给定的假设,即根据观察到的样本数据推断总体的真实情况。
假设检验的过程通常包括以下步骤:
1. 建立原假设(H0)和备择假设(H1):原假设是针对总体参数所提出的某种假设,备择假设是对原假设的补集。
通常,原假设是一种默认假设,而备择假设是我们想要得到支持的假设。
2. 选择合适的统计量:统计量是根据样本数据计算得出的一个数值,它可以用于推断总体参数的情况。
3. 设定显著性水平:显著性水平是在进行假设检验时所容许的犯错误的概率。
通常,常用的显著性水平是0.05或0.01。
4. 计算样本数据的统计量,并进行假设检验:根据样本数据计算得出统计量的值,然后将其与预先设定的临界值进行比较,以决定是否拒绝原假设。
5. 得出结论:根据计算结果,对原假设的拒绝或接受进行判断并给出相应的结论。
假设检验的目的是通过统计推断的方法来对总体的均值、方差等参数进行推断和判断。
它在科学研究、质量控制等领域中得到广泛应用。
通过假设检验可以帮助我们进行科学决策,并得出对总体参数的信心区间和推断结果。